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Abstract: The toxicity of commonly used drugs, such as acetaminophen (ACAP) and its degradation-
derived metabolite of 4-aminophenol (4-AP), underscores the need to achieve an effective approach
in their simultaneous electrochemical determination. Hence, the present study attempts to introduce
an ultra-sensitive disposable electrochemical 4-AP and ACAP sensor based on surface modification
of a screen-printed graphite electrode (SPGE) with a combination of MoS2 nanosheets and a nickel-
based metal organic framework (MoS2/Ni-MOF/SPGE sensor). A simple hydrothermal protocol
was implemented to fabricate MoS2/Ni-MOF hybrid nanosheets, which was subsequently tested
for properties using valid techniques including X-ray diffraction (XRD), field emission-scanning
electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transformed
infrared spectroscopy (FTIR), and N2 adsorption-desorption isotherm. The 4-AP detection behavior
on MoS2/Ni-MOF/SPGE sensor was followed by cyclic voltammetry (CV), chronoamperometry
and differential pulse voltammetry (DPV). Our experimental findings on the generated sensor con-
firmed a broad linear dynamic range (LDR) for 4-AP from 0.1 to 600 µM with a high sensitivity
of 0.0666 µA/µM and a low limit of detection (LOD) of 0.04 µM. In addition, an analysis of real
specimens such as tap water sample as well as a commercial sample (acetaminophen tablets) illumi-
nated the successful applicability of as-developed sensor in determining ACAP and 4-AP, with an
impressive recovery rate.

Keywords: 4-aminophenol; acetaminophen; disposable electrochemical sensor; MoS2/Ni-MOF
hybrid nanosheets

1. Introduction

HOC6H4NH2, p-Aminophenol or 4-aminophenol is known as a raw material with
wide and varied applications in the manufacture of pharmaceutical products, thermal dyes,
black and white photographic developer, antioxidants, polymer stabilizers, petroleum
additives, fungicides, herbicides, and insecticides [1,2]. Such extensive applications have
inevitably led to large concentrations of 4-AP being introduced into the environment
and in particular water sources, which can leave toxic effects due to the presence of
structural phenol and aniline. The penetration of 4-AP into the human body can be
associated with serious health consequences such as dermatitis, eczema, nephrotoxicity,
and teratogenic complications [3,4]. Therefore, some European countries and the United
States have recommended that the maximum allowable dose of 4-AP in pharmacy should
be up to 50 ppm [5]. Thus, both biochemically and environmentally hazardous 4-AP can
contaminate and threaten both environmental resources and the health of life by easily
penetrating the skin and membranes of plants.

N-acetyl-p-aminophenol, Paracetamol, Acetaminophen or ACAP, is known as one of
the most common antipyretic and analgesic drugs that impact mainly the management of
migraine pain, headache, arthritis, cancer pain, back pain, and postoperative pain [6–8].
ACAP can also be prescribed to aspirin-sensitive patients, such as those with hemophilia,
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varicella, and other bleeding conditions [9]. Despite these advantages, ACAP can be
partially degraded to 4-AP in pharmaceutical formulations during synthesis or storage. In
fact, toxic 4-AP can accumulate in the human body following over-administration of ACAP,
leading to some severe diseases such as deformity, renal toxicity, liver toxicity, pancreatitis
and skin rash [10,11]. In addition, the environmental accumulation of ACAP and 4-AP
excreted is increasingly observed in a variety of water sources. The toxic nature of ACAP
and 4-AP underscores the need to achieve an effective approach in their simultaneous
determination.

Some of the techniques available in this field are spectrophotometry [12], chemilumi-
nescence [13], high performance liquid chromatography [14], and capillary electrophore-
sis [15]. Despite the unique advantages of all these techniques, they suffer from some
disadvantages such as being time-consuming, having high cost, and the need for precision
tools, tedious operations, and boring sample preparation [16]. In the meantime, special
attention has been paid to electrochemical measurement approaches due to advantages
such as simplicity, simple preparation of specimens and sensors, high accuracy, and fast
response [17–24]. Nevertheless, bare electrodes in electrochemical determinations have
shown disadvantages such as low sensitivity, poor reproducibility and low electrochemical
response [25–31]. In this context, the potentials of redox peak can be obscured by cross-
interference when applying a bare screen printed graphite electrode for sensing ACAP and
4-AP [32]. Therefore, there is a need for a modifier for surface modification of the electrodes
to achieve some advantages such as low LOD, broad working range, and high accuracy
during analytical applications [33–41].

Ultrathin two-dimension (2D) nanosheets (NSs) have been introduced as promising
electrode materials because of admirable attributes like huge specific surface area, impres-
sive electronic behaviors, and high mechanical strength [42,43], particularly in the field of
nanotechnology [44].

Molybdenum disulfide (MoS2) is a layered quasi-2D chalcogenide material, similar
to graphite structure. Three atomic layers are found in MoS2, including a layer of Mo
positioned between two layers of S with the aid of weak van der Waals forces [45,46]. It has
a variety of applications in catalysts, lithium batteries, sensors and supercapacitors because
of commendable catalytic ability, impressive electron mobility, huge surface area and high
electronic density [47,48].

Metal-organic frameworks (MOFs) such as promising crystalline porous materials
are formed by binding metal ions or clusters using organic ligands based on coordination
chemistry [49–51]. Some of the fields of application of MOFs are drug, catalysis, gas
separation, magnetism and fluorescence owing to their huge specific surface area, pore
structure, functional nature, drug delivery and adjustable architecture [52]. Among these,
2D MOFs have shown special attributes when compared with bulk MOF materials, such as
high porosity and nano-sized thickness that predispose excellent electron transfer and rapid
mass transport. Unlike the bulk MOFs’ active sites, 2D MOFs show many available active
sites on the layers’ surface, thereby facilitating the contact of active sites with substrates
and consequently improving the catalytic behavior of MOFs [53–56]. It should be noted
that many nano-sized metal sulfides are adsorbed into MOF NSs as in-situ to generate
nano-hybrids. The activity can be improved due to the synergism of all components [57].
We used the synergistic properties of MoS2 and Ni-MOF NSs to achieve a facile protocol to
fabricating the MoS2/Ni-MOF nanohybrid sheets, which was applied to modify the SPGE
surface for 4-AP electrooxidation. The findings showed commendable electrocatalytic
performance of MoS2/Ni-MOF/SPGE for the oxidation/reduction process of 4-AP. In
addition, the proposed sensor was employed to voltammetrically detect 4-AP and ACAP
in real specimens.
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2. Experimental Section
2.1. Apparatus and Materials

(NH4)6Mo7O24•4H2O, thiourea, nickel (II) nitrate hexahydrate, terephthalic acid,
KOH, N,N-Dimethylformamide (DMF), 4-aminophenol and acetaminophen were pur-
chased from Sigma-Aldrich. All other reagents had analytical grade. Orthophosphoric acid
was used to prepare phosphate buffer solution (0.1 M, PBS) as a supporting electrolyte.

An Autolab potentiostat/galvanostat type PGSTAT302N made by Eco Chemie in
Netherlands, which has been also provided with the General-Purpose Electrochemical Sys-
tem (GPES 4.9) was applied in each of the electrochemical experiments. The screen-printed
graphite electrode (SPGE) was made by Dropsens (DRP-110) in Asturias, Spain. This
electrode consists of a graphite working electrode, a silver pseudo reference electrode; and
a graphite counter electrode. The solutions pH was adjusted by a pH-meter (Metrohm 710).

FE-SEM images were obtained on a MIRA3TESCAN microscope alongside energy-
dispersive X–ray analysis. MoS2/Ni-MOF nanosheets structure was characterized using X-
ray diffraction patterns (X’Pert Pro X-ray diffractometer, Panalytical, Netherlands) applying
Cu/Kα radiation (λ = 1.5418 nm). Then, the Bruker spectrometer (KBr pellets, Tensor-27)
made by Germany was utilized to record a FTIR spectrum on the wavelengths 4000 cm−1

to 400 cm−1. The MoS2/Ni-MOF hybrid nanosheets were also examined for their surface
area by a BELSORP MINI II Brunauer–Emmett–Teller device (BET) with the Barrett–Joyner–
Halenda (BJH) analysis for pore size determination.

2.2. Fabrication of MoS2

A typical protocol was followed to prepare MoS2 NSs [58,59]. Thus, (NH4)6Mo7O24·4H2O
(3 mmol) and thiourea (2.3 g) were poured in deionized water (30 mL) and then heated
for 24 h at 200 ◦C inside a 50-mL Teflon autoclave. The product was thoroughly rinsed
with deionized water/ethanol (with a volume ratio of 1:1), and finally dried at 50 ◦C for six
hours under vacuum condition.

2.3. Fabrication of MoS2/Ni-MOF Hybrid Nanosheets

In situ growth of Ni-MOF on MoS2 surface led to the formation of the hybrid NSs
of MoS2/Ni-MOF. Thus, MoS2 (0.32 g) was poured in DMF (15 mL) under 30-min ultra-
sonication, followed by adding nickel (II) nitrate hexahydrate (0.87 g, 3 mmol) dispersed
in deionized water (10 mL) under another 30-min ultra-sonication. The obtained solution
was then slowly appended with DMF solution (10 mL) including terephthalic acid (0.17 g,
1 mmol) and 0.4 M KOH (5 mL). Following another sonication for two hours, the obtained
solution was subjected to solvothermal reaction inside the 50-mL Teflon stainless steel
autoclave at 120 ◦C for 24 h. Next, the product was cooled down to room temperature,
followed by centrifugation to obtain the precipitate that was subsequently rinsed with
deionized water/DMF (with a volume ratio of 1:1) thoroughly, and finally dried at 65 ◦C
for 24 h under vacuum condition.

Moreover, Ni MOF NSs were prepared as control, similar to the method used to produce
MoS2/Ni MOF hybrid NSs, except for the addition of MoS2 prior to solvothermal treatment.

2.4. SPGE Modification with MoS2/Ni MOF Hybrid Nanosheets

In this step, SPGE was coated by the MoS2/Ni MOF hybrid NSs. Thus, 1 mg of
MoS2/Ni MOF hybrid NSs was dispersed in 1 mL of aqueous solution through a 45-min
ultrasonication to prepare a stock solution of the hybrid nanosheets of MoS2/Ni MOF.
Then, the graphite working electrodes were used to cast 5 µL of the suspension solution
of the MoS2/Ni MOF nanohybrid. Finally, we put the solvent at room temperature to
evaporate to achieve the MoS2/Ni-MOF/SPGE.

2.5. Preparation of Real Specimens

In order to prepare the real sample of an ACAP tablet (labeled 325 mg), the first five
tablets of the ACAP were powdered with a mortar and pestle. Then, 325 mg of this powder
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was dissolved in 25 mL deionized water under ultra-sonication. Then, in order to remove
impurities and fillers in the tablet, the resulting sample was filtered by using filter paper.
Then, a specific volume of this solution was transferred to a volumetric flask (25 mL) and
diluted with 0.1 M PBS (pH = 7.0). Finally, the standard addition method was used to
determine the ACAP and 4-AP content in tablet samples.

Tap water specimens filtrated with a membrane filter and added into 0.1 M PBS
(pH = 7). At last, the ACAP and 4-AP contents were measured in the tap water samples
using the developed protocol according to standard addition method.

3. Results and Discussion
3.1. Characterizations

The FE-SEM images captured from Ni-MOF (Figure 1a) shows approximately transpar-
ent 20-nanometer NSs and also well-defined two-dimensional layer of fabricated Ni-MOF.
A flower-like MoS2 nanostructure constructed by the assembly of 2D NSs is shown in
Figure 1b. The NSs cut with a smooth surface show an identical thickness and a distinct
gap of the layers. Figure 1b illustrates the FE-SEM image captured from MoS2, highlighting
a 13-nanometer nanosheet morphology. Moreover, the obtained MoS2/Ni-MOF hybrid NSs
exhibit a hierarchical structure while retaining the 2D NS property (Figure 1c,d), so that the
MoS2 NS surface is covered densely by Ni-MOF, leading to a relatively uneven surface.
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Figure 1. FE-SEM images of Ni-MOF nanosheets (a), MoS2 flower-like nanosheets (b), MoS2/Ni-MOF
hybrid NSs (c,d).

Energy dispersive X-ray findings (Figure 2) illustrate only the presence of Mo, S, C, O,
and Ni in the structure of MoS2/NiMOF hybrid NSs.
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Figure 2. EDX spectrum of MoS2/Ni-MOF hybrid NSs.

Figure 3 shows the XRD patterns captured for the pure MoS2 and MoS2/Ni-MOF
hybrid NSs. Pure MoS2 curves exhibited high purity for the samples produced. The peaks
appearing at 13.66◦, 32.22◦, 35.3◦ and 57.8◦ were indexed to planes of (002), (100), (103)
and (110), sequentially [60]. Overall, the sharp diffraction peaks of MoS2 verifies a great
crystallinity. MoS2/Ni-MOF hybrid NSs not only had the characteristic peaks related to
MoS2, but also displayed clear related to Ni-MOF, corresponding to the planes of (100),
(010), (10-1), (2-10), and (020) [61,62].

The composition of as-produced hybrid NSs was explored using the Fourier transform
infrared spectroscopy (Figure 4). The FT-IR spectrum revealed the peaks at 614.55 and
884 cm−1 for MoS2 (Figure 4; curve a) respectively corresponding to Mo-S and S-S vibra-
tions. The peaks formed at 1100, 1642 and 3448 cm−1 corresponded to hydroxyl stretching
vibration resulting from water molecules absorbed [63,64]. The FT-IR spectrum obtained
for Ni-MOF (Figure 4; curve c) showed strong peaks at 3490 and 3320 cm−1 corresponding
to hydroxyl (−OH) stretching vibration, and at 2960, 811 and 743 cm−1 corresponding to
aromatic units’ C–H bonds, as well as at 1382 and 1581 cm−1 respectively corresponding
to terephthalic anions’ Vs(COO) and Vas(COO). The peak at 545 cm−1 corresponding to
ν(Ni–O) verifies a metal–oxo bond between the terephthalic acid’s carboxylic group and
Ni atoms [62]. When comparing to Ni-MOF and MoS2, a new peak appeared strongly
at 1650.6 cm−1 related to MoS2/Ni-MOF hybrid NSs (Figure 4; curve b) because of an
interplay of MoS2 with Ni-MOF, boosting C=C stretching vibration. Consequently, the
MoS2/Ni-MOF hybrid NSs possess all absorption bands of MoS2 and Ni-MOF [62].
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Figure 3. XRD patterns of MoS2 and MoS2/Ni-MOF hybrid NSs.

Figure 5 shows the calculation of MoS2@Ni-MOF pore size and surface areas based
on nitrogen adsorption−desorption isotherms adopted from Barrett-Joyner-Halenda and
Brunauer-Emmett-Teller methods [62,65]. In accordance with the graphical isotherm of
typical H3 hysteresis loop in Figure 5A, MoS2/Ni-MOF hybrid NSs follows the type-IV
isotherms. The accumulation of pores is evident based on the hysteresis loop of MoS2/Ni-
MOF at relative high pressure (p/p0). The surface area of 27.19 m2/g was computed for the
MoS2/Ni-MOF. According to the distribution of pore size in Figure 5B, the MoS2/Ni-MOF
had the pore diameter of 1.85 nm.
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3.2. Electrochemical Performance of 4-AP on the Surface of MoS2/Ni-MOF/SPGE

Research indicates that the pH of the electrolytes is one of the fundamental factors
influencing the 4-AP response on the MoS2/Ni-MOF/SPGE. Hence, researchers cautiously
used DPV in the pH ranges between 2.0 and 9.0 through 0.1 M PBS to determine the impact
of the pH value on the electro-chemical behaviors of 4-AP. Analyses revealed that the peak
current 4-AP of oxidation enhanced when pH value elevated to 7.0 but it was reduced with
an increase in pH. For achieving higher sensitivity, we chose pH 7.0 as an optimal pH to
electrochemically detect the 4-AP on the MoS2/Ni-MOF/SPGE.

The CVs of 4-AP at the scanning rate of 50 mV s−1 in the 0.1 M PBS (pH = 7.0) on the
bare SPGE (curve a) as well as the MoS2/Ni-MOF/SPGE (curve b) are depicted in Figure 6.
As seen in Figure 6 (curve a), the cathodic and anodic peaks of 4-AP on the bare SPGE were
observed at −70 and 145 mV, respectively, while the separation between peak potentials
(∆Ep) was observed at 213 mV. Figure 6 (curve b) demonstrates the further enhancement
of the 4-AP oxidation peak current on the MoS2/Ni-MOF/SPGE compared to that of the
bare SPGE, negative shift of the anodic peak potential to 105 mV as well as positive shift
of the cathodic peak potential to −35 mV. Furthermore, ∆Ep of 4-AP on the MoS2/Ni-
MOF/SPGE equaled 140 mV. Consequently, we found a considerable increase of the 4-AP
redox peak currents on the MoS2/Ni-MOF/SPGE caused by acceptable conductivity and
electrocatalytic feature of MoS2/Ni-MOF.
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3.3. The Effect of the Scanning Rate

We used CV in this step to determine the impact of the scanning rate on the redox
reaction of 4-AP on the surface of MoS2/Ni-MOF/SPGE. Figure 7 represents the CV
curves of 400.0 µM 4-AP on the MoS2/Ni-MOF/SPGE with diverse scanning rates from
5–900 mVs−1. Considering the figure, the cathodic and anodic peak currents (Ipc, Ipa) of
4-AP were elevated by enhancing the scanning rates. Therefore, values of Ipc and Ipa

exhibit an acceptable linear correlation to the square root of the scanning rate (υ1/2) (see
Inset in Figure 7). Thus, it could be concluded that the electrode reaction of 4-AP on the
MoS2/Ni-MOF/SPGE would be a process controlled by diffusion.
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3.4. Chronoamperometric Measurements

Chronoamperometry was employed to study the 4-AP electro-oxidation using a
MoS2/Ni-MOF/SPGE (see Figure 8). Therefore, the potential of the working electrode
was set at 0.14 V as the first-step potential to measure the chronoamperometry of several
concentrations of 4-AP on the MoS2/Ni-MOF/SPGE sensor. In this way, the diffusion
coefficient, D, of 4-AP in 0.1 M PBS was identified by chronoamperometric tests. Then, we
applied the experimental plots of Ip vs. t−1/2 with the best fits for several concentrations of
4-AP (see Figure 8A). Moreover, the slopes shown for the final straight lines were drawn
vs. 4-AP concentrations (refer to Figure 8B) and thus D = 3.2 × 10−5 cm2/s by the Cottrell
equation and the obtained slopes.
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3.5. Calibration Plot and Detection Limit

According to the research design, we employed DPV at optimum conditions to mea-
sure several concentrations of 4-AP in the 0.1 M PBS (pH = 7.0) for evaluating the analytical
functions of the MoS2/Ni-MOF/SPGE sensor. With regard to Figure 9 the increased
peak current was observed as the concentration of 4-AP elevated from curve 1 to 14,
reflecting a satisfactory linear correlation to the 4-AP concentration (as depicted in the
inset of Figure 9) in ranges 0.1–600.0 µM, which followed the correlation equation of
Ipa = 0.0666 C4-AP + 0.9904 (R2 = 0.9995). It should be noted that LOD equaled 0.04 µM.
Two-dimentional Ni-MOFs have shown special attributes such as high porosity and nano-
sized thickness that predispose excellent electron transfer and rapid mass transport. Also,
the synergistic effect between Ni-MOF and Mos2 increases the conductivity and electro-
catalytic activity of the proposed MoS2/Ni-MOF/SPG sensor. The electro-analytical per-
formance for 4-AP at MoS2/Ni-MOF/SPGE was compared with the other chemically
modified electrodes (Table 1). These findings revealed the acceptable analytical function of
MoS2/Ni-MOF/SPGE sensor for 4-AP detection.
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Table 1. Comparison of various modified electrodes for the detection of 4- AP with MoS2/Ni-
MOF/SPGE.

Electrochemical Sensor Method Linear Range LOD Real Samples Ref.

Chitosan-Au
nanoparticles-Pd-reduced graphene

oxide nanohybrid/glassy
carbon electrode

DPV 1.0–300.0 µM 0.12 µM Water [66]

Hemin-molecularly imprinted
polymer/glassy carbon electrode Amperometric 10.0–90.0 µM 3.0 µM Tap and river water [67]

Graphene/hydroxyapatite
nanocomposite/glassy

carbon electrode

Square wave
voltammetry 0.1–425.0 µM 0.29 µM Tap water [68]

Graphene–chitosan
composite/glassy carbon electrode DPV 0.2–550.0 µM 0.057 µM

River water, Lake
water, Waste water,

and Tap water
[69]

Graphene–polyaniline
nanocomposite/glassy

carbon electrode
DPV 0.2–100.0 µM 0.065 µM - [70]

MoS2/Ni-MOF/SPGE DPV 0.1–600.0 µM 0.04 µM
Acetaminophen

tablet and tap
water

This Work
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Inset: linear relationship of the peak current with 4-AP concentration (from 0.1 µM to 600.0 µM).
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3.6. Determination of 4-AP in Presence ACAP

Upon the creation of the optimized conditions, as a result of its more acceptable
resolution and greater current sensitivity, DPV was employed for the quantitative simulta-
neous detection of 4-AP and ACAP. Figure 10 presents DPVs of various concentrations of
4-AP and ACAP on the MoS2/Ni-MOF/SPGE surface. Considering Figure 10, we observe
2 complete oxidation peaks at 100 mV and 440 mV for 4-AP and ACAP. Moreover, 4-AP
and ACAP concentrations exhibit an acceptable linear relationship to the respective oxida-
tion peak currents in ranges between 1.0 µM and 400.0 µM (see Insets A and B). In addition,
sensitivity to 4-AP in the case of the presence and absence of ACAP equaled 0.0674 µA/µM
(see Figure 10 Inset A) and 0.0666 µA/µM (see inset of Figure 9), respectively. Hence, we
inferred that it is possible to use MoS2/Ni-MOF/SPGE successfully for the simultaneous
detection of 4-AP and ACAP with higher sensitivity and better selectivity.
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Figure 10. DPVs of 4-AP and ACAP with several concentrations (from 1 to 8: 1.0 + 1.0, 5.0 + 5.0,
10.0 + 10.0, 30.0 + 30.0, 70.0 + 70.0, 100.0 + 100.0, 300.0 + 300.0, and 400.0 + 400.0 µM) on the MoS2/Ni-
MOF/SPGE in 0.1 M PBS (pH = 7). Inset: (A) the peak current plot as the function of concentration of
4-AP and (B) the peak current plot as the function of ACAP concentration.
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3.7. ACAP and 4-AP Detection in the Real Samples

Since our research aimed for assessing the new approach practically, we employed
MoS2/Ni-MOF/SPGE for ACAP and 4-AP detection in the acetaminophen tablet and tap
water samples with the standard addition method. Hence, each measurement was iterated
give times in similar conditions. See Table 2 for more results. As seen in the table, recovery
of ACAP and 4-AP equaled 97.0–103.3% and 96.2–104.3%, indicating the possible use of
our electrochemical sensor to detect ACAP and 4-AP in the real samples.

Table 2. Findings for 4-AP and ACAP detection in real samples using MoS2/Ni-MOF/SPGE. All
concentrations are in µM (n = 5).

Sample Spiked Found Recovery (%) R.S.D. (%)

4-AP ACAP 4-AP ACAP 4-AP ACAP 4-AP ACAP

Acetaminophen tablets

0 0 - 4.0 - - - 3.5

5.0 2.0 4.9 6.2 98.0 103.3 1.9 2.9

6.0 3.0 6.1 6.9 101.7 98.6 2.7 2.1

7.0 4.0 7.3 7.9 104.3 98.7 3.2 1.8

8.0 5.0 7.7 9.2 96.2 102.2 2.8 2.2

Tap water

0 0 - - - - - -

5.5 6.0 5.6 5.9 101.8 98.3 2.1 3.6

6.5 8.0 6.3 8.2 97.0 102.5 3.0 2.3

7.5 10.0 7.6 9.7 101.3 97.0 1.9 2.8

8.5 12.0 8.4 12.2 98.8 101.7 2.4 1.8

4. Conclusions

We produced new MoS2/Ni-MOF hybrid nanosheets as the modifier for screen-printed
graphite electrode surface modification to fabricate an ultra-sensitive sensor for the elec-
trochemical detection of 4-AP. Findings presented an admirable electro-catalytic behavior
for as-developed hybrid nanosheets towards the oxidation of 4-AP owing to commend-
able mass transfer, abundant active sites, impressive conductivity and huge surface area.
As-developed MoS2/Ni-MOF/SPGE had a broad LDR (0.1–600.0 µM) and a narrow LOD
towards the oxidation of 4-AP. Moreover, 4-AP and ACAP were electrochemically detected
concurrently on the modified electrode surface, with a peak potential separation of 340 mV.
In addition, the analysis of real specimens such as tap water sample as well as a commercial
sample (acetaminophen tablets) illuminated the successful applicability of the as-developed
sensor in determining ACAP and 4-AP, with an impressive recovery rate.
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