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Abstract: Tuberculosis (TB) is among the more frequent causes of death in many countries. For
pulmonary TB, early diagnosis greatly increases the efficiency of therapies. Although highly sensitive
tests based on nucleic acid amplification tests (NAATs) and loop-mediated isothermal amplification
(TB-LAMP) are available, smear microscopy is still the most widespread diagnostics method in
most low–middle-income countries, and the true positive rate of smear microscopy is lower than
65%. Thus, there is a need to increase the performance of low-cost diagnosis. For many years, the
use of sensors to analyze the exhaled volatile organic compounds (VOCs) has been proposed as a
promising alternative for the diagnosis of several diseases, including tuberculosis. In this paper,
the diagnostic properties of an electronic nose (EN) based on sensor technology previously used to
identify tuberculosis have been tested on-field in a Cameroon hospital. The EN analyzed the breath of
a cohort of subjects including pulmonary TB patients (46), healthy controls (38), and TB suspects (16).
Machine learning analysis of the sensor array data allows for the identification of the pulmonary TB
group with respect to healthy controls with 88% accuracy, 90.8% sensitivity, 85.7% specificity, and 0.88
AUC. The model trained with TB and healthy controls maintains its performance when it is applied
to symptomatic TB suspects with a negative TB-LAMP. These results encourage the investigation of
electronic noses as an effective diagnostic method for future inclusion in clinical practice.

Keywords: tuberculosis (TB); breath analysis; volatile organic compounds (VOCs); electronic nose

1. Introduction

Even though it has been well identified since the 19th century and even after a century
of vaccination, tuberculosis (TB) is still the world’s leading cause of infectious death [1].
According to the Global Tuberculosis Report of the World Health Organization, in 2021,
7.8 million people suffered from active TB, and about 1.4 million died from the disease [2].
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Over 95% of TB deaths occur in low- and middle-income countries, and within these
countries, the prevalence of TB is higher among the impoverished [3].

Nevertheless, TB is preventable and treatable. The observation of the basic patterns of
clinical symptoms (4SS: fever, cough lasting more than 2 weeks, night sweats, loss of weight
or appetite) complemented by chest X-ray provides the first step for a diagnosis, which is
typically confirmed using microbial culture-based tests, which require a long incubation
of the sputum sample. As an alternative, a smear microscopy (SMEAR) test can provide
a result in a few hours but with a sensitivity lower than 65% [4]. Due to its moderate
cost, SMEAR is the current standard point-of-care (POC) test in low- and middle-income
countries [5,6].

Important advances in TB diagnosis are offered by molecular tests that produce reli-
able nucleic acid amplification tests (NAATs). For example, the introduction of GeneXpert
(Xpert MTB/RIF) and line probe assays have significantly increased the sensitivity and
shortened the time for a TB diagnosis with a sensitivity of 97–99% for smear-positivity [7].
The introduction of NAATs is expected to greatly improve the containment of TB. However,
NAATs still require sputum collection, trained staff, and two hours for the response. Addi-
tional methods aimed at microorganisms’ detection, such as the TB-LAMP (loop-mediated
isothermal amplification) can provide results in less than one hour, with sensitivity and
specificity for smear- and culture-positivity of 90% and 95% [8]. However, both these
methods are more expensive than SMEAR [9].

In this context, there is an urgent need to develop rapid, low-cost, and easy-to-use
methods for TB diagnosis that can ensure effective screening in the field, the rapid isolation
of infected subjects, and the control of the efficiency of therapies. In this regard, the measure
of the volatile fraction of the metabolome, called the volatilome, has been proposed as
a viable alternative to the current diagnostics methods. Many studies present evidence
that a vast range of phenomena, both in vitro and in vivo, are characterized by specific
patterns of VOCs [10]. With respect to VOC production, breath is the richest source of
volatile compounds, also in terms of chemical diversity [11], and breath composition has
been found to be correlated with different pathologies and conditions [12].

The relationship between the breath volatilome and tuberculosis has been investigated
in several papers using analytical instrumentations such as gas chromatography coupled
with mass spectrometry (GC-MS) [13–15]. Most of the volatile compounds related to TB are
aldehydes, methylated aromatics, alkanes, and alkane derivatives. Most of these molecules
are also general products of oxidative stress [16]. It is worth noting that in TB, the changes
in volatilome composition are not only due to the patient’s response to the infection but
also to the metabolites of the mycobacterium itself [17].

The interest in volatilome analysis has been further increased by the introduction of
miniaturized gas sensors, which are connected to microelectronics platforms to give rise to
simple-to-use and low-cost devices [18–20]. These devices enable the design of arrays of gas
sensors that can detect the composition of complex mixtures of compounds, implementing
the same approach as that of natural olfaction [21]. The diagnostic properties of these
devices, also known as electronic noses, have been demonstrated with different kinds of
samples, such as breath [22], urine [23], sweat [24], saliva [25], and cell cultures [26]. Among
them, the detection of tuberculosis has so far been attempted with electronic noses based
on different sensor technologies such as metal oxide semiconductors [27,28], organically
capped gold nanoparticles [29], and porphyrin-coated quartz microbalances [30].

In this paper, an electronic nose made of porphyrinoid-functionalized quartz microbal-
ance sensors was tested in a measurement campaign at the Laquintinie Hospital in Douala
(Cameroon). The study involved diagnosed TB patients, patients suspected to have TB but
affected by different diseases, and a group of healthy controls. A preliminary version of
this EN was previously used to identify TB in a study carried out in Botswana [30]. With
respect to that version, the EN used here contained an extended array of sensors where
corrole-based sensors were added to the previously used porphyrins, along with a mass
flow controller that improved the reproducibility of the measurement and the monitoring
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of breath humidity and temperature. The current version of the EN was robust enough to
be operated in a hospital outside the controlled laboratory environment.

The results are encouraging with respect to the possibility of developing a dedicated
instrument that complies with the general requirements for POC, such as appropriate price,
sensitivity, specificity, user friendliness, fast response, reliability, and accessibility [31].

Finally, it is important to point out the geographical relevance of this study. Indeed,
tuberculosis is endemic in Cameroon. According to the World Health Organization, in 2021,
this country was 3rd out of the top 20 countries in terms of the incidence of TB cases among
people living with HIV [2], and TB caused about 13,100 deaths in 2017 [32].

2. Materials and Methods
2.1. Study Design and Recruitment

This study was an interventional case–control study on adults (all genders over 18
years). The study protocol follows the WHO guidelines, and it was approved by the Institu-
tional Ethic Committee at the Faculty of Medicine, University of Douala
(No 2341/IEC-UD/07/2020/T) and registered after review acceptance at ClinicalTrials.gov
(NCT02219945). Participants were recruited from the Center of Respiratory Disease of
the public Laquintinie Hospital in Douala (Cameroon). Signed informed consent forms
were obtained from each patient before enrollment. The cohort included patients with
diagnosed TB, patients with suspected TB, and healthy controls. All suspected TB patients
were diagnosed using a sputum test with TB-LAMP. Other clinical analyses were collected
for suspected TB patients, such as SMEAR and chest X-rays. All patients were able to
expectorate sputum and exhale breath samples. Healthy controls were free of any of the 4SS
of pulmonary TB, and without a respiratory disease history. After breath tests, the study
participants were followed-up in time to confirm TB diagnosis. In cohort selection, people
with a cancer history were excluded because of the previously mentioned effects of cancer
on VOC profile. For each participant, demographic and clinical data and blood/urine
laboratory tests were also collected.

Measurements were collected in a period of two months. Healthy and TB subjects
were measured in a random sequence to avoid any effect of a possible drift of sensor signals.

2.2. Breath Sampling and Processing

A breath sampler was designed by modifying a breath sampler previously designed
to separate alveolar breath from the dead space [33]. The breath sampler is shown in
Figure 1. During the collection, subjects wore a nose clip and were asked to inhale their
total lung capacity and to exhale deeply into a mouthpiece equipped with a bacterial and
viral Gibeck ISO-Gard Filter (TeleFlex, Morrisville, NC, USA)). The breath was portioned
into two bags. The access to the first bag (volume 400 mL, from QuinTron Instruments,
Milwaukee, WI, USA) was always open, while the access to the second larger bag (a 3 l
volume tedlar sample bag, SKC Inc., Eighty Four, PA, USA) was controlled by a three-way
valve (QT00854/5-P from QuinTron Instruments, Milwaukee, WI, USA). The first portion
of breath fills the small bag, and as the pressure increases, the three-way valve opens and
the larger bag is filled. Such a system separates the alveolar part of the breath into the larger
bag and it improves the rejection of the sources of VOCs located in the upper respiratory
part. The content of alveolar breath was immediately measured on site.

ClinicalTrials.gov


Biosensors 2023, 13, 570 4 of 13Biosensors 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

Figure 1. Breath sample collection. (A) Assembled sampler: 1: mouthpiece, 2: anti-bacterial filter, 3: 

3-way valve, 4: bag for dead space collection, 5: bag for alveolar breath collection. (B) Example of 

use. (C) Picture of the EN unit. 

All subjects were required to refrain from consuming food, drinking, or smoking for 

at least two hours before the breath collection. All subjects spent at least 10 min in the meas-

urement room prior to breath testing to normalize their lungs to the environmental air. 

2.3. Electronic Nose 

The gas sensor array was an ensemble of eleven quar� microbalances (QMB). QMBs 

are mass sensors where the changes in the mass (Δm) at the quar� surface result in fre-

quency changes (Δf) in the electrical output signal of an oscillator circuit to which each 

sensor is connected; in the low-perturbation regime, the sensitivity of the sensor is ruled 

by the Sauerbrey law, and Δm and Δf are linearly proportional [34]. 

The QMBs used in this paper had a fundamental frequency of 20 MHz (KVG Gmbh, 

Neckarbischofsheim, Germany), corresponding to a mass resolution of the order of a few 

nanograms. The sensitive molecules are listed in Table 1. They are differently functional-

ized forms of metalloporphyrins and corroles [35,36]. Sensors 1 to 7 are different metal 

complexes of tetraphenylporphyrins functionalized with a butyloxyphenyl group to en-

sure the diffusion of target molecules through the sensitive film. Sensors 8 and 9 are free-

base and molybdenum complexes of tetraphenylprorphyrins decorated with bromium at-

oms. Finally, sensors 10 and 11 are corrole macrocycles functionalized with dime-

thylphenyl and phenantryl groups, respectively. 

Table 1. List of the used sensitive molecules. 

 Sensitive Molecule 

1 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinCopper 

2 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinCobalt 

3 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinZinc 

4 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinMagnesium 

5 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinManganeseChloride 

6 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrin-IronChloride 
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Figure 1. Breath sample collection. (A) Assembled sampler: 1: mouthpiece, 2: anti-bacterial filter, 3:
3-way valve, 4: bag for dead space collection, 5: bag for alveolar breath collection. (B) Example of use.
(C) Picture of the EN unit.

All subjects were required to refrain from consuming food, drinking, or smoking for
at least two hours before the breath collection. All subjects spent at least 10 min in the
measurement room prior to breath testing to normalize their lungs to the environmental air.

2.3. Electronic Nose

The gas sensor array was an ensemble of eleven quartz microbalances (QMB). QMBs
are mass sensors where the changes in the mass (∆m) at the quartz surface result in
frequency changes (∆f) in the electrical output signal of an oscillator circuit to which each
sensor is connected; in the low-perturbation regime, the sensitivity of the sensor is ruled by
the Sauerbrey law, and ∆m and ∆f are linearly proportional [34].

The QMBs used in this paper had a fundamental frequency of 20 MHz (KVG Gmbh,
Neckarbischofsheim, Germany), corresponding to a mass resolution of the order of a few
nanograms. The sensitive molecules are listed in Table 1. They are differently function-
alized forms of metalloporphyrins and corroles [35,36]. Sensors 1 to 7 are different metal
complexes of tetraphenylporphyrins functionalized with a butyloxyphenyl group to ensure
the diffusion of target molecules through the sensitive film. Sensors 8 and 9 are freebase
and molybdenum complexes of tetraphenylprorphyrins decorated with bromium atoms.
Finally, sensors 10 and 11 are corrole macrocycles functionalized with dimethylphenyl and
phenantryl groups, respectively.

The QMBs were assembled in a sensor system endowed with airflow inlet control and
communication with a computer. This EN has been used for human volatilome studies
such as breath analysis to diagnose lung cancer [37], urine analysis for kidney cancer [38],
and blood serum for COVID-19 [39]. The EN unit is shown in Figure 1C.
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Table 1. List of the used sensitive molecules.

Sensitive Molecule

1 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinCopper
2 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinCobalt
3 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinZinc
4 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinMagnesium
5 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrinManganeseChloride
6 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrin-IronChloride
7 5,10,15,20-tetrakis-(4-butyloxyphenyl)porphyrin-TinDichloride
8 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinH2
9 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrin oxoMolybdenum
10 5,10,15-tris(3,5-dimethylphenyl)corroleCopper
11 5,10,15-tris(9-phenantryl)corrole

In each measurement, the 3 l Tedlar bag was connected to the EN inlet. The cleaning
inlet of the EN was always connected to the environment through a dryer calcium chloride
trap. Each measurement cycle consisted of air flowing into the bag for 180 s followed by a
cleaning phase of 540 s, during which the EN was flushed with ambient air filtered by the
calcium chloride trap. The response of each sensor was evaluated as the difference between
the frequency measured at the end of the exposure to the breath sample and the frequency
measured immediately before the exposure to the sample with the sensors exposed to
filtered ambient air. For each bag, a sequence of three measures were taken. Thus, for each
subject, three measurements were taken.

2.4. Statistical Analysis

The statistical significance of sensor signals was evaluated with the non-parametric
Kruskal–Wallis rank sum test. Multivariate analysis was carried out with the principal
component analysis (PCA) and linear discrimination analysis (LDA) algorithms.

PCA is a simple algorithm to explore the multivariate distribution of sensor data. It
provides the projection of the multidimensional data onto a plane defined by the directions
of maximum correlation.

PCA was calculated using standardized sensor data where the responses of each
sensor were normalized to zero mean and unitary variance. Normalization is necessary
to equalize the contribution of each sensor to the array. Indeed, the range of signals is
different; an example of sensor signals is shown in Figure 2. The difference is due to several
factors, such as the different sensitivity of sensors and the non-reproducibility of sensors’
manufacturing procedures.

It is important to consider that the principal components are calculated only consider-
ing the variance of the multivariate data. Such an unsupervised process defines directions
where the total variance of the data is decomposed into uncorrelated variables. However,
different directions may be defined to achieve an optimal separation between the classes.
Linear discriminant analysis (LDA) enables the definition of variables (canonical variables),
which are still obtained as a linear combination of sensors. With respect to PCA, LDA is a
supervised algorithm that needs to be trained and tested. For this scope, the whole dataset
was split into two subsets; one was used to train the model and the other to test it. LDA
was calculated using standardized sensor data, and it was used to assign each measured
sample to the TB or non-TB groups.
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Figure 2. Schematic view of breath analysis. The content of the alveolar bag of the breath sampler is
delivered to the electronic nose. Three short pulses of collected breath are sequentially measured.
The three measures are processed by the linear discriminant analysis (LDA) classifier, each measure
is assigned to a class, and the reliability of each assignment is evaluated with a classification score
(marked with a star in the classification score plot). The final response of the diagnosis corresponds
to the class predicted with the highest classification score.

The whole data classification procedure is outlined in Figure 2. Three measurements
for each subject were considered as independent, and the LDA model was assessed with
this amount of data using 70% of the data to train the classifier and 30% of the data to
test the model. Finally, each subject was assigned to the class that achieved the largest
classification score. In LDA, the difference between the canonical variable for each sample
and the mean of the class was considered as the score of the classifier. This quantity is used
as an indication of the reliability of the class prediction. In practice, a sample measured three
times was assigned to the class that corresponded to the largest classification score. This
approach is similar to a majority voting-based classification where instead of comparing
with many classifiers, more measurements from the same sample are compared.

In classification problems, the partition of data may strongly influence the performance
of the algorithm. In particular, the random split of a dataset might result in either over-
optimistic or over-pessimistic conclusions. To avoid this drawback, the LDA model was
calculated 100 times. Each time, a different random partition of data was applied to
train the model and to test it. In each iteration, a number of classification performance
indicators were calculated. They are sensitivity, specificity, accuracy, and area under the
ROC (AUROC). Finally, the LDA model achieving the average performance indicators was
considered as the EN classification model.

Variance analysis, PCA, and machine learning classifications were performed in Mat-
lab R2020b using the functions available in the Statistics and Machine Learning Toolbox
(Mathworks, Natick, MA, USA).
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3. Results and Discussion

In total, 100 breath samples were measured. There were 46 patients proven to be
positive for pulmonary TB (PTB) with TB-LAMP and 38 healthy controls (HC). Additional
groups of 10 non-PTB (NTB) subjects and 6 subjects with TB (PTBX) were measured to test
the predictivity of EN on uncertain cases. NTB subjects had TB symptoms but negative TB-
LAMP results, while in PTBX, in spite of negative TB-LAMP results, the TB was confirmed
by symptoms, chest X-ray, and physician outcome. Table 2 shows the demographic and
clinical data of all groups. All subjects of the PTB group presented cough symptoms
(more than 2 weeks) and an average low BMI (19.5). Being underweight commonly has
a synergistic effect on TB development [40]. Among the PTB group, 41.5% were patients
who relapsed to PTB and who had been treated for 6 months with healing confirmation.
All the recruited subjects were negative for antigenic COVID-19 tests.

Table 2. Clinical and demographic data for PTP and HC patients.

Factor PTB
(#46 Subjects)

HC
(38 Subjects)

PTBX
(6 Subjects)

NTB
(10 Subjects)

Sex (M/F) 30/16 23/15 4/2 6.82 × 10−12/8
Age (mean, SD) 36.93 (13.96) 34.03 (9.90) 43.5(19.18) 40.3(10.87)
BMI (mean, SD) 19.511(2.86) 26.3364 (3.98) 23.68(5.62) 25.26(6.76)

VIH+ 8 0 0 1
X-ray (positive) 39 N/A 6 0

SMEAR (positive) 18/30 N/A 0/6 0
C-RP (positive) 08/11 N/A 2/3 2/6

Fever 41 0 4 2
Cough (>2 weeks) 46 0 5 10

Appetite loss 45 0 0 0
Weight loss

(2–21 kg) 33 0 6 6
Night sweats 40 0 1 0

Smokers 9 2 0 1
Alcohol drinkers 20 28 3 2

Recovered 9 N/A 1 0
TB history 17 N/A 0 3
Diabetic 1 0 0 1

MDR (Rifampicin) 1 N/A N/A 0
Hypertension (HTA) 0 1 0 0

Sensor Data Evaluation

Figure 3 shows the distribution of the sensor signals in the two classes of PTB and HC.
The statistical difference between the two groups is expressed by the p-value calculated
with the Kruskal–Wallis nonparametric rank test. For all sensors, the mean of the frequency
shift for the group of the PTB group is larger than that for the HC subjects. Despite the
different formulation of sensitive materials, all sensors show a p-value lower than 0.001.
Hence, for all sensors, the two classes are statistically different. Previous studies on VOCs
released in the breath of TB patients indicated that the presence of TB is signaled by a
specific pattern of a blend of aldehydes and methylated aromatics, alkenes, and alkanes [14],
to which all sensors are expected, even if with a different intensity, to be sensitive [41].
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Figure 3. Kruskal–Wallis rank test and box and whisker plot of the responses of sensors to PTB and
HC samples. Squares indicate the sensors measures, circles indicate the alleged outliers. All patients
were measured in triplicate. Sensors are numbered according to the list in Table 1.

Despite the low p-value, all sensors show an overlap of the two distributions. Thus,
individual sensors are far from providing an ideal accuracy. However, sensors are elements
of an array, and electronic noses have been introduced on the assumption that the collective
behavior of the sensor array can overcome the limited capability of individual sensors to
separate different groups. For the analysis of the sensor array data, the sensors’ responses
to each sample are assembled to form vectors, and the signals collected from all samples
are arranged in a matrix. The data matrix was analyzed with PCA and then with LDA.

Figure 3 shows the main results of PCA. In Figure 4A, the p-values of the first three
principal components with respect to the discrimination of the two groups are compared.
PC1 and PC3 are the components where the two groups are better separated. In Figure 4B,
the sensor data are projected in the plane defined by the first and the third principal
component. In the plot, PC1 and PC3 account for more than 95% of the total variance of
the sensor array, while PC2, for which a moderate class separation is obtained, explains
3% of the total variance. The other 2% of data variance is explained by higher-order
principal components that do not contribute to the separation of classes. As expected
from the boxplots in Figure 3, the two groups form distinct clusters with a limited overlap.
Additionally, the group of PTB is characterized by a larger variability with respect to the
controls. Indeed, even though all the positive TB subjects were enrolled before the TB
treatment, their general physical states were rather different. For example, the range of
weight loss is between 2 and 21 kg, and cough duration spanned from 2 to 36 weeks.
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A more efficient evaluation of the performance of EN data in terms of capturing
the differences between the classes can obtained using the supervised classification LDA
algorithm. As detailed in the Materials and Methods section, LDA was calculated using
the total dataset, where each subject was measured three times and then assigned to the
class for which the largest classification score was obtained.

The performance of the classifier is shown in Table 3. For both training and test data,
the accuracy, the sensitivity, the specificity, and the AUROC are listed. For each quantity,
the interval of confidence at 95% was evaluated using the asymptotic formula. Figure 5
shows the ROC and the distribution of the canonical variables for the TB and HC groups in
the training and test.

Table 3. Performance of the classification of PTB with respect to HC.

Accuracy Sensitivity Specificity AUROC

Training 89.8% 92.6 ± 10% 87.5 ± 11% 0.90
Test 88.0% 90.8 ± 17% 85.7 ± 18% 0.88
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The model generated with the data collected from TB cases and healthy controls was
applied to those patients who showed symptoms but had a negative TB-LAMP test. In
total, 10 of these cases (labeled as NTB) were negative for TB, while in 6 cases (labeled
as PTBX), the diagnosis of pulmonary tuberculosis was confirmed by further inspections
based on chest X-rays and clinical condition evaluations. Table 4 shows the result of
the model applied to these cases. The performance achieved by the classifier between
PTB and HC is confirmed with the cases for which the current diagnostic tools provided
contradictory results.

Table 4. Results of the application of the LDA classifier to the negative TB-LAMP of symptomatic patients.

PTBX NTB

Predicted as PTB 5 2
Predicted as HC 1 8

Finally, in Figure 6, the sensitivities of all the methods used in this study are compared.
It is interesting to note that the sensitivity of EN is comparable to TB-LAMP and chest-Xray,
and largely outperforms SMEAR.
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Figure 6. Comparison of the sensitivities shown by all diagnostic tools utilized during the
present study.

4. Conclusions

Previous studies suggest that electronic noses could be used to diagnose TB. In this
paper, we exploited the potential of an EN in a clinical context, measuring patients during
their routine interaction in a public hospital in Douala (Cameroon). The electronic nose was
an advanced version of a device previously used to detect the change in breath composition
of TB patients during therapy [28].

The results show that the tested EN can detect all positive TB patients with respect to
healthy controls with an accuracy of 88.0% and a sensitivity and specificity of 90.8% and
85.7%, respectively. Furthermore, this performance is maintained in the prediction of cases
for which the standard diagnostic tools provide a conflicting diagnosis.

In Table 5, the performance achieved in this study is compared with previous literature
results from on-field tests. The results are substantially similar; in some cases, the effects of
HIV on TB were considered, but inconsistent results were found [29,30]. It is important to re-
mark that a lack of standardization of the studies and, moreover, the non-contemporaneous
identification of the relevant VOCs with a standard analytical technique make is difficult to
compare the results obtained with sensors based on different technologies.
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Table 5. Comparison of the achieved classification between PT and HC with previous literature studies.

Sensor Technology Sensitivity Specificity Reference

Metal oxide semiconductors 93.5% 85.3% [27]
Metal oxide semiconductors 88.0% 92.0% [28]

Organic capped gold nanoparticles 85.0% 89.0% [29]
Porphyrin-coated QMBs 94.0% 90.0% [30]

Porphyrin- and corrole-coated QMBs 90.8% 85.7% This work

Thus, the present results provide further evidence about the possibility of developing
a fast, cheap, and portable POC device specifically devoted to TB diagnosis. Such a device
would also give access to diagnosis and effective treatment to people living in remote areas,
and would enable quick and correct detection of potentially infectious hospitalized patients.
For this purpose, more studies are still necessary, not only to enforce the statistics, in
particular with respect to comorbidities, but also to verify the robustness of the technology
and the stability of the performance in very long-term operation.
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