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Abstract: Pyridaben, a broad-spectrum pyridazinone acaricide that is widely used in agricultural
production, can induce neurotoxicity and reproductive abnormalities, and is highly toxic to aquatic
organisms. In this study, a pyridaben hapten was synthesized and used to prepare monoclonal
antibodies (mAbs), among which 6E3G8D7 showed the highest sensitivity in indirect competitive
enzyme-linked immunosorbent assay, with a 50% inhibitory concentration (IC50) of 3.49 ng mL−1.
The mAb, 6E3G8D7, was further applied to a gold nanoparticle-based colorimetric lateral flow
immunoassay (CLFIA) for pyridaben detection, according to the signal intensity ratio of the test line
to the control line, which showed a visual limit of detection of 5 ng mL−1. The CLFIA also showed
high specificity and achieved excellent accuracy in different matrices. In addition, the amounts of
pyridaben in blind samples detected by the CLFIA, were consistent with high-performance liquid
chromatography. Therefore, the developed CLFIA is considered a promising, reliable, and portable
method for pyridaben on-site detection in agro-products and environmental samples.

Keywords: pyridaben; monoclonal antibody; colorimetric lateral flow immunoassay; enzyme-linked
immunosorbent assay; on-site detection

1. Introduction

Pyridaben, 2-tert-butyl-5-[(4-tert-butylphenyl)methylsulfanyl]-4-chloropyridazin-3-
one, is a broad-spectrum, contact-killing pyridazinone agro-chemical acaricide that is
mainly used to control spider mite and panonychus mite eggs, larvae, and adults [1,2].
The mechanism of action is the inhibition of glutamine dehydrogenase synthesis in the
chromosome of the electron transport system [3,4]. Pyridaben is widely used in China,
the European Union (EU), the USA, and other countries, and its residues have been de-
tected in cabbage, fruits, and paddy water [2,5]. Previous studies have demonstrated that
pyridaben can inhibit or induce autophagy in the placenta, can have adverse effects on
early pregnancy, and can cause neurotoxicity and reproductive abnormalities in dopamine
neurons in males [6,7]. In addition, pyridaben has been found in many rivers and is
highly toxic to aquatic organisms, resulting in severe cardiac malformations and func-
tional abnormalities [8,9]. Owing to its hazardous properties for human health, and its
negative influence on nontarget organisms, pyridaben has been labeled as a hazardous
substance (Number: 7052) in the Hazardous Substances Data Bank of the National Library
of Medicine (USA) [10]. To ensure food safety, maximum residue limits (MRLs) for pyrid-
aben in agro-products have been stipulated in many countries. The national food safety
standard of China (GB 2763-2021) has defined the MRLs for pyridaben, in cucumber and
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tangerine, as 0.1 mg kg−1 and 2.0 mg kg−1, respectively. The EU has defined the MRLs in
cucumber and citrus fruits as 0.15 mg kg−1 and 0.3 mg kg−1, respectively (EU 2020/1565).
The U.S. Environmental Protection Agency (EPA) has also defined the lowest MRL in milk
as 0.01 mg kg−1. Therefore, the detection of pyridaben, in the environment and in food
samples, is of great importance.

To date, several conventional instrumental analysis methods have been reported for
pyridaben detection, such as high-performance liquid chromatography (HPLC) [11,12], liq-
uid chromatography coupled with tandem mass spectrometry (LC-MS/MS) [13], ultrahigh-
performance LC-MS/MS (UPLC-MS/MS) [14], and gas chromatography (GC) [15,16].
Although these methods are accurate and precise, their disadvantages include being time-
consuming and requiring equipment, which limits their application for pyridaben rapid
detection [17,18]. Therefore, it is necessary to develop a convenient and simple method for
pyridaben on-site detection, to ensure food and environmental safety.

Enzyme-linked immunosorbent assay (ELISA) is regarded as the gold standard tech-
nique for rapid analyte detection [19,20]. Nevertheless, the essential washing and incuba-
tion steps make it unsuitable for on-site detection. Paper-based competitive lateral flow
immunoassay (LFIA) is a state-of-the-art platform used for small-molecule contaminant
on-site detection, including pesticide residues [21,22]. In this technique, gold nanopar-
ticles (AuNPs) are the primary reporters because they allow observation of the results,
in a straightforward manner, by the naked eye [23,24]. Traditional AuNP-based LFIA is
typically performed by visual inspection of test line (T-lines) color changes, which makes it
difficult to capture a weak signal change, resulting in insufficient sensitivity and a poor
user experience, particularly for untrained personnel [25]. The colorimetric LFIA (CLFIA),
that relies on detection of the T-line and control line (C-line), may be an effective platform
for addressing the above shortcomings. In the CLFIA, the excellent haptens and antibodies
are crucial reagents for pyridaben detection. Miyamoto et al. incorporated a carboxyl or hy-
droxymethyl group onto the two tert-butyl groups in pyridaben, to afford two carboxyl and
two hydroxymethyl compounds as haptens, by a computational chemistry approach. These
compounds were used to prepare anti-pyridaben polyclonal antibodies, which showed
the lowest 50% inhibitory concentration (IC50) of 8.90 ng mL−1 for pyridaben in indirect
competitive ELISA (ic-ELISA) [26]. Liu et al. prepared anti-pyridaben mAbs, using a novel
hapten, by coupling mercaptopropionic acid and pyridaben, and the mAb 3C2 showed
the lowest IC50 of 2.36 ng mL−1 in ic-ELISA and the lowest cut-off value of 25 ng g−1 in
LFIA [27].

In this study, a pyridaben hapten was synthesized for mAbs preparation. Furthermore,
the sensitivities of the prepared mAbs were estimated by using ic-ELISA, and the mAb
with the highest sensitivity was selected for the development of a competitive CLFIA. The
sensitivity, specificity, and accuracy of the CLFIA were evaluated by pyridaben standard
solution, pyridaben analogs, and spiked samples. In addition, the residues of pyridaben in
cabbage samples were measured by the CLFIA and HPLC simultaneously, and the obtained
results were compared.

2. Materials and Methods
2.1. Reagents and Apparatus

Standards of pyridaben (99.8%), pyridaphenthion (99.2%), pymetrozine (99.8%), bupro-
fezin (98.4%), thiamethoxam (98.2%), and acetamiprid (99.2%) were provided by the
Shanghai Pesticide Research Institute Co., Ltd. (Shanghai, China). Chloroauric acid
(HAuCl4), Freund’s incomplete and complete adjuvant, bovine serum albumin (BSA),
and ovalbumin (OVA) were purchased from Sigma-Aldrich (Milwaukee, WI, USA). N,N′-
dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS) were purchased from
the Aladdin Industrial Corporation (Shanghai, China). Reagents for cell culture were
obtained from ThermoFisher Scientific (Waltham, USA). Nitrocellulose (NC) membranes
were purchased from Sirui Science & Technology Co., Ltd. (Wuhan, China). Horseradish
peroxidase (HRP)-labeled goat anti-mouse IgG was purchased from Boster (Wuhan, China).
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The mAb subtype was determined using an IsoQuickTM Kit (Sigma, St. Louis, MO, USA).
Animal experiments were approved by the Department of Science and Technology of
Jiangsu Province (license number: SYXK (SU) 2021-0086).

The absorbance was measured using a Molecular Devices SpectraMax M5 (San Jose,
CA, USA). The morphology of the AuNPs was characterized by transmission electron
microscopy (TEM, H-7650, Kitakyushu, Japan). The coating antigen and goat anti-mouse
IgG were sprayed on the NC membrane using an XYZ-3000 dispensing platform (Bio-Dot,
Irvine, CA, USA) and cut into strips using a CM 4000 guillotine cutter (Bio-Dot, Irvine,
USA). Pyridaben was detected using an Agilent 1260 HPLC (Santa Clara, CA, USA).

2.2. Preparation of the Pyridaben Hapten and Antigen

As shown in Figure 1, the pyridaben hapten was synthesized by introducing a carboxyl
group at the end of the pyridaben. A total of 60 mL of N,N-dimethylformamide (DMF),
containing 5 g of ethyl p-tolylacetate, was added dropwise into 60 mL of DMF containing
3.93 g sodium hydride at 0 ◦C, and the solution was stirred continuously for 1 h. Then,
7.33 mL of iodomethane was added and reacted at 25 ◦C for 5 h. The crude product was
purified by column chromatography (SiO2, petroleum ether/ethyl acetate = 1:0 to 10:1) to
obtain ethyl 2-p-methylphenyl-2-methylpropionate (product 1). Then, 2 g of product 1 and
2.07 g of N-bromosuccinimide, dissolved in 20 mL of dichloromethane, were mixed with
0.08 g of azodiisobutyronitrile and stirred for 1 h at 80 ◦C. The ethyl 2-(4-(bromomethyl)
phenyl)-2-methylpropionate (product 2) was obtained after the purification method of
product 1. The product 2 (1.2 g), 0.92 g of 2-tert-butyl-4-chloro-5-mercapto-2h-pyridazine-3-
one and 0.67 g of K2CO3 were dissolved in 20 mL of DMF, and the mixture was stirred for 4 h
at 20 ◦C. After purification, ethyl-2-(4-(((1-(tert-butyl)-5-chloro-6-oxo-1,6-dihydropyridazin-
4-yl)thio)methyl)phenyl)-2-methylpropanoate (product 3) was obtained. The product
3 (1.2 g) dissolved in 4 mL of EtOH and 4 mL of tetrahydrofuran was mixed with 0.48 g
of LiOH·H2O in 4 mL of pure water and stirred for 4 h at 50 ◦C. The pyridaben hapten
was obtained after purification (SiO2, petroleum ether/ethyl acetate = 100:0 to 10:1). The
obtained hapten was further identified by mass spectrometry (m/z) and 1H NMR.
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Figure 1. Synthesis route for the pyridaben hapten.

The pyridaben hapten was conjugated with BSA (hapten-BSA) and OVA (hapten-OVA)
using the active ester method to prepare the immunogen and the coating antigen, respec-
tively. In brief, 0.1 mmol of pyridaben hapten, 0.1 mmol of DCC, and 0.1 mmol of NHS
were dissolved in 2.5 mL of DMF and stirred overnight in the dark. After centrifugation, the
supernatant was collected and equally added into 5 mL of phosphate-buffered saline (PBS)
containing 10 mg mL−1 BSA or OVA. The mixture was stirred for 4 h at room temperature
(RT) and the obtained conjugates were dialyzed, split, and stored at −20 ◦C for further use.
The coupling ratios of the carrier and hapten were calculated according to the following
formula: coupling ratio = (ε (conjugate) − ε (BSA or OVA)/ε (hapten) (ε represents molar
absorption coefficient) [17].
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2.3. Preparation and Characterization of MAbs

The female BALB/c mice (6–8 weeks) were used for immunity. One hundred mi-
croliters of immunogen (1 mg mL−1) and isochoric Freund’s complete adjuvant were
emulsified and used for initial immunization. Three weeks later, the same amount of
immunogen, and Freund’s incomplete adjuvant, were utilized for the subsequent immu-
nizations at two week intervals, until the titer of the serum was held on a platform. The
mouse that produced the highest titer and sensitivity was selected for booster immuniza-
tion and cell fusion. The positive cells were chosen, subcloned, and cultured for ascites
preparation. The anti-pyridaben mAbs were purified using staphylococcal protein A col-
umn, and their sensitivities were evaluated by ic-ELISA. In addition, their specificities
were assessed in terms of the cross-reactivities (CRs) with structural analogs of pyridaben,
including pyridaphenthion, pymetrozine, buprofezin, thiamethoxam, and acetamiprid.
The CRs were defined as follows: CRs (%) = [IC50 (pyridaben)/IC50 (analogs)] × 100.

2.4. Preparation of AuNP Labeled MAb

AuNPs of approximately 25 nm were synthesized using the sodium citrate as a
reduction agent. The AuNP-labeled mAb (AuNP-mAb) was prepared according to the
reported method [28], where the minimum dosage of mAb was determined via a salt
precipitation test. Briefly, 2.6 mg of mAb was added to 50 mL of AuNP solution (pH 8.2)
with gentle shaking for 1 h. Then, the remaining active sites were passivated by 5 mL of 10%
BSA (w/v) for an additional duration of 1 h. The free mAb was removed by centrifugating
at 8000 rpm for 15 min, and the AuNP-mAb was concentrated to 5 mL in borate buffer
(10 mM, containing 2% BSA and 3% sucrose). The prepared AuNPs and the AuNP-mAb
were characterized by TEM (Figure S1A) and ultraviolet visible (UV-vis) spectroscopy
(Figure S1B).

2.5. Assembly of the CLFIA

The CLFIA test strips contain a sample pad, a conjugate pad, an NC membrane, an
absorbent pad and a PVC plate. The 0.3 mg mL−1 coating antigen and the 0.125 mg mL−1

goat anti-mouse IgG antibody, dispersed on an NC membrane with a speed of 1µL cm−1,
were served as T-line and C-line. A conjugate pad was immobilized with the AuNP-mAb.
After drying for 2 h at 37 ◦C, they were assembled and cut into 4 mm wide individual test
strips. Finally, the strips were put into a plastic shell, vacuum-packed independently and
stored at RT for further use.

2.6. Protocol of the CLFIA

One hundred microliters of pyridaben standard, or sample solution (containing 20%
acetonitrile), were dropped on the sample pad and allowed to flow across the NC membrane
by capillary action. The test results could be interpreted quickly by the naked eye, within
10 min, according to the colorimetric signal of the T/C-line.

2.7. Optimization of the CLFIA

The performances of immunoassays are significant influenced by the reaction condi-
tions. Therefore, the coating antigen (0.075, 0.15, 0.3, 0.6, 1.2 mg mL−1), AuNP-mAb (1, 2, 3,
4, 5, 6 µL), and goat anti-mouse IgG (0.075, 0.1, 0.125, 0.15, 0.175 mg mL−1) were optimized
to improve the performance of the CLFIA, where higher sensitivity was selected as the
optimal condition. In addition, the working buffer parameters, including organic solvent
type (methanol, acetonitrile, acetone) and content (5%, 10%, 15%, 20%, 25%), concentration
of Na+ (0.07, 0.14, 0.28, 0.56, 1.12 M), pH (5.0, 6.0, 7.4, 8.0, 9.0), and the contents of Tween-20
(0.05%, 0.1%, 0.2%, 0.4%, 0.8%, 1.6%) and PEG-20000 (0.05%, 0.1%, 0.2%, 0.4%, 0.8%), were
sequentially studied to improve the sensitivity of the CLFIA.
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2.8. Analysis of the Spiked Samples

The environmental sample of paddy water was obtained from a farm, and the agro-
products of cucumber, cabbage, tangerine, and orange were purchased from a local super-
market in Zhengzhou. All the samples were homogenized, confirmed to be pyridaben-free
by HPLC, divided into 3 parts and stored at −20 ◦C. The accuracy of immunoassays
should be evaluated in at least 4 samples, and each sample with 3 concentration levels (low,
medium and high), according to the International Union of Pure and Applied Chemistry
(IUPAC) reports on pesticides. In our study, pyridaben in 1 mL of acetonitrile was added to
5 g of homogenized samples, and the final concentrations of pyridaben were 1.25, 2.5, 5 and
10 ng mL−1 for paddy water; 12.5, 25, 50 and 100 ng g−1 for cucumber; and 25, 50, 100 and
200 ng g−1 for cabbage, tangerine, and orange. The paddy water was analyzed directly
after dilution. The other solid samples were extracted with 5 mL of PBS containing 40%
acetonitrile. After vortexing for 5 min, the samples were centrifuged for 5 min at 4000 rpm.
The supernatant was collected and used for the CLFIA analysis after appropriate dilution.

2.9. HPLC Analysis and Validation

Fifty blind cabbage samples, named S1−S50, were prepared, by nontesting personnel,
by randomly spiking with standard pyridaben solutions. The amount of pyridaben was
analyzed simultaneously by means of the CLFIA and HPLC. The pretreatment for the
CLFIA was the same as the spiked samples. For HPLC, 10 g of homogenized cabbage
samples were extracted using 10 mL of acetonitrile, with shaking for 5 min at 2500 rpm
and ultrasonication for 10 min. The organic and aqueous phases were separated by adding
2 g of NaCl and shaking for another 10 min. The mixture was centrifuged at 4000 rpm
for 10 min, and 1 mL of supernatant was transferred, dried and redissolved in 1 mL of
mobile phase (acetonitrile/0.1% formic acid-water (85:15, v/v)) for HPLC detection with an
SB-C18 column (250 mm × 4.6 mm, 5 µm). The flow rate, injection volume, and detection
wavelength were 1 mL min−1, 20 µL and 240 nm, respectively.

3. Results and Discussion
3.1. Identification of Hapten and Antigen

The measured m/z and 1H NMR results (Figure S2) for pyridaben hapten were as
follows: ESI-MS, m/z, 395.13 [M + H]+; 1H NMR (400 MHz, DMSO-d6) δ 8.054 (s, 1H),
7.366–7.327 (q, J = 8.4 Hz, 4H), 4.501 (s, 2H), 1.563 (s, 9H), 1.409 (s, 6H). These results
indicated that the hapten was synthesized successfully.

The UV-vis spectra of hapten, BSA, OVA, immunogen, and coating antigen are shown
in Figure S3. The immunogen showed an obvious redshift and blueshift, compared to
BSA and hapten, respectively (Figure S3A), while the coating antigen showed a blueshift,
compared to OVA and hapten (Figure S3B). The shift of the plasma resonance bands
illustrated that the antigens were prepared successfully. In addition, the coupling ratios of
the immunogen and the coating antigen were estimated to be 15:1 and 10:1, respectively.

3.2. Characterization of MAbs

The titers and sensitivities of tail blood from the five mice were measured by ELISAs
after five immunizations, and the concentration of the coating antigen was 10 µg mL−1. All
five mice showed higher titers and sensitivities (Table S1). The highest titer was observed
for mouse No. 3 at 1:64,000, while mouse No. 4 showed the highest sensitivity, with an
inhibition ratio (1 µg mL−1 of pyridaben standard) of 77.9%. Mouse No. 4 underwent cell
fusion, and the positive hybridoma clones, 6E3G8D7, 2A11E3, 4A6D10D7, 6D9E10, 8B4F6,
9D1D9E10, and 10D3E9, that can stably produce anti-pyridaben mAbs, were obtained.
As shown in Figure 2, the standard curves of ic-ELISA were established by plotting the
binding rate (B/B0) against the concentration of pyridaben. The mAb, 6E3G8D7, showed
the highest sensitivity, with an IC50 value of 3.49 ng mL−1. In addition, the CR values were
less than 0.1% for structural analogs of pyridaben (Table S2), which indicated the high
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specificity. Therefore, mAb 6E3G8D7, which was identified as the IgG2b subtype with an
affinity of 9.49 × 109 L/mol, was selected for future CLFIA.
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3.3. Generation of the Colorimetric Signal on the CLFIA

When the test sample was added to the sample pad, the fixed AuNP-mAb was
redissolved and moved upward, along with the NC membrane, to generate visual signals
on the T-line and C-line (Figure 3A), which can be read by the naked eye within 10 min. As
shown in Figure 3B, the test results were divided into: (1) negative (–), where the samples
were pyridaben-free or less than the limit of detection (LOD), and the signal intensity on
the T-line was greater than or similar to that of the C-line; (2) positive (+), in which the
pyridaben was above the LOD or inhibited the immune reaction completely, and the signal
intensity on the T-line was weaker than that on the C-line; and (3) invalid, where the C-line
was colorless.

Biosensors 2023, 13, x  7 of 13 
 

 
Figure 3. The schematic of the CLFIA (A) and judgment of the test results (B). 

3.4. CLFIA Optimization 
The concentrations of mAbs and antigens are important for the sensitivity of the 

CLFIA [29,30]. In our study, AuNP-mAb (1 to 6 µL) and coating antigen (0.075 to 1.2 mg 
mL−1) were used to detect pyridaben standard (0 to 80 ng mL−1) in PBS, with 0.1 mg mL−1 
goat anti-mouse IgG fixed on the C-line. As shown in Table S3, the sensitivity was low, 
and the test results for negative samples were false-positive when the coating antigen con-
centration was less than 0.3 mg mL−1. The test results were accurate, and the highest sen-
sitivity was achieved when the coating antigen concentration was 0.3 mg mL−1 and the 
AuNP-mAb volume was 4 µL. Thus, these values were selected as the optimal conditions 
for the CLFIA. The concentration of goat anti-mouse IgG (0.075 to 0.175 mg mL−1) was 
further optimized. As shown in Table S4, 0.125 mg mL−1 was selected according to achieve-
ment of the sensitivity and accuracy required for negative samples. Using the same eval-
uation criteria, the optimal conditions of the working buffer were determined to be 0.4% 
Tween-20, 0.14 M Na+, pH 7.4, 0.2% PEG 20000, and 20% acetonitrile (Table S5). 

3.5. Sensitivity and Selectivity of the CLFIA 
Under the abovementioned optimal conditions, the changes in signal intensity, with 

different concentrations of pyridaben standard, are shown in Figure 4A. The signal inten-
sity on the T-line decreased with increasing concentrations of pyridaben, while the C-line 
increased. The signal intensity on the T-line was greater than or similar to that on the C-
line when the concentration of pyridaben was less than 5 ng mL−1. Thus, 5 ng mL−1 could 
be defined as the visual LOD of the CLFIA, which was 8 times higher than the traditional 
LFIA, according to the T-line only in Figure 4A. In addition, the colorimetric readout is 
more convenient for qualitative and semiquantitative analysis by the naked eye than tra-
ditional AuNP-based LFIAs. 

In a comparison of the immunoassays for pyridaben (Table S6), the proposed CLFIA 
shows sensitivity 5 times higher than the reported LFIA, according to the LOD, which can 
be attributed to the colorimetric method of T/C-line [27]. As for ELISA, the proposed 
CLFIA has significant advantages in response time, on-site testing, and stability, because 
the CLFIA can obtain the test results within 10 min, by naked eye, after simple pretreat-
ment, and the AuNPs—as probes—are more stable than natural enzymes [26,31]. 

The selectivity of the CLFIA was assessed by detection of pyridaben analogs (10,000 
ng mL−1), including pyridaphenthion, pymetrozine, buprofezin, thiamethoxam, and acet-
amiprid. As shown in Figure 4B, the test result for pyridaben (100 ng mL−1) was positive 

Figure 3. The schematic of the CLFIA (A) and judgment of the test results (B).



Biosensors 2023, 13, 545 7 of 13

3.4. CLFIA Optimization

The concentrations of mAbs and antigens are important for the sensitivity of the
CLFIA [29,30]. In our study, AuNP-mAb (1 to 6µL) and coating antigen (0.075 to 1.2 mg mL−1)
were used to detect pyridaben standard (0 to 80 ng mL−1) in PBS, with 0.1 mg mL−1 goat
anti-mouse IgG fixed on the C-line. As shown in Table S3, the sensitivity was low, and the
test results for negative samples were false-positive when the coating antigen concentration
was less than 0.3 mg mL−1. The test results were accurate, and the highest sensitivity was
achieved when the coating antigen concentration was 0.3 mg mL−1 and the AuNP-mAb
volume was 4 µL. Thus, these values were selected as the optimal conditions for the CLFIA.
The concentration of goat anti-mouse IgG (0.075 to 0.175 mg mL−1) was further optimized.
As shown in Table S4, 0.125 mg mL−1 was selected according to achievement of the sensitivity
and accuracy required for negative samples. Using the same evaluation criteria, the optimal
conditions of the working buffer were determined to be 0.4% Tween-20, 0.14 M Na+, pH 7.4,
0.2% PEG 20000, and 20% acetonitrile (Table S5).

3.5. Sensitivity and Selectivity of the CLFIA

Under the abovementioned optimal conditions, the changes in signal intensity, with
different concentrations of pyridaben standard, are shown in Figure 4A. The signal intensity
on the T-line decreased with increasing concentrations of pyridaben, while the C-line
increased. The signal intensity on the T-line was greater than or similar to that on the C-line
when the concentration of pyridaben was less than 5 ng mL−1. Thus, 5 ng mL−1 could be
defined as the visual LOD of the CLFIA, which was 8 times higher than the traditional LFIA,
according to the T-line only in Figure 4A. In addition, the colorimetric readout is more
convenient for qualitative and semiquantitative analysis by the naked eye than traditional
AuNP-based LFIAs.

In a comparison of the immunoassays for pyridaben (Table S6), the proposed CLFIA
shows sensitivity 5 times higher than the reported LFIA, according to the LOD, which
can be attributed to the colorimetric method of T/C-line [27]. As for ELISA, the proposed
CLFIA has significant advantages in response time, on-site testing, and stability, because
the CLFIA can obtain the test results within 10 min, by naked eye, after simple pretreatment,
and the AuNPs—as probes—are more stable than natural enzymes [26,31].

The selectivity of the CLFIA was assessed by detection of pyridaben analogs
(10,000 ng mL−1), including pyridaphenthion, pymetrozine, buprofezin, thiamethoxam,
and acetamiprid. As shown in Figure 4B, the test result for pyridaben (100 ng mL−1) was
positive (+), while those of the other analogs were negative (–). These results indicated
that the CLFIA was highly specific for pyridaben, which was consistent with the CRs for
ic-ELISA based on mAb 6E3G8D7.

3.6. Detection of the Spiked Samples

Matrix interference of sample extracts is a critical factor affecting the accuracy and
sensitivity of immunoassays, which can be eliminated by dilution. In our study, the blank
paddy water and agro-product extracts were serially diluted with the optimal working
buffer containing pyridaben standard, and the final concentrations were 0, 2.5, 5, and
10 ng mL−1 or ng g−1. As shown in Figure 5, no dilution for paddy water, 4-fold dilution
for cucumber, and 8-fold dilution for cabbage, tangerine, and orange were selected, because
the detection results of 5 ng mL−1 were consistent with the results for the working buffer,
which indicated that the matrix interferences were negligible.
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Under the above dilutions, the detection results of the CLFIA, for the spiked samples,
were negative (−) when the concentrations of pyridaben were 2.5 ng mL−1 for paddy water;
12.5 ng g−1 for cucumber; and 25 ng g−1 for cabbage, tangerine, and orange (Table 1). On
the other hand, the results were positive (+) when the concentration was greater than or
equal to 5 ng mL−1 for paddy water; 25 ng g−1 for cucumber; and 50 ng g−1 for cabbage,
tangerine, and orange. These results indicated that the visual LODs of the CLFIA for paddy
water were 5 ng mL−1; 25 ng g−1 for cucumber; and 50 ng g−1 for cabbage, tangerine, and
orange, which satisfies the requirements for pyridaben detection, according to the MRLs,
such as 0.1 mg kg−1 for cucumber and 2.0 mg kg−1 for fruits in China, 0.15 mg kg−1 for
cucumber and 0.3 mg kg−1 for citrus fruits in the EU, and 0.5 mg kg−1 for cucumber in
the USA.
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Table 1. The detection results in spiked samples by the CLFIA.

Sample Spiked (ng g−1 or
ng mL−1)

Results of CLFIA a
MRL (ng g−1 or

ng mL−1)1 2 3

Paddy water

0 − − −

10 b
1.25 − − −
2.5 − − −
5 + + +

10 + + +

Cucumber

0 − − −

100
12.5 − − −
25 + + +
50 + + +

100 + + +

Cabbage

0 − − −

2000
25 − − −
50 + + +

100 + + +
200 + + +

Tangerine

0 − − −

2000
25 − − −
50 + + +

100 + + +
200 + + +
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Table 1. Cont.

Sample Spiked (ng g−1 or
ng mL−1)

Results of CLFIA a
MRL (ng g−1 or

ng mL−1)1 2 3

Orange

0 − − −

2000
25 − − −
50 + + +

100 + + +
200 + + +

a “+” represents positive results and “−” represents negative results b the value of paddy water is referenced the
MRLs for milk in USA, EU and Japan.

3.7. Validation with HPLC

The pyridaben residues of the 50 cabbage samples were simultaneously detected by
the CLFIA and HPLC to verify their practicability. The chromatogram of the pyridaben
standard is shown in Figure S4A. The standard curve of pyridaben in the matrix buffer
was y = 598.83x − 4.9964 (R2 = 0.9997), which was consistent with the standard curve in
solvent (y = 530.39x + 6.6925 (R2 = 0.9994)) (Figure S4B). In addition, the slope ratio of
1.13 (598.83/530.39) indicated that the matrix interferences were acceptable (the generally
acceptable range is 0.8–1.2) [32]. Thus, the standard curve in the solvent was employed
to quantify pyridaben in cabbage samples, and the limit of quantification (LOQ) was
0.02 mg kg−1, according to a 10-fold signal/noise ratio.

As shown in Table 2, the CLFIA detection results showed that 25 of the 50 cabbage
samples tested positive (+) (pyridaben residues greater than 0.05 mg kg−1), and the results
for other samples were negative (−), which was consistent with the HPLC results. These
results indicated that CLFIA are accurate and reliable for pyridaben on-site detection.

Table 2. The detected results for cabbage samples by CLFIA and HPLC.

Sample
Number

Results Sample
Number

Results

HPLC (mg kg−1) CLFIA a HPLC (mg kg −1) CLFIA a

S1 0.32 + S26 0.21 +
S2 0.46 + S27 <LOQ −
S3 0.15 + S28 0.48 +
S4 0.12 + S29 <LOQ −
S5 0.09 + S30 0.08 +
S6 0.11 + S31 <LOQ −
S7 <LOQ − S32 <LOQ −
S8 <LOQ − S33 0.27 +
S9 <LOQ − S34 <LOQ −
S10 <LOQ − S35 <LOQ −
S11 0.35 + S36 <LOQ −
S12 0.08 + S37 0.11 +
S13 0.13 + S38 <LOQ −
S14 0.06 + S39 <LOQ −
S15 <LOQ − S40 0.09 +
S16 0.58 + S41 <LOQ −
S17 <LOQ − S42 <LOQ −
S18 <LOQ − S43 0.13 +
S19 0.28 + S44 0.16 +
S20 0.14 + S45 <LOQ −
S21 <LOQ − S46 0.11 +
S22 <LOQ − S47 <LOQ −
S23 <LOQ − S48 0.07 +
S24 0.05 + S49 0.28 +
S25 <LOQ − S50 <LOQ −

a “+” represents positive detection results and “−” represents negative detection results.
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4. Conclusions

In this study, pyridaben hapten was synthesized and used to generate seven anti-
pyridaben mAbs. The mAb, 6E3G8D7, which showed the best sensitivity and no CRs
to the analogs of pyridaben in ic-ELISA, was further utilized to develop a competitive
CLFIA for pyridaben detection. The CLFIA showed excellent sensitivity and specificity
for pyridaben, and the accuracy confirmed by HPLC indicated that the CLFIA could be
used for pyridaben screening in agro-products and environmental samples. The detection
results can be judged directly within 10 min, by the naked eye, without any instrument. In
addition, the CLFIA could be used for pyridaben on-site detection, and the visual LODs
satisfy the requirements of the MRLs in China, the EU, and the USA. Compared with
traditional LFIA, the developed CLFIA is more sensitive and convenient for the qualitative
and semiquantitative detection of analytes than the signal changes of the T-line only. Such
improvement in the CLFIA is expected to promote the next-generation rapid and sensitive
monitoring of pesticide residues, thus providing improved outcomes.
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