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Abstract: The conventional hybridization chain reaction (HCR)-based electrochemical biosensors
usually require the immobilization of probes on the electrode surface. This will limit the applications
of biosensors due to the shortcomings of complex immobilization processes and low HCR efficiency.
In this work, we proposed astrategy for the design of HCR-based electrochemical biosensors by
integrating the advantages of homogeneous reaction and heterogeneous detection. Specifically, the
targets triggered the autonomous cross-opening and hybridization oftwobiotin-labeled hairpin probes
to form long-nicked dsDNA polymers. The HCR products with many biotin tags were then captured
by a streptavidin-covered electrode, thus allowing for the attachment of streptavidin-conjugated
signal reporters through streptavidin–biotin interactions. By employing DNA and microRNA-21
as the model targets and glucose oxidase as the signal reporter, the analytical performances of
the HCR-based electrochemical biosensors were investigated. The detection limits of this method
were found to be 0.6 fM and 1 fM for DNA and microRNA-21, respectively. The proposed strategy
exhibited good reliability for target analysis in serum and cellular lysates. The strategy can be used to
develop various HCR-based biosensors for a wide range of applications because sequence-specific
oligonucleotides exhibit high binding affinity to a series of targets. In light of the high stability and
commercial availability of streptavidin-modified materials, the strategy can be used for the design of
different biosensors by changing the signal reporter and/or the sequence of hairpin probes.

Keywords: hybridization chain reaction; electrochemical biosensors; homogeneous reaction;
heterogeneous detection; glucose oxidase; streptavidin

1. Introduction

Hybridization chain reaction (HCR) refers to the process in which two hairpin DNA
strands are alternately opened by a DNA initiator and then hybridized to form a long
double-stranded DNA (dsDNA) with hundreds of repeated units [1]. One DNA initiator
can induce a cascade of hybridization events, thus producing many nicked dsDNA hybrids
and achieving signal amplification for target detection. As an enzyme-free and isother-
mal amplification technology, HCR has attracted much attention in practical applications
due to its simple operation and mild reaction condition [2–6]. Since a few initiators can
result in the formation of numerous hairpins, the HCR technique has been regarded as
an alternative tool to other DNA-based signal-amplified methods including polymerase
chain reaction (PCR), rolling circle amplification (RCA), catalytic hairpin assembly (CHA)
and so on [7]. Differing from PCR, RCA, and CHA methods that require the use of nu-
cleases and/or heating-cooling cycles for signal amplification, HCR is an enzyme-free
technique that can be progressed isothermally. In recent years, HCR-based technologies
have been widely used in the design of various optical and electrical biosensors, such as
colorimetry, fluorescence, chemiluminescence, surface plasmon resonance (SPR), surface-
enhanced Ramanspectra (SERS), electrochemistry, and inductively coupled plasma-mass
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spectrometry (ICP-MS) [3,8,9]. In comparison with other sensing devices, electrochemical
biosensors exhibit the advantages of high sensitivity, low cost, excellent specificity, and easy
miniaturization [10,11]. Moreover, the combination of HCR with other DNA amplification
techniques, such as CHA, nuclease-assisted target recycling, and strand-displacement am-
plification (SDA), has further improved the detection sensitivity [12]. Although HCR-based
strategies have exhibited good development momentum in the design of biosensors, most of
the HCR-based electrochemical bioassays require the immobilization of DNA initiators on
the electrode surface, which will suffer from some intrinsic shortcomings such as complex
immobilization processes and low HCR efficiency due to the local steric hindrance [13–15].
Therefore, it is still necessary to develop an innovative, immobilization-free, and general
strategy for the design of HCR-based electrochemical biosensors.

Homogeneous electrochemical biosensors can effectively overcome the problems
of electrode modification, probe immobilization, and steric hindrance [16–18]. Such
biosensors permit the molecular recognition and signal amplification reaction to be per-
formed in a homogeneous solution with maximum reaction efficiency. For this view,
many groups have been devoted to the development of homogeneous electrochemical
sensing platforms [19–27]. A mostly classical strategy for the design of homogeneous elec-
trochemical biosensors is based on the difference in the binding ability of reactants and
products toward the sensing electrode [19,20,23–25]. For example, based on the difference
in dispersion coefficient and adsorptive capacity of redox-labeled long-chain DNA and
short nucleotides, various homogeneous electrochemical biosensors can be designed by
target-initiated enzyme-assisted digestion reactions [23–25]. In addition, the intercalation
of electroactive molecules or nanomaterials into the insitu formed G-quadruplex DNA or
dsDNA and the stimuli-responsive release of encapsulated signal molecules from nanocar-
riers have also allowed for the development of homogeneous electrochemical sensing
platforms [17,28]. In contrast to the homogeneous assay, heterogeneous detection shows
the advantages of signal enhancement, less sample demand, and high sensitivity because
the targets or signal molecules are concentrated on a limited solid surface [29–32]. Thus,
in this work, we attempted to propose a general HCR-based strategy for the design of
electrochemical biosensors by integrating the advantages of homogeneous reactions and
heterogeneous detection.

The general strategies for HCR-based electrochemical biosensors involve the label of
hairpin DNA strands with signal tags such as catalytic elements (e.g., natural enzymes,
DNAzymes, and nanocatalysts) and electroactive nanoparticles or small molecules [10,33,34].
Among them, the catalytic signal amplification can make the HCR-based assays highly
sensitive to achieve the detection of low abundance targets. In addition, the interaction
between streptavidin (SA) or avidin and biotin is the commonly used system for labeling
biomolecules with catalytic elements including natural or mimetic enzymes and nanocata-
lysts [35–37]. In addition, SA-functionalized solid substrates have been extensively applied
for the separation and immobilization of biotinylated biomolecules [30]. For example,
SA-modified electrodes and chips have been widely used for the immobilization of biotiny-
lated acceptors such as antibodies, peptides, and DNA. SA-conjugated nanomaterials and
quantum dots have been used as signal reporters by binding to the biotinylated recognition
elements. Herein, we suggested that SA-modified sensing electrodes could be used for the
design of HCR-based electrochemical biosensors by integrating the advantages of homo-
geneous reaction and heterogeneous detection (Scheme 1). The two hairpin DNA strands
were labeled with biotin tags for the attachment of catalytic elements through streptavidin–
biotin interactions. When the HCR was triggered by the initiator in solution, the resulting
biotin-dsDNA (H1/H2) hybrids were captured by the sensing electrode through SA–biotin
interactions. Other biotin tags in the HCR products would induce the attachment of SA-
conjugated catalytic elements such as glucose oxidase (GOx) to the sensing electrode. In
the absence of the DNA initiator, the two biotinylated hairpin DNA strands were captured
by the SA-modified electrode and no SA-GOx conjugates were attached to the electrode.
In this method, the HCR was performed in solution and the products/signal molecules
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were gathered onto the electrode surface, thus integrating the advantages of homogeneous
reaction and heterogeneous detection. In addition, SA proteins are extremely stable, and
SA-modified electrodes can decrease nonspecific adsorption. The reports of HCR-based
biosensors for the detection of nucleic acids, metabolites, proteins, toxins, andmetal ions
are innumerable [7]. Therefore, through the rational design of DNA initiators and hairpin
probes, we believe that the strategy could be used for the development of other HCR-based
biosensors for the detection of a variety of analytes.
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Scheme 1. Schematic representation for the HCR-based electrochemical biosensor by integrating the
advantages of homogeneous reaction and heterogeneous detection.

2. Materials and Methods
2.1. Chemicals and Reagents

SA, GOx, Trizol reagent, and oligonucleotides were provided by Sangon Biotech. Co.,
Ltd. (Shanghai, China). 6-Sulfanylhexanoic acid, ferrocenemethanol(FcM), 1-ethyl-3(3-1-
ethyl-3(3-dimethylaminopropyl)) carbodiimide hydrochloride (EDC), N-hydroxysulfosucc-
inimide (NHS) and sulfo-NHS-biotin were ordered from Sigma-Aldrich (Shanghai, China).
The blood was provided by the medical center of Anyang Normal University (Anyang,
China). The cell lines were provided by the Institute of Surface Analysisand Biosensing at
Central South University (Changsha, China). Other chemicals were of analytical grade and
used without additional treatment. The solutions were prepared and diluted with purified
water from a Milli-Q purification system.

The sequences of initiator DNA, miRNA-21, and hairpin probes used in this work
were designed according to the previous reports [1,38]. Their sequences are shown as
follows: AGT CTA GGA TTC GGC GTG GGT TAA (initiator DNA), AGT CTA GGA TTG
GGC GTG GGT TAA (single-base mismatched), AGT CTT GGA TTG GGC GTG GGA TAA
(three-base mismatched), CGT GTA GGT TAT GAC GTG CGT AGC (random), biotin-TTA
ACC CAC GCC GAA TCC TAG ACT CAA AGT AGT CTA GGA TTC GGC GTG (H1),
biotin-AGT CTA GGA TTC GGC GTG GGT TAA CAC GCC GAA TCC TAG ACT ACT
TTG (H2), UAG CUU AUC AGA CUG AUG UUG A (miRNA-21), biotin-CAG ACT GAT
GTT GAC GTG AAA CTC AAC ATC AGT CTG ATA AGC TA (H3), and biotin-GTT TCA
CGT CAA CAT CAG TCT GTA GCT TAT CAG ACT GAT GTT GA (H4).

2.2. Preparation of SA-Covered Electrode

The gold disk electrode was treated with a mixture of 98% H2SO4 and 30% H2O2 at a
volume ratio of 3:1 for 30 min. After being thoroughly rinsed with pure water, the electrode
was polished with 0.05 µm alumina. Then, the electrode was cleaned with 50% ethanol
under sonication for 1 min. After removing the residual alumina powders, the electrode
was electrochemically cleaned in 0.5 M H2SO4 by the cyclic voltammetry method. The
scanning potential changed in the range of −0.2 and 1.6 V and the scanning rate was
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100mV/s. When a stable voltammetric curve was attained, the electrode was cleaned with
pure water, dried with nitrogen, and then incubated with 6-sulfanylhexanoic acid solution
overnight. After that, the electrode was incubated with a mixture of 0.2 mM EDC and
0.1 mM NHS for 15 min. This step was followed by incubating the electrode with 10 µL
of 1 mg/mL SA in phosphate buffer (10 mM, pH 7.4) for 2 h. Then, the electrode was
incubated with 1mM ethylamine for 30 min to block the unreacted activated carboxyl
groups. After being washed thoroughly with water, the electrode was used for the capture
of HCR products.

2.3. Preparation of SA-GOx Conjugates

Although nanotechnology has promoted the rapid development of nanocatalysts,
enzymatic signal amplification is still the commonly used strategy for bioassays in practical
applications, including horseradish peroxidase (HRP), GOx, and alkaline phosphatase
(ALP). Enzyme or fluorophore-labeled SA conjugates are commercially available in a wide
range of application domains. Herein, GOx was used as the signal reporter. The SA-GOx
was prepared by conjugation of SA and biotinylated GOx (biotin-GOx) through avidin–
biotin interaction [39]. Biotin-GOx was prepared by incubation of 100 µM sulfo-NHS-biotin
with 0.5 mg/mL GOx in 1 mL of phosphate buffer for 2 h. The unreacted sulfo-NHS-biotin
was removed by a centrifugal filtration device with a 10,000 cut-off. Then, 100 µL of SA at
an optimized concentration of 2.5 mg/mL was mixed with the prepared biotin-GOx. The
resulting SA-GOx conjugates were stored at 4◦C for use.

2.4. Assays of DNA

The hairpin probes (H1 and H2) were individually dissolved in an RNase-free Tris
solution (20 mM, pH 7.4) containing 0.1 M NaCl (TNE buffer). After being heated at 95 ◦C
for 5 min, the probe solution was cooled slowly to room temperature. Then, 10 µL of
DNA sample was incubated with 10 µL of the mixture of two hairpin probes at 37 ◦C for
a given time. After that, the reaction solution with a volume of 5 µL was coated onto the
SA-covered electrode surface. After reaction for 10 min, the electrode was rinsed with TNE
buffer and then exposed to 3 µL of SA-GOx solution. After incubation for 10 min again, the
electrode was thoroughly washed with water and then placed in the mixture of 100 µM
FcM and 5 mM glucose for voltammetric measurement.

For analysis of DNA in real samples, the blood was centrifuged at 2000 rpm for 5 min
and then 100 µL of serum was taken out and diluted with TNE buffer to 1 mL. Then, DNA
at a given concentration was spiked into the serum for analysis. The other steps followed
those for the analysis of DNA standard samples.

2.5. Detection of miRNA-21

The hairpin H3/H4 probes were first heated individually at 95 ◦C for 5 min and then
cooled slowly to room temperature. For the assays of miRNA-21, the storage sample was
diluted at different times with RNase-free TNE buffer. Then, 10 µL of miRNA-21 sample
was incubated with 10 µL of H3/H4 mixture at 37 ◦C for 60 min. The SA-covered electrode
was exposed to 5 µL of the reaction solution for 10 min, and then thoroughly rinsed with
TNE buffer. After that, 3 µL of SA-GOx solution was coated onto the electrode to incubate
for 10 min. After being thoroughly washed with water, the electrode was placed in the
FcM/glucose mixture for voltammetric measurement.

2.6. Extraction of Total RNA from Cancer Cells

The cell lysates were extracted from cancer cells using the procedures described
in our previous reports [30,32]. In brief, the MCF-7 and HeLa cancer cells were culti-
vated at 37 ◦C in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS and
5% penicillin-streptomycin with a humidified atmosphere (95% air and 5% CO2). After
the cells were counted and washed, the Trizol reagent was addedto extract a total RNA
sample according to the manufacturer’s protocol. The resulting cellular lysates were stored
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at −80 ◦C for use. Before the quantification of miRNA-21 in the lysates, the samples were
diluted by different folds with the RNase-free TNE buffer. Then, 10 µL of sample was
incubated with 10 µL of the H3/H4 mixture at 37 ◦C for 60 min. Other experimental steps
were the same as those for the assays of miRNA-21 standard samples.

3. Results and Discussion
3.1. Detection Principle

The detection principle of the HCR-based electrochemical biosensor is depicted in
Scheme 1. Two hairpin probes named H1 and H2 were labeled with biotin tags, respectively.
The presence of target DNA could trigger the autonomous cross-opening of two hairpin
probes to form long-nicked biotin-dsDNA polymers. The HCR products contain many
biotin tags, which would favor the attachment of biotin-dsDNA polymers to the SA-
covered electrode through avidin–biotin interactions. Other biotin tags in the polymers
could capture SA-GOx conjugates through the same interactions. The attached GOx could
electrochemically catalyze the oxidation of glucose with FcM as the redox mediator, thus
causing a dramatic enhancement in the peak current. In the absence of initiator DNA, the
hairpin probes were attached to the electrode surface by binding to the immobilized SA
molecules. Since each hairpin probe contains one biotin tag, the SA-GOx conjugates could
not be captured by the sensing electrode and there was no obvious increase in the peak
current. The electrochemical signals would be proportional to the number of HCR products
or the concentration of initiator DNA. The method may allow for target detection with high
sensitivity due to the double signal amplification of HCR and GOx.

3.2. Feasibility of This Method

Figure 1 shows the results ofexploring the feasibility of the strategy. Without initiator
DNA or hairpin probes (curve a and b), the redox peak of FcM was reversible even when the
SA-covered electrode was incubated with SA-GOx, indicating that the SA-GOx conjugates
could not be captured by the modified electrode. When the electrode was incubated
with the mixture of initiator DNA and hairpin probes and then treated with SA-GOx
solution (curve c), a significant increase in the anodic current was obtained. Another
control experiment was conducted in the absence of the H2 probe (curve d). Consequently,
no obvious increase in the peak current was observed, suggesting that the HCR process
was dependent on two hairpin probes. These results also demonstrated that the system
could be used to determine the target DNA by using an SA-modified electrode to capture
the HCR products formed in a homogeneous solution.
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To achieve high sensitivity, the experimental parameters such as the concentration of
hairpin probes and the incubation time for HCR were investigated. As shown in Figure 2A,
a maximal change in anodic current (∆I) was obtained when the concentration of hairpin
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H1/H2 probes was 0.5 nM. Beyond the value, the current began to decrease, probably
due to the competitive reaction between the free hairpin probes and the HCR products
to bind with SA on the electrode surface. We also found that the peak current increased
with the increase in incubation time for the HCR process (Figure 2B). In light of operation
convenience and detection sensitivity, 1 h was chosen as the optimized incubation time.
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3.3. Analytical Performances for DNA Detection

The analytical performances of this method were first studied by measuring different
concentrations of target DNA. As depicted in Figure 3A, the increase in DNA concen-
tration caused the gradual increase in the anodic peak current, suggesting that a higher
concentration of DNA could trigger the formation of more HCR products. From the rela-
tionship between peak current and DNA concentration, a good linear calibration curve
was attained in the range of 1~500 fM (Figure 3B). The linear equation can be expressed as
∆I = 0.0137 + 0.0013[DNA] (fM). The detection limit was found to be 0.6 fM based on the
3σ/slope method. The value is comparable to or even lower than those of other electro-
chemical methods with the signal amplification of HCR plus nanomaterials or enzymatic
isothermal reactions (Table 1). The high sensitivity can be attributed to the integration of
the advantages of homogeneous reaction and heterogeneous detection.
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To explore the specificity, the target and its single-base mismatched, three-base mis-
matched, and random sequences were analyzed. Figure 4 shows the change in the an-
odic peak currents for the assays of different DNA strands. It was found that the ∆I
for target DNA was significantly higher than that for other oligonucleotides. This sug-
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gested that the method exhibited good specificity to discriminate the target from base
mismatched sequences.

Table 1. Analytical performances of HCR-based electrochemical nucleic acid biosensors.

Signal Amplification Target Linear Range Detection Limit Ref.

HRP DNA 2.5 fM 10 fM~0.1 nM [40]
HRP miRNA 10 aM 10 aM~1 pM [41]

DNATT + HRP miRNA 0.1 fM 0.1 fM~1 nM [42]
ALP miRNA 0.56 fM 1 fM~100 pM [43]

CSDPR + ALP DNA 8 fM 10 fM~1 nM [44]
WCHA + ALP DNA 8.3 fM 10 fM~5 nM [45]

AuNPs + AgNPs miRNA 2 aM 100 aM~100 pM [46]
Fe3O4/Thi or Fe3O4/Fc miRNA 0.44 fM 1 fM~1 nM [47]

ASDA + AgNCs DNA 0.16 fM 0.2 fM~1 pM [48]
TAPNR + AgNCs miRNA 0.64 fM 1.0 fM~0.1 nM [49]

CuCo-CeO2 miRNA 0.05 fM 0.1 fM~10 nM [50]
Exo-III/RuHex DNA 0.2 fM 1 fM~1.0 nM [51]

CHA + MB DNA 0.037 fM 0.1 fM to 5.0 pM [52]
Exo I/RuHex miRNA 53 aM 0.1 fM to 0.1 µM [53]

GOx DNA 0.6 fM 1~500 fM This work

Abbreviations: HRP, horseradish peroxidase; DNATT, DNA tetrahedron; CSDPR, circular strand-displacement
polymerase reaction; ALP, alkaline phosphatase; WCHA, catalytic hairpin assembly; AuNPs, gold nanoparticles;
AgNPs, silver nanoparticles; Thi, thionine; Fc, ferrocene; ASDA, autocatalytic strand displacement amplification;
AgNCs, silver nanoclusters; CuCo-CeO2, Cu/Co double-doped CeO2 nanospheres; TAPNR, target assisted
polymerization nicking reaction; CHA, catalytic hairpin assembly; Exo-III, exonuclease III; MB, methylene blue;
Exo I, exonuclease I; RuHex, hexaammineruthenium(III) chloride.
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3.4. Assays of DNA in Serum Samples

To verify the applicability, the biosensor was used to determine DNA in a serum
sample. The serum was spiked with three concentrations of target DNA (20, 200, and
400 fM) and then analyzed. As shown in Figure 5, the anodic peak current was intensified
with an increasing concentration of DNA. The recoveries of the assays ranged from 92% to
105% with the relative standard deviations below 12%. The result demonstrated that the
biosensor exhibited good applicability in complex biological environments.

3.5. Quantification of miRNA-21

MiRNAs are a class of short non-coding single-stranded RNA stands. They play an
important role in many physiological processes, including gene regulation, cell differenti-
ation, cellproliferation, and apoptosis. Much evidence has suggested that miRNAs were
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intimately related to theprogression of different diseases (e.g., cancers, heartdiseases, and
diabetes) [54,55]. Thus, miRNAs have been regarded as promising disease biomarkers.
Quantification of their levels will be of great importance for early diagnosis and therapeutic
assessment of many diseases. Although many HCR-based methods have been developed
to determine miRNAs [56,57], they may suffer from the limitations of complex procedures
and low sensitivity or involve the use of multiple signal amplification by nucleases and
nanomaterials [13–15]. Considering the high sensitivity, selectivity, and simplicity of the
proposed electrochemical method, miRNA-21 was quantified as an example analyte. The
detection principle was similar to that for the DNA assay as shown in Scheme 1, where the
hairpin probes of H1 and H2 were replaced by H3 and H4.
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The dynamic range of the method for miRNA-21 quantification was evaluated by
measuring different concentrations of the target. As shown in Figure 6A, the anodic peak
current was enhanced continuously with the increase in miRNA-21 concentration. A good
linearity between the current change and miRNA-21 concentration was attained in the
range of 1~500 fM (Figure 6B). The linear equation can be expressed as ∆I = 0.0068 +
0.0015[miRNA-21] (fM). The lowest detectable concentration is comparable with or even
lower than those of other HCR-based methods (Table 1). In contrast to other signal amplifi-
cation strategies such as HRP, ALP, nucleases, and nanomaterials (Table 2), our method,
by integrating the advantages of homogeneous reaction and heterogeneous detection, ex-
hibited high simplicity and sensitivity, posing a significant contribution to the sensitive
detection of miRNAs.
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Table 2. Analytical performances of different electrochemical methods for miRNA-21 detection.

Signal Amplification Linear Range Detection Limit Ref.

AuNPs-HRP 5 fM~0.5 µM 0.54 fM [58]
DSN + AuNPs-HRP 0.1 fM~0.1 nM 43.3 aM [59]
ALP + redox cycling 2 fM~1 nM 2 fM [60]
ALP + redox cycling 0.5 fM~1 pM 0.2 fM [61]

DSN + FeNxC network 0.5 fM~1 pM 0.2805 fM [62]
CRISPR-Cas13a + CHA 10 fM~1 nM 2.6 fM [63]

DSN + rGO 0.05 fM~5 fM 0.01 fM [64]
T4 ligase + phi29 0.1 fM~100 pM 10.6 aM [65]

EBFCs + CHA + HCR 0.5 fM~10 pM 0.15 fM [66]
HCR + GOx 1 fM 1~500 fM This work

Abbreviations: AuNPs, gold nanoparticles; HRP, horseradish peroxidase; DSN, duplex-specific nuclease; ALP,
alkaline phosphatase; CRISPR-Cas13a, clustered regularly interspaced palindromic repeats/CRISPR-associated
proteins system; CHA, catalytic hairpin assembly; rGO, reduced graphene oxide; phi29, phi 29 polymerase; EBFCs,
enzymatic biofuel cells.

3.6. Assays of miRNA-21 in Cellular Lysates

To further evaluate the practicality of the biosensor, miRNA-21 in cellular lysates
extracted from MCF-7 cells (breast cancer cell line) and HeLa cells (cervical cell line)
(Figure 7A) were analyzed. As shown in Figure 7B, the anodic peak current was sharply
intensified with increasing MCF-7 cell numbers. A smaller increasing trend between ∆I
and cell number was found for the assays of miRNA-21 in HeLa cells. In addition, the
anodic peak currents for MCF-7 cells were higher than those for HeLa cells. These results
indicated that the level of miRNA-21 in MCF-7 cells is higher than that in HeLa cells, which
is consistent with previous reports [30,32,38,67]. Thus, the proposed biosensor shows high
practicality for the assays of biological samples, providing an alternate tool for clinical
diagnosis and therapeutic assessment of diseases.
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4. Conclusions

In summary, we proposed a simple and sensitive HCR-based sensing strategy by
integrating the advantages of homogeneous reaction and heterogeneous detection. The
biosensor was constructed with GOx as the signal label on the basis of avidin–biotin
interaction. The homogeneous reaction improved the HCR efficiency and the heterogeneous
detection endowed the biosensor with high sensitivity. The biotin tags in the HCR products
allowed for the attachment of many signal labels to the electrode surface, thus leading
to secondary signal amplification. This strategy can improve the sensing reliability and
reduce the false positive signal caused by nonspecific adsorption. The proposed biosensor
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exhibited high sensitivity and reliability for the analysis of DNA and miRNA-21. The
detection limits were found to be 0.6 fM and 1 fM for DNA and miRNA-21, respectively.
Furthermore, the method was used to quantify miRNA-21 in cellular lysates derived from
two cancer cells (MCF-7 and HeLa) and the result is accordant with that of the previous
reports. The strategy can be used to develop various HCR-based sensing platforms for a
wide range of applications because the oligonucleotides exhibit specific binding affinity to
a series of targets.
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34. Grabowska, I.; Hepel, M.; Kurzątkowska-Adaszyńs, K. Advances in design strategies of multiplex electrochemical aptasensors.
Sensors 2022, 22, 161. [CrossRef] [PubMed]

35. Khan, S.; Burciu, B.; Filipe, C.D.M.; Li, Y.; Dellinger, K.; Didar, T.F. DNAzyme-based biosensors: Immobilization strategies,
applications, and future prospective. ACS Nano 2021, 15, 13943–13969. [CrossRef] [PubMed]

36. Chang, Y.; Ma, X.; Sun, T.; Liu, L.; Hao, Y. Electrochemical detection of kinase by converting homogeneous analysis into
heterogeneous assay through avidin-biotin interaction. Talanta 2021, 234, 122649. [CrossRef]

37. Povedano, E.; Montiel, V.R.V.; Gamella, M.; Pedrero, M.; Barderas, R.; Pelaez-Garcia, A.; Mendiola, M.; Hardisson, D.; Feliu, J.;
Yanez-Sedeno, P.; et al. Amperometric bioplatforms to detect regional DNA methylation with single-base sensitivity. Anal. Chem.
2020, 92, 5604–5612. [CrossRef]

38. Yu, S.; Chen, S.; Dang, Y.; Zhou, Y.; Zhu, J.-J. An ultrasensitive electrochemical biosensor integrated by nicking endonuclease-
assisted primer exchange reaction cascade amplification and DNA nanosphere-mediated electrochemical signal-enhanced system
for microRNA detection. Anal. Chem. 2022, 94, 14349–14357. [CrossRef]

39. Li, Y.; Ling, L. Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification
by glucose oxidase. Microchim. Acta 2015, 182, 1849–1854. [CrossRef]

40. Liu, X.; Shuai, H.-L.; Liu, Y.-J.; Huang, K.-J. An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-
walled carbon nanotube composites and hybridization chain reaction amplification. Sens. Actuat. B Chem. 2016, 235, 603–613.
[CrossRef]

41. Ge, Z.; Lin, M.; Wang, P.; Pei, H.; Yan, J.; Shi, J.; Huang, Q.; He, D.; Fan, C.; Zuo, X. Hybridization chain reaction amplification of
microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal. Chem. 2014, 86, 2124–2130.
[CrossRef]

https://doi.org/10.1016/j.trac.2022.116712
https://doi.org/10.1016/j.trac.2016.08.012
https://doi.org/10.1021/acsami.1c12650
https://doi.org/10.1021/acs.analchem.5b02790
https://doi.org/10.1021/acs.analchem.0c05055
https://doi.org/10.1016/j.talanta.2020.122058
https://www.ncbi.nlm.nih.gov/pubmed/33676642
https://doi.org/10.1021/ac301033w
https://doi.org/10.1021/ac500426b
https://doi.org/10.1021/acs.analchem.7b01538
https://www.ncbi.nlm.nih.gov/pubmed/28726373
https://doi.org/10.1021/acs.analchem.8b05692
https://www.ncbi.nlm.nih.gov/pubmed/30838849
https://doi.org/10.1021/acs.analchem.8b05599
https://doi.org/10.1021/acs.analchem.0c00952
https://www.ncbi.nlm.nih.gov/pubmed/32478502
https://doi.org/10.1016/j.talanta.2022.123597
https://doi.org/10.1016/j.talanta.2021.122949
https://doi.org/10.1021/acssensors.0c02415
https://doi.org/10.1016/j.aca.2021.338199
https://www.ncbi.nlm.nih.gov/pubmed/33551055
https://doi.org/10.3390/bios12110989
https://doi.org/10.3390/s22010161
https://www.ncbi.nlm.nih.gov/pubmed/35009703
https://doi.org/10.1021/acsnano.1c04327
https://www.ncbi.nlm.nih.gov/pubmed/34524790
https://doi.org/10.1016/j.talanta.2021.122649
https://doi.org/10.1021/acs.analchem.0c00628
https://doi.org/10.1021/acs.analchem.2c03015
https://doi.org/10.1007/s00604-015-1515-7
https://doi.org/10.1016/j.snb.2016.05.132
https://doi.org/10.1021/ac4037262


Biosensors 2023, 13, 543 12 of 13

42. Wan, Y.; Wang, H.; Ji, J.; Kang, K.; Yang, M.; Huang, Y.; Su, Y.; Ma, K.; Zhu, L.; Deng, S. Zippering DNA tetrahedral hyperlink for
ultrasensitive electrochemical microRNA detection. Anal. Chem. 2020, 92, 15137–15144. [CrossRef]

43. Zhai, F.; Yu, Q.; Zhou, H.; Liu, J.; Yang, W.; You, J. Electrochemical selective detection of carnitine enantiomers coupling copper
ion dependent DNAzyme with DNA assistant hybridization chain reaction. J. Electroanal. Chem. 2019, 837, 137–142. [CrossRef]

44. Wang, C.; Zhou, H.; Zhu, W.; Li, H.; Jiang, J.; Shen, G.; Yu, R. Ultrasensitive electrochemical DNA detection based on dual
amplification of circular strand-displacement polymerase reaction and hybridization chain reaction. Biosens. Bioelectron. 2013, 47,
324–328. [CrossRef] [PubMed]

45. Luo, S.; Zhang, Y.; Huang, G.; Situ, B.; Ye, X.; Tao, M.; Huang, Y.; Li, B.; Jiang, X.; Wang, Q.; et al. An enzyme-free amplification
strategy for sensitive assay of circulating tumor DNA based on wheel-like catalytic hairpin assembly and frame hybridization
chain reaction. Sens. Actuat. B Chem. 2021, 338, 129857. [CrossRef]

46. Miao, P.; Tang, Y.; Yin, J. MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified
electrode followed by hybridization chain reaction dual amplification. Chem. Commun. 2015, 51, 15629–15632. [CrossRef]
[PubMed]

47. Yuan, Y.H.; Wu, Y.D.; Chi, B.Z.; Wen, S.H.; Liang, R.P.; Qiu, J.D. Simultaneously electrochemical detection of microRNAs based on
multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens. Bioelectron. 2017, 97, 325–331.
[CrossRef] [PubMed]

48. Chen, Z.; Liu, Y.; Xin, C.; Zhao, J.; Liu, S. A cascade autocatalytic strand displacement amplification and hybridization chain
reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing. Biosens. Bioelectron. 2018, 113, 1–8.
[CrossRef]

49. Yang, C.; Shi, K.; Dou, B.; Xiang, Y.; Chai, Y.; Yuan, R. In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive
and label-free electrochemical detection of microRNA. ACS Appl. Mater. Interfaces 2015, 7, 1188–1193. [CrossRef]

50. Zhou, C.; Cui, K.; Liu, Y.; Li, L.; Zhang, L.; Xu, M.; Ge, S.; Wang, Y.; Yu, J. Ultrasensitive lab-on-paper device via Cu/Co
double-doped CeO2 nanospheres as signal amplifiers for electrochemical/visual sensing of miRNA-155. Sens. Actuat. B Chem.
2020, 321, 128499. [CrossRef]

51. Ren, W.; Gao, Z.F.; Li, N.B.; Luo, H.Q. Ultrasensitive and selective signal-on electrochemical DNA detection via exonuclease III
catalysis and hybridization chain reaction amplification. Biosens. Bioelectron. 2015, 63, 153–158. [CrossRef] [PubMed]

52. Cheng, H.; Li, W.; Duan, S.; Peng, J.; Liu, J.; Ma, W.; Wang, H.; He, X.; Wang, K. Mesoporous silica containers and programmed
catalytic hairpin assembly/hybridization chain reaction based electrochemical sensing platform for microRNA ultrasensitive
detection with low background. Anal. Chem. 2019, 91, 10672–10678. [CrossRef]

53. Guo, Q.; Yu, Y.; Zhang, H.; Cai, C.; Shen, Q. Electrochemical sensing of exosomal microRNA based on hybridization chain reaction
signal amplification with reduced false-positive signals. Anal. Chem. 2020, 92, 5302–5310. [CrossRef]

54. Negahdary, M.; Angnes, L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer.
Coord. Chem. Rev. 2022, 464, 214565. [CrossRef]

55. Aziz, N.B.; Mahmudunnabi, R.G.G.; Umer, M.; Sharma, S.; Rashid, M.A.; Alhamhoom, Y.; Shim, Y.B.; Salomon, C.; Shiddiky,
M.J.A. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors. Analyst 2020, 145,
2038–2057. [CrossRef] [PubMed]

56. Gillespie, P.; Ladame, S.; O’Hare, D. Molecular methods in electrochemical microRNA detection. Analyst 2019, 144, 114–129.
[CrossRef]

57. Liang, T.; Qin, X.; Xiang, Y.; Tang, Y.; Yang, F. Advances in nucleic acids-scaffolded electrical sensing of extracellular vesicle
biomarkers. TrAC-Trend. Anal. Chem. 2022, 148, 116532. [CrossRef]

58. Dong, J.; Yang, H.; Zhao, J.; Wen, L.; He, C.; Hu, Z.; Li, J.; Huo, D.; Hou, C. Sandwich-type microRNA biosensor based on
graphene oxide incorporated 3D-flower-like MoS2 and AuNPs coupling with HRP enzyme signal amplification. Microchim. Acta
2022, 189, 49. [CrossRef]

59. Zhang, H.; Fan, M.; Jiang, J.; Shen, Q.; Cai, C.; Shen, J. Sensitive electrochemical biosensor for MicroRNAs based on duplexspecific
nuclease-assisted target recycling followed with gold nanoparticles and enzymatic signal amplification. Anal. Chim. Acta. 2019,
1064, 33–39. [CrossRef]

60. Fang, C.S.; Kim, K.-s.; Yu, B.; Jon, S.; Kim, M.-S.; Yang, H. Ultrasensitive electrochemical detection of miRNA-21 using a zinc
finger protein specific to DNA–RNA hybrids. Anal. Chem. 2017, 89, 2024–2031. [CrossRef]

61. Xia, N.; Zhang, Y.; Wei, X.; Huang, Y.; Liu, L. An electrochemical microRNAs biosensor with the signal amplification of alkaline
phosphatase and electrochemical–chemical–chemical redox cycling. Anal. Chim. Acta 2015, 878, 95–101. [CrossRef] [PubMed]

62. Ning, Y.; Zhang, C.; Wang, C.; Zhou, C.; Gong, N.; Wang, Q.; Zhu, Y. DNA self-assembled FeNxC nanocatalytic network for
ultrasensitive electrochemical detection of microRNA. Anal. Chim. Acta 2022, 1223, 340218. [CrossRef]

63. Cui, Y.; Fan, S.; Yuan, Z.; Song, M.; Hu, J.; Qian, D.; Zhen, D.; Li, J.; Zhu, B. Ultrasensitive electrochemical assay for microRNA-21
based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta 2021, 224, 121878. [CrossRef] [PubMed]

64. Xiao, Q.; Li, J.; Jin, X.; Liu, Y.; Huang, S. Ultrasensitive electrochemical microRNA-21 biosensor coupling with carboxylate-reduced
graphene oxide-based signal-enhancing and duplexspecific nuclease-assisted target recycling. Sens. Actuat. B Chem. 2019,
297, 126740. [CrossRef]

65. Zhu, L.; Zhang, X.; Yuan, R.; Chai, Y. Y-shaped walker with abundant recognition domians mediated ultrasensitive electrochemical
biosensor for miRNA-21 detection. Sens. Actuat. B Chem. 2023, 375, 132901. [CrossRef]

https://doi.org/10.1021/acs.analchem.0c03553
https://doi.org/10.1016/j.jelechem.2019.02.020
https://doi.org/10.1016/j.bios.2013.03.020
https://www.ncbi.nlm.nih.gov/pubmed/23603128
https://doi.org/10.1016/j.snb.2021.129857
https://doi.org/10.1039/C5CC05499K
https://www.ncbi.nlm.nih.gov/pubmed/26376704
https://doi.org/10.1016/j.bios.2017.06.022
https://www.ncbi.nlm.nih.gov/pubmed/28622643
https://doi.org/10.1016/j.bios.2018.04.046
https://doi.org/10.1021/am506933r
https://doi.org/10.1016/j.snb.2020.128499
https://doi.org/10.1016/j.bios.2014.07.028
https://www.ncbi.nlm.nih.gov/pubmed/25083923
https://doi.org/10.1021/acs.analchem.9b01947
https://doi.org/10.1021/acs.analchem.9b05849
https://doi.org/10.1016/j.ccr.2022.214565
https://doi.org/10.1039/C9AN02263E
https://www.ncbi.nlm.nih.gov/pubmed/32016203
https://doi.org/10.1039/C8AN01572D
https://doi.org/10.1016/j.trac.2022.116532
https://doi.org/10.1007/s00604-021-05141-0
https://doi.org/10.1016/j.aca.2019.02.060
https://doi.org/10.1021/acs.analchem.6b04609
https://doi.org/10.1016/j.aca.2015.04.018
https://www.ncbi.nlm.nih.gov/pubmed/26002330
https://doi.org/10.1016/j.aca.2022.340218
https://doi.org/10.1016/j.talanta.2020.121878
https://www.ncbi.nlm.nih.gov/pubmed/33379087
https://doi.org/10.1016/j.snb.2019.126740
https://doi.org/10.1016/j.snb.2022.132901


Biosensors 2023, 13, 543 13 of 13

66. Wang, F.; Cai, R.; Tan, W. Self-powered biosensor for a highly efficient and ultrasensitive dual-biomarker assay. Anal. Chem. 2023,
95, 6046–6052. [CrossRef]

67. Zhang, X.; Yang, Z.; Chang, Y.; Qing, M.; Yuan, R.; Chai, Y. A novel 2D DNA nanoprobe mediated enzyme-free target recycling
amplification for ultrasensitive electrochemical detection of microRNA. Anal. Chem. 2018, 90, 9538–9544. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acs.analchem.3c00097
https://doi.org/10.1021/acs.analchem.8b02251

	Introduction 
	Materials and Methods 
	Chemicals and Reagents 
	Preparation of SA-Covered Electrode 
	Preparation of SA-GOx Conjugates 
	Assays of DNA 
	Detection of miRNA-21 
	Extraction of Total RNA from Cancer Cells 

	Results and Discussion 
	Detection Principle 
	Feasibility of This Method 
	Analytical Performances for DNA Detection 
	Assays of DNA in Serum Samples 
	Quantification of miRNA-21 
	Assays of miRNA-21 in Cellular Lysates 

	Conclusions 
	References

