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Abstract: Molecular immobilization and recognition are two key events for the development of
biosensors. The general ways for the immobilization and recognition of biomolecules include covalent
coupling reactions and non-covalent interactions of antigen–antibody, aptamer–target, glycan–lectin,
avidin–biotin and boronic acid–diol. Tetradentate nitrilotriacetic acid (NTA) is one of the most
common commercial ligands for chelating metal ions. The NTA–metal complexes show high and
specific affinity toward hexahistidine tags. Such metal complexes have been widely utilized in protein
separation and immobilization for diagnostic applications since most of commercialized proteins
have been integrated with hexahistidine tags by synthetic or recombinant techniques. This review
focused on the development of biosensors with NTA–metal complexes as the binding units, mainly
including surface plasmon resonance, electrochemistry, fluorescence, colorimetry, surface-enhanced
Raman scattering spectroscopy, chemiluminescence and so on.
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1. Introduction

The immobilization of biomolecules onto solid supports (e.g., electrodes, chips,
quartz and substrates) or functional units (e.g., dyes, enzymes and nanomaterials)
is of great importance for implementing bioassays [1,2]. A desired methodology for
bioreceptor immobilization should ensure the following terms: (i) a proper orientation
and uniform distribution to promise target accessibility, recognition and detectability;
(ii) stability and robustness to allow flow-through assays or sequential measurement cy-
cles; and (iii) antifouling capabilities to lower nonspecific interactions and reduce false
positive signals [3]. Currently, versatile immobilization strategies have been reported,
including physical adsorption based on electrostatic and hydrophobic interactions,
direct chemical adsorption based on the gold–thiol binding, chemical cross-linking
to functional monolayers and affinity-or linker-mediated immobilization [4,5]. The
selection of an appropriate immobilization approach is dependent on the physico-
chemical and chemical properties of solid interfaces and target proteins as well as
the intended usage scenario. For example, surface-accessible active functional groups
of exposed amino acid residues, such as an amine group in lysine residue and thiol
group in cysteine residue, can be utilized as the anchoring points through covalent
coupling onto a pretreated solid surface [6–9]. Despite the high simplicity and stability,
covalent binding may lead to the random orientation of biomolecules and the follow-up
conformational change, thus decreasing the activity of bioreceptor and the partial or
complete loss of its binding ability toward the target. Thus, site-specific immobilization
strategies based on specific recognitions or affinity ligands are peculiarly attractive
for the construction of biosensors. Typically, biotinylated antibodies have been well
tethered to the avidin-modified layers via the strong avidin–biotin interactions [10–12].
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However, the chemical modification of proteins may result in the decline inactivity and
the presence of multiple siteson proteins may cause their uncontrollable orientation.

The immobilized metal ion affinity chromatography (IMAC) principle is based on the
relatively strong interaction between transition metal cations (e.g., Cu2+, Ni2+, Zn2+ and
Co2+) and accessible metal-binding amino acid residues (e.g., cysteine, histidine and tryp-
tophan) [13–15]. It is originally applied to the purification of proteins containing histidine
residues on the surface with the equal strength of “bio-specific” interactions. A multitude
of metal-chelating ligands with different denticities have been fixed on the solid support
matrixes changed from agarose gels to rigid silica particles. In this process, the ligands
act as Lewis bases to bind divalent transition metal ions, such as tridentate iminodiacetic
acid, tetradentate nitrilotriacetic acid (NTA) and pentadentatetris(carboxymethyl)ethylene
diamine [16,17]. The entrapped metal ions serve as Lewis acids and the remained un-
occupied coordination sites can further ligate to the imidazole moieties of hexahistidine
(His6) tags. As coordination-bonding-based artificial receptors, the ligands exhibit different
IMAC protein separation efficiencies based on the number and conformation of chelation
sites [18,19]. Among them, the tetradentate ligand of NTA can be chelated with bivalent
transition metal cations (e.g., Cu2+, Ni2+, Zn2+ and Co2+) to form a hexagonal complex and
two unoccupied coordination sites remain for the further ligation to the imidazole moieties
of His6 tag. Nowadays, NTA-based IMAC is one of the most promising approaches for
reversible and controlled protein immobilization [3,20].

Some characteristic groups of biomolecules can be used as the anchor sites or affinity
tags for the coupling of them onto the transducer surfaces with preserving activity [21]. As
one of the smallest and most commonly used affinity elements, His6 tag can be readily fused
to the N- or C-terminal of a synthetic peptide or recombinant protein without influence on
the target-binding activity [22]. Moreover, the immobilized His6-tagged proteins can be
easily displaced by competing coordinators (e.g., ethylenediaminetetraacetic acid (EDTA)
or imidazole) under mild conditions, realizing the elution of targets and the regeneration
of solid surfaces and materials [23,24]. Furthermore, histidine-rich proteins with unusually
high histidine contents can also interact with NTA–metal complexes [25,26]. The dysregu-
lation of these proteins has been associated with several diseases, including liver cirrhosis,
cancer, asthma and pulmonary disease [27,28]. Wright’s group has reported a series of
novel works for Plasmodium falciparum histidine-rich protein 2 (pf HRP-II) extraction and de-
tection using NTA–metal complexes [29–31]. Thus, the broad arrays of chelators modified
on various materials, including NTA, polydopamine, 1-acetato-4-benzyl-triazacyclononane
and chitosan, have been popularly used to extract and immobilize biomolecules from
real samples while retaining bioactivity for further research [32–39]. Currently, count-
less NTA-functionalized molecules and materials are commercially available for protein
immobilization and site-specific labeling, including fluorescent dyes, lipids, antibodies,
peptides, magnetic beads and gold nanoparticles [40]. Considering their great potential,
the applications of NTA–metal complexes in different fields have been summarized in
several reviews [41–44]. For instance, Wieneke et al. reviewed the development of multi-
valent chelators for in vivo protein labeling [45]. You et al. summarized the progress of
multivalent chelators for spatially and temporally controlled protein functionalization [46].
López-Laguna et al. provided comprehensive insights on the emerging biotechnology
of histidine-rich peptides [47]. However, no systematic reviews currently focus on the
advancement of biosensors with NTA–metal complexes as the binding units. To maintain
the theme of this review, herein, we summarized the current developments of biosensors
based on the binding events of NTA–metal complexes. We classified the developments of
such biosensors according to the detection techniques, including surface plasmon resonance
(SPR), electrochemistry, fluorescence, colorimetry, surface-enhanced Raman scattering spec-
troscopy (SERS), chemiluminescence and so on. Moreover, future challenges and research
trends for NTA–metal complexes-based bioassays are briefly discussed.
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2. NTA–Metal Complexes−Based Biosensors

There are several important factors for the modulation of the binding affinity and the
constant between NTA–metal complexes and biomolecules. The choice of the NTA–metal-
based system for a particular application is critical for the efficient immobilization and
detection of biomolecules [48]. The reversible character is favorable for protein purification
and a higher affinity interaction is desired in the case of protein labeling in vitro and in
live cells. The length, number and position of His6 tag may influence the purification and
immobilization of recombinant proteins [49–51]. In this aspect, Knechtet al. investigated
the binding properties between several different series of oligohistidines as well as mixed
oligohistidines/oligoalanines and Ni2+–NTA by SPR experiments [52]. The results sug-
gested that His6 tag possessed an equilibrium dissociation constant (KD) of 14 ± 1 nM, and
the highest affinity of the peptides and two His residues separated by either one or four
residues are the preferred binding motifs. Although a longer histidine tag (e.g., His8 or
His10) can achieve higher purity efficiency, it may cause the inhibition of protein functions
and require a higher concentration of imidazole to elute. In addition, Madoz-Gúrpide et al.
suggested that the orientation of enzyme ferredoxin/NADP+ reductase on the surface of
NTA–Cu2+ complexes-functionalized electrode could be tuned by adjusting the position of
a histidine pair (His–X3–His) in α-helices [53]. Schröper et al. investigated the effect of His6
tag-based affinity-binding strategy on the immobilization of redox protein horse heart cytc
on the gold electrode surface [54]. It was found that cytc with C-terminal His tag exhibited
the strongest redox signal due to the proximity between the His6 tag and the intramolecular
electron transfer pathway. Moreover, Khan et al. found that double-His6 tags separated by
an 11-amino acid spacer exhibited at least one order of magnitude stronger binding affinity
to Ni–NTA-modified surfaces, compared with the single-His6 tag or two single-His6 tags at
both the N- and C-terminals [55].

An individual metal–NTA–His6 complex shows relatively low stability and affinity
(KD = 1 × 10−5 M) [56]. The binding stability can be enhanced by increasing the surface
density of NTA [57,58]. Multivalent chelators such as di- (2.7 × 10−7 M), tri- (2 × 10−7 M)
or tetra-NTA (4 × 10−8 M) derivatives have also been designed to achieve a high density
of chelators as binding sites, thus enhancing the NTA-based surface stability [59–63]. For
instance, Lata et al. demonstrated that an increasing number of NTA moieties could lead
to a substantial increase in binding stability, achieving a subnanomolar affinity [64]. You
et al. reported the application of multivalent chelators for high-affinity and spatially and
temporally controlled the recognition and functionalization of His6-tagged proteins [46].
Moreover, other irreversible covalent interactions were combined with the reversible coordi-
nation interaction, including photochemical reaction, amine coupling reaction and epoxide
chemistry [65–69]. However, these approaches typically require complicated synthetic
processes and lack high specificity.

The chelators exhibit a different affinity for bivalent metal ions (Cu2+ > Ni2+ > Zn2+ ≥ Co2+)
and distinctive specificity (Co2+ > Zn2+ > Ni2+ > Cu2+) toward His6-tagged proteins, which
may affect their utilization in practical applications [70,71]. Compared with the carboxyl
self-assembled monomer (SAM), that of Ni–NTA can pattern His6-tagged biomolecules in
a higher immobilization capacity and binding activity, improving the detection sensitiv-
ity [72]. However, the sensing surface may suffer from slow and continuous dissociation
of immobilized biomolecules due to the low affinity and stability between the His-tagged
biomolecules and NTA mediated by Ni2+ and other metal ions [73]. Moreover, low pH,
reductants and chelators, such as EDTA and imidazole in matrices, may quickly disturb the
NTA–metal complexes. Cu2+ shows the greatest affinity, which can be used to isolate low
abundant proteins from crude lysates, followed by other purification steps. In addition, the
conversion of bivalent metal ions to different metal oxidation states is one of the alternative
strategies to address those shortcomings and maintain the benefits of His6-tagged protein
immobilization [74]. For example, Spatz’s group developed the Co3+-mediated, stable
and kinetically inert interaction between His6 tag and NTA for a permanent, oriented and
specific protein immobilization [75,76]. In this strategy, the formation constant of exchange-
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inert Co3+ complexes is higher than that of conventional Co2+ and Ni2+ complexes, which
is resistant toward competitive chelators and washing off over time.

In case of the NTA–Ni2+–His6 tag system, the stability constants of four complexes
should be considered, including Ni2+/His6-tagged protein, Ni2+/NTA (KD = 1.8 × 10−11 M),
Ni2+/imidazole (KD = 9.8 × 10−4 M) and Ni2+/EDTA (KD = 4 × 10−19 M) [52]. Taking
advantage of the differences between the adjustable dissociation constants, the captured
His6-tagged proteins can be eluted by imidazole under mild conditions, resulting in Ni2+

ions to remain bound to NTA. In the context of protein purification, the addition of imi-
dazole can improve the selectivity of NTA–metal complexes toward His6-tagged proteins.
Based on the differences between the dissociation constants of Ni2+/EDTA and Ni2+/NTA,
the surface can be regenerated by completely removing Ni2+ ions with EDTA and then fol-
lowed by repeatedly loading the chelators with Ni2+ ions [52]. The regeneration of sensing
surfaces can make the ligand density similar with that for the incubation or injection of
each analyte, which is helpful for the conventional analysis [77].

The compatibility of NTA with chemical conjugation protocols can enable versatile
and efficient surface chemistries for the robust and reproducible immobilization of His6-
tailed biomolecules on different solid surfaces and nanomaterials. SAMs of NTA–metal
chelators can endow the interface with desired properties. At present, various strategies
have been reported to modify the interface with NTA–metal chelators for the deposi-
tion of His6-tagged biomolecules [78–80]. For example, NTA moieties can be functional-
ized with different alkyl thiols to form metal-chelating layers on gold electrodes [81–83].
However, the synthesis of the alkane thiol chelators was complicated and the formed
monolayer was less well-ordered. To overcome these difficulties, NTA modified with an
amino group can be covalently tethered onto the carboxyl-terminated SAM preformed
on the electrode through the 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC)/N-
hydroxysuccinimide (NHS)-activated amine coupling reaction [58,84,85]. In addition,
Haddour et al. reported that the pyrrole monomer modified with NTA could be elec-
trochemically polymerized into a conductive poly(pyrrole)-NTA film for the reversible
oriented immobilization of His6-tagged proteins [86]. NTA conjugated with pyrene can
attach onto carbon-based nanomaterials (e.g., carbon nanotubes and graphene) deposited
on the interface via π-stacking interactions between pyrene derivatives and the materials,
which could be reinforced by electropolymerization [87–90].

2.1. SPR Biosensors

SPR technique can determine the binding affinity and kinetics between ligands
and receptors, which has been widely used in the monitoring of various biological
recognition events in real time. The rational fabrication of biorecognition interface
is responsible for the reliability and accuracy of SPR assays [91]. Among various
immobilization strategies, NTA–metal complex-aided approach can facilitate the im-
mobilization of His6-tagged bioreceptors on SPR platform in a site-specific and oriented
manner [92–95]. For example, thiol-functionalized NTA can be tethered on the gold-
based SPR chip [96]. However, the oxygen sensitivity of thiol species may cause the
degradation of the chemisorbed SAM during storage. For this consideration, NTA
could be coupled to polymer brushes which were pre-immobilized on the chips for the
construction of protein-resistant interfaces [97,98].

His6-tagged biomolecules can be immobilized on NTA-functionalized chips for
the sensitive and accurate investigation of the interaction between bioreceptor and
analyte [99,100]. The integration of single-layer graphene with gold chip can improve
the sensitivity of SPR biosensors. Singh et al. developed a SPR immunosensor by
growing graphene on the chip surface through chemical vapor deposition, which is
different from that of graphene oxide, reduced graphene oxide (rGO) or grapheme dec-
orated metal nanoparticle-based platforms (Figure 1A) [101]. In this study, graphene
was modified with the film of ploypyrrole-NTA or pyrene-NTA, followed by the im-
mobilization of biotinylated cholera toxin as the bioreceptor unit via the effective
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NTA–Cu2+/biotin system for antibody detection. The result demonstrated that the
ultrathin functional layer formed by the π-stacking interaction of pyrene-NTA and the
subsequent electropolymer achieved the best detection performance (Table 1). With
the similar immobilization system, Yuan et al. reported SPR-based DNA assays using
an NTA–Cu2+-covered graphene-modified chip to immobilize a biotinylated DNA
capture probe, in which the enzymatic catalysis was integrated into SPR assay for
signal amplification (Figure 1B) [102]. In this study, nickel-chelated pyrene-NTA was
tethered onto the rGO-modified chip to immobilize biotin-labeled capture DNA. After
the hybridization between capture DNA, target DNA and reporter DNA, HRP-tagged
reporters could catalyze the conversion of aniline into polyaniline precipitation, result-
ing in great signal amplification via the mass-effect. However, the gradual dissociation
of His6-tagged proteins may result in an unstable baseline, adversely influencing the
accurate analysis.

To increase the binding stability, Wang et al. reported the SPR detection of small
molecule binding events by integrating the His6–Ni2+ coordination and the amine cou-
pling reaction to covalently affix His6-tagged proteins [103,104]. Although proteins
exhibit amore uniform orientation and a higher density through this immobilization
approach, the chip surface would not be regenerated due to the covalent linkage. Double-
or triple-His6 residues could be added into the sequence of proteins for enhancing the
attachment [55,105,106]. However, the increased cost and complexity in expressing
proteins with double- or triple-His6 residues will present a disagreeable problem. To
overcome this shortcoming, trisNTA-functionalized polymers, such as poly-L-lysine
graftpoly(ethyleneglycol) polymer and dextran, were utilized to stably yet reversibly
bind His6-tagged or biotin-labeled proteins for the investigation of different protein
bindings and interactions [107–112]. With a trisNTA–Ni2+-covered chip, Liu et al. devel-
oped a SPR biosensor for the detection of biomarkers in body fluids (Figure 1C) [113]. It
was found that the His6-tagged proteins attached on the chip surface could be readily
regenerated by changing the pH of EDTA solution. Alternatively, Spatz’s group reported
a novel surface functionalization strategy by using Co3+ ion as the mediator between
NTA and His6-tagged protein [76,114]. In this approach, Co2+ ion in the complex was
oxidized to Co3+ in situ by H2O2. Compared with Co2+ and Ni2+ complexes, Co3+ com-
plexes exhibit exchange-inert property, higher association and lower dissociation rate
constant under the similar coordination environments [114]. Thus, Co3+ complexes have
been employed to immobilize His6-tagged proteins for bioassays, such as QCM, biolayer
interferometry and fluorescent assays [99,115–119]. Notably, Lammertyn’s group used
NTA–Co3+-modified surface to design fiber optic (FO)-SPR biosensors (Figure 1D) [70].
The analytical performances, including immobilization efficiency, surface coverage, re-
producibility, stability and specificity, were investigated with plasminogen activator
inhibitor-1 (PAI-1) as the model example. His6-tagged anti-PAI-1 antibody fragment
(scFv-33H1F7) was used as the receptor and anti-PAI-1 monoclonal antibody (MA-31C9)-
modified AuNPs were used as the recognition elements for signal amplification.
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2015 American Chemical Society. (B) Schematic illustration of the noncovalent functionalization of
rGO for sensitizing SPR-based DNA sensing synergistically with biocatalytic polymerization [102].
Copyright 2017 Elsevier. (C) Schematic illustration of trisNTA-based rapid and regenerable SPR de-
terminations of biomarker concentration and biomolecular interaction [113]. Copyright 2021Elsevier.
(D) Schematic illustration of (a) the immobilization steps of His6-tagged protein on Au-coated surface
by Co3+–NTA strategy and (b) FO-SPR based bioassay of PAI-1 using Co3+–NTA for bioreceptor
immobilization [70]. Copyright 2020 American Chemical Society.

2.2. Electrochemical Biosensors

Electrochemical biosensors can measure the target concentration by monitoring the
change of current, potential, conductance or impedance at a solid electrode [120,121]. The
electrode modifiers can significantly affect the performances of electrochemical biosensors.
The assembly of redox enzymes in a proper alignment is particularly critical for the re-
alization of fast electron transfer between the electrode surface and the redox center of
enzyme, retaining the catalytic and regulatory property of protein [122–124]. The SAMs
of NTA–metal chelators on the electrode surface can allow for the well-controlled and
reversible immobilization of a wide range of His6-tagged enzymes via the specific affinity
binding, including horseradish peroxidase (HRP), alkaline phosphatase (ALP), laccase and
glucose oxidase and nitrate reductase [125–130]. For instance, Blankespoor et al. fabricated
a dense monolayer of NTA–Cu2+ complexes on the surface of a carbon electrode for the
immobilization of His6-tagged HRP and realized the electrochemical reduction of H2O2
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in the presence of an artificial redox mediator [131]. Wang et al. reported the immobiliza-
tion of superoxide dismutase (SOD) on the NTA–Ni2+-modified electrode for the in vivo
detection of O2

•− in a rat brain, demonstrating that the direct electron transfer of SOD was
greatly enhanced by the NTA–Ni2+ complexes (Table 1) [132]. Conzuelo et al. reported the
competitive detection of β-lactam antibiotics using an NTA–Co2+-modified electrode to
immobilize the recombinant bacterial penicillin binding protein (PBP) (Figure 2A) [133].
In this study, HRP-labeled specific tracer (PENG-HRP) was used as the signal label for
the competitive binding and hydroquinone (HQ) was used as the redox mediator for the
catalytic oxidation of H2O2.
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Aptamers including DNA/RNA and peptide possess several intrinsic properties,
such as excellent structure flexibility, high specificity and affinity, good target diversity
and ease of synthesis. The immobilization of His6-tagged aptamers on an NTA–metal
complex-modified electrode can produce a highly oriented aptamer assembly to prevent
the nonspecific adsorption [135]. Cosnier’s group utilized poly(pyrrole-NTA) film to
immobilize His6-tagged aptamer in the presence of Cu2+ ions for a label-free impedimetric
detection of thrombin and bisphenol-A, respectively [136,137]. Quartz crystal microbalance
(QCM) is a simple and direct electrochemical method to study molecular interactions.
Xu et al. reported the QCM-based detection of protein kinase A (PKA) with a His6-
tagged peptide inhibitor of IP20 as the aptamer-mimicking biorecognition element, in
which the aptameric peptide was immobilized on the NTA–Ni2+-covered quartz electrode
(Figure 2B) [134]. The kinase concentration could be sensitively determined based on
the frequency response of the QCM crystal. In addition, Zaitouna et al. developed an
electrochemical biosensor for Ara h 2 antibody detection using the NTA–Ni2+ SAM to
immobilize the His6-tagged and methylene blue (MB)-labeled peptide [138]. The detection
performance of NTA–Ni2+SAM-based assay was better than that of the biosensor based on
the conventional immobilization with a thiolated peptide.

Aside from His6 tag, biotinylated biomolecules can bind with NTA–metal complexes
because three potential binding sites (carboxylate, thioether and ureido groups) of biotin
can coordinate with a bivalent metal cation in the NTA chelate [88,139]. For this view,
Bauret al. reported the immobilization of biotinylated GOx and polyphenol oxidase on
the Cu2+-chelated poly(pyrrole-NTA) film for the amperometric detection of glucose and
catechol, respectively [140]. Meanwhile, Palomar et al. developed an impedimetric im-
munosensor for the determination of an anticholera toxin antibody by the immobilization
of biotin-labeled cholera toxin B subunit on the Cu2+-chelated poly(pyrrole-NTA) [141].
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The coordinated metal ions in an NTA complex can also bind specifically to phosphorylated
biomolecules. Gao et al. reported an electrochemical assay for sphingosine kinase 1 (SphK1)
detection using NTA–Fe3+ complex to recognize phosphorylated lipids on liposomes [142].
As presented in Figure 3A, liposome was used to embed a substrate of SphK1 in lipid layer
through hydrophobic interaction and encapsulate electroactive MB molecules. After the
catalytic reaction on the membrane, the reacted liposomes were captured by the NTA–Fe3+

complex-modified sensing electrode, and the abundant MB molecules in liposome could
generate a strong electrochemical signal, thus reflecting the kinase activity.
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SAM of NTA assembled on the electrode can coordinate with metal ions for electro-
chemical detection by stripping voltammetry. For instance, Kerekovic et al. investigated
the copper(II) binding capacity of an NTA-modified gold electrode via adsorption transfer
stripping voltammetry [144]. The results showed that Cu2+ ions in the chelates could
be directly determined by adsorption transfer stripping voltammetry without an electro-
chemical accumulation step. Meanwhile, Sasaki et al. developed an electrical assay for
the on-site detection of Cu2+ ions based on the SAMs of NTA-modified organic thin-film
transistor [145]. The coordination of Cu2+ ions with NTA could induce the potential shift
of the extended-gate, generating an observed change in the drain current. Moreover, Fe3+

in the chelating condition retains the ability to catalyze the electrochemical redox of H2O2.
Gu et al. reported a bifunctional NTA–Fe3+ complex-based nanoprobe for the electrochemi-
cal detection of SphK1 activity [143]. As displayed in Figure 3B, gold nanoparticles (AuNPs)
were employed to carry NTA–Fe3+ complexes to recognize phosphorylated sites of sub-
strates. Then, multiple NTA–Fe3+ complexes and AuNPs catalyzed the decomposition of
H2O2, largely amplifying the catalytic amperometric response.
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2.3. Fluorescence Biosensors

Fluorescence assays are the most commonly used optical methods to determine molec-
ular interaction, mobility and conformational change. NTA moieties have been linked
to peptide substrates or modified with fluorescent units for fluorescent bioassays and
bioimaging [146–149]. For example, Kim et al. used NTA–Ni2+ complex-modified tetram-
ethylrhodamine (TMR)-doped SiO2nanoparticles to label a bacterial lysate containing
estrogen receptor R ligand binding domain [150]. SiO2 NPs could improve the sensitivity
and limit the fluorescence quenching of dyes by external nickel ions.

Magnetic nanoparticles (MNPs) or magnetic beads (MBs) can be facilely manipulated
with an extra magnetic field. They have been widely used in protein/peptide isolation after
modification with NTA–metal complexes. Thus, NTA–metal–coated MBs or MNPs have
been employed to separate fluorescently labeled peptides from a homogeneous solution
(Table 1), leading to the change of fluorescence intensity. For example, Wang et al. reported
a label-free fluorescent method for the detection of thrombin activity based on a His6-tagged
recombinant green fluorescence protein (EGFP) and Ni2+–NTA-coated MNPs [151]. As
shown in Figure 4A, EGFP with a thrombin cleavage site and a His6 tag at the N-terminal
could be enzymatically cleaved by thrombin, thus resulting in the release of His6 tag with
the inability to attach NTA–Ni2+-coated MNPs. After magnetic separation, the fluores-
cence intensity of EGFP in the solution is positively related to the activity of thrombin.
However, the high cost, large size and pH sensitivity may limit the application of the
method for protease assays. In addition, Tan et al. developed a fluorometric method for
the detection of protein kinase activity based on the adsorption between NTA–Zr4+ MNPs
and phosphorylated peptides [152]. As shown in Figure 4B, the fluorescein isothiocyanate
(FITC)-conjugated substrate peptide was phosphorylated by protein kinase. The phos-
phorylated product could adsorb on the surface of NTA–Zr4+ MNPs via the chelation of
Zr4+ and phosphate. After magnetic separation, the fluorescence intensity of the solution
evidently decreased, which was indicative of the activity of protein kinase.
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Organic fluorophores have been extensively used to label proteins in vivo through
different chemically and biologically labeling techniques without changing the structure
and disrupting the normal function of proteins. NTA has been used as a chemical recog-
nition unit to modify fluorescent probes for labeling His6-tagged proteins or peptides at
a specific site via reversible metallochelate coupling of metal ion and His6 tag. A few
organic dyes have been conjugated with NTA complexes to label His6 tags, such as fluo-
rescein, perylene and Atto488 [56,153–157]. Typically, Glymenaki et al. synthesized three
different porphyrin−NTA dyads and successfully employed them to label different His6-
containing peptides [158]. Lata et al. modified different fluorophores with trisNTA groups
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for the selective labeling of proteins in cell lysates and on the surface of living cells [159].
Gatterdam et al. prepared several NTA-based multivalent chelators with linear, cyclic
and dendritic scaffolds, respectively, and compared their performances on the labeling
of cellular His6-tagged proteins [160]. The results demonstrated that the cyclic trisNTA
chelator exhibited the highest affinity and kinetic stability. Furthermore, Uchinomiya et al.
reported a site-specific covalent labeling of His10-tagged proteins [161]. In this study, the
interaction between His-tag and NTA–Ni2+ facilitated the nucleophilic reaction between
ahistidine residue in His10 tag and the electrophilic tosyl group in the NTA–Ni2+ probe
by the proximity effect. Different from the probes that merely labeled proteins, dye–NTA
conjugates designed by Margulies and coworkers could monitor the change on protein sur-
face by altering the intensity or wavelength of emission upon binding [162–164]. Peri-Naor
et al. used the DNA probe modified with both His tag and boronic acid group to develop
targeted, pattern-generating and protein surface sensors (Figure 5A) [165]. The method
can be used to discriminate between the distinct glycoform populations and identify the
glycosylation states of therapeutic proteins.

The poor ability of NTA-based fluorescent probes to penetrate cell membrane may
significantly limit the applications in the study of intracellular proteins and subcellular
organelles. To facilitate the identification of proteins in living cells, Wieneke et al. designed
a cell-penetrating multivalent trisNTA chelator of carrier complexes to label protein of
interest (POI) based on the cell-penetrating peptide (CPP) [166]. As shown in Figure 5B,
Ni2+-loaded and fluorophore-modified trisNTA could bind to His6-tagged HIV TAT49−57.
After being delivered into the cytosol and nucleus, the trisNTA preferentially interacted
with His10–POI, thus resulting in the release of the carrier peptide. In addition, Zhang et al.
synthesized a Nap-G/Biotin/ANA-FFpYGK-NTA–Ni2+ probe consisting of an NTA–Ni2+

group, a self-assembling peptide FFpY and a hydrophobic group [167]. After the hydrolysis
is catalyzed by ALP, the product could self-assemble into nanofibers and enter the cells
with an increased efficiency to label His6-tagged proteins.

In single-molecule fluorescence imaging, it is important to improve the pho-
tostability of fluorophores by using solution additives/photostabilizers or directly
conjugating the photostabilizer to the fluorophores, leading to the quenching of
photodegradation-involved transient intermediates. It has been documented that
Ni2+ ion is an efficient photostabilizing agent through a physical route to quench the
triplet excited state of some fluorophores [168,169]. For example, Glembockyte et al.
designed a trisNTA Alexa647 fluorophore as a self-healing dye for single molecule
fluorescence imaging [170]. As illustrated in Figure 5C, four different Alexa647-labeled
trisNTA probes were synthesized with various length and rigidity of linkers. After
the complexation of three Ni2+ ions, the photostability of Alexa647 was significantly
enhanced due to the closer proximity between Ni2+ions and fluorophores. Moreover,
trisNTA in the fluorophores also acted as a handle to specifically label His6-tagged POI
for single-molecule imaging.

Transition-metal ions with paramagnetic nature can quench the fluorescence of molecules
and nanomaterials with a distance-dependence property [171,172]. Ahn et al. reported
the label-free, single-protein detection based on a near-infrared fluorescent NTA–Ni2+

complex-modified single-walled carbon nanotube (SWNT) [173]. As shown in Figure 5D,
when the His6-tagged proteins were bound to the complex, the fluorescence intensity was
reduced due to the decrease in the intermolecular distance between Ni2+ and SWNT. After
the addition of target protein (antiHis6-tag antibody), the fluorescence signal increased
based on the analyte–protein interaction. Based on this platform, Ahn et al. investigated
glycan–lectin binding for glycan profiling [174].

NTA chelator can also be used to immobilize drugs and biomolecules on the surface
of nanomaterials for targeting delivery. For instance, the trisNTA-modified graphene
oxide has been used to load His10-tagged EGFP for the delivery of drugs into cells [175].
Morales et al. developed a light-activated genome editing platform by monitoring the
release of enzymes from hollow gold nanoshell (HGN) nanocarriers [176]. As shown in
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Figure 6, Crerecombinase, a protein fusion with a TAT internalization peptide segment, was
tested. The protein was immobilized on the HGN modified with NTA-labeled dsDNA in
the presence of Cu2+. A red fluorescence was observed after the release of Crerecombinase.
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Figure 5. (A) Schematic illustration of glycoform differentiation by a targeted, self-assembled, pattern-
generating protein surface sensor [165]. Copyright 2020 American Chemical Society. (B) Schematic
illustration of live-cell labeling of His-tagged proteins in distinct cellular compartments using a
cell-penetrating noncovalent trisNTA carrier complex formed by fluorescent trisNTA and His6-tagged
TAT49−57 [166]. Copyright 2018 American Chemical Society. (C) Schematic illustration of: (a) the
structure of trisNTA construct, (b) structure of Alexa647, (c) structure of the linkers used for trisNTA–
Alexa647; trisNTA–Pro12-Alexa647; trisNTA–Pro4-Alexa647 and trisNTA–OEG4-Alexa647 constructs.
(d) Schematic illustration of the single-molecule experiment used to evaluate the photostability of
trisNTA constructs [170]. Copyright 2018 American Chemical Society. (D) Schematic of a label-free
protein array based on fluorescent NTA–Ni2+ complex-modified SWNT [173]. (a) Array fabrication
using SWNT/CHI and in situ generation of individually addressed capture proteins using cell-free
protein synthesis for label-free optical detection of protein interactions. A SWNT/CHI suspension
is spotted on glass and functionalized with Ni-NTA to bind His-tag-containing capture proteins.
Cell-free extract and PCR amplified DNA coding for each protein were added to each spot for protein
expression and in situ immobilization. (b) Optical and NIR fluorescence image of the SWNT/CHI
array. (c) Signal transduction mechanism for label-free detection of protein-protein interactions: a
NIR fluorescence change from the SWNT occurs when the distance between the Ni2þ quencher and
SWNT is altered upon analyte protein binding. Copyright 2011 American Chemical Society.
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NTA–metal complex presented by a double-stranded DNA scaffold [176]. Copyright 2018 WILEY-VCH.

2.4. Colorimetric Assays

Colorimetric assays have attracted intensive attention due to their low cost and high
simplicity. Such methods do not require expensive or sophisticated instrumentation because
the color change can be read by the naked eye. Enzymes can efficiently catalyze various
chromogenic reactions for colorimetric assays [177,178]. For example, a phosphotriesterase
(PTE) trimer can hydrolyze the substrate organophosphate paraoxon to produce faint
yellow p-nitrophenol. However, the stability and activity of enzymes are not sufficient
for usage in the development of portable sensing devices. Medintz’s group demonstrated
that the stability and activity of PTE were obviously enhanced when it was adsorbed onto
NTA–Ni2+ complex-modified AuNPs [179]. For this view, they developed a colorimetric
method for the detection of organophosphates with PTE–NTA–Ni2+-AuNPs [180].

Peptide-based colorimetric assays have been widely developed to evaluate different
protease activities. The signal reporter-modified His6-tagged peptide can be immobilized
on the solid surface or nanoparticles (Table 1). In the presence of target protease, peptide
was enzymatically hydrolyzed and the release of signal reporter would result in the change
of solution color. Moss et al. designed an enzyme-based amplification system for the colori-
metric detection of proteases [181]. HRP-conjugated His6-tagged substrate peptides were
attached onto NTA–Ni2+–modified MBs. In the presence of target enzymes matrix metallo-
proteinase 2 or disintegrin and metalloproteinase 8, the peptide was cleaved to release HRP
into solution. After magnetic separation, HRP in the unreacted peptide on the MBs was
quantified by a standard HRP color assay with 3,3′,5,5′-tetramethylbenzidine (TMB) and
H2O2 as the substrates. However, the high cost and complicated cross-linking procedures
of the enzyme-conjugated substances may limit the applications of the colorimetric assays.

To enhance the sensitivity of colorimetric methods, nanomaterials can be used as
the carriers to load signal molecules in a high loading efficiency. Under the external
stimulus, such as pH, light and surfactants, signal molecules will be rapidly released,
generating a significant colorimetric response for signal amplification. For this consid-
eration, Gao et al. reported an integrated magneto-colorimetric method for the assay of
lipid kinase (SphK1) activity using NTA-modified MNPs and TMB-loaded liposomes [182].
As shown in Figure 7A, lipid substrates anchored on liposomes were phosphorylated by
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SphK1. NTA–Fe3+–MNPs could specifically bind to the phosphate sites on liposomes. After
magnetic separation, TMB molecules were released from the liposomes and then oxidized
by H2O2 under the catalysis of NTA–MNPs, producing a colorimetric signal for the visual
detection of SphK1 activity.
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assay for SphK1 activity [182]. Copyright 2018 American Chemical Society. (B) Schematic illustration
of colorimetric assay for protein phosphatase activity based on AuNPs and His6-tagged phospho-
peptides in the presence of Zn2+ [183]. Copyright 2015 American Chemical Society. (C) Schematic
illustration of the colorimetric assay for protease activity based on metal-induced self-assembly of
AuNPs [184]. Copyright 2013 Elsevier.

The aggregation/disaggregation of AuNPs can result in a detectable color change due to
the surface plasmon coupling. Based on this unique property, several colorimetric assays based
on AuNPs and NTA–metal complexes have been reported for clinical diagnosis and environ-
mental protection [31,185,186]. For example, Lee et al. reported the AuNPs-based colorimetric
assay of protein phosphatase activity through Zn2+–phosphate interaction (Figure 7B) [183].
The His6-tagged peptide substrates could bind to NTA–Ni2+-covered AuNPs by specific
coordination. After phosphorylation, the peptide could trigger the aggregation of AuNPs in
the presence of Zn2+ ions. In addition, Kim et al. found that the carboxy AuNPs could adsorb
metal ions such as Ni2+ through metal-affinity coordination [184]. As illustrated in Figure 7C,
peptide labeled with His6 tags at both ends could trigger the aggregation of Ni2+-adsorbed
carboxy AuNPs. Cleavage of the peptide into two segments by protease (matrix metallopro-
teinase) prevented the aggregation of AuNPs. Swartz et al. developed a colorimetric sensor
for the detection of histidine-rich proteins based on NTA–Ni2+-functionalized AuNPs and
AgNPs [187]. In this work, pfHRP-II with multiple repeats of AHH and AHHAAD exhibited
high affinity toward NTA–Ni2+ and could induce the aggregation of NTA–Ni2+-functionalized
AuNPs in a concentration-and pH-dependent manner. Additionally, AuNPs can catalyze
the silver deposition on the nanoparticle surface. Based on this catalytic ability, Cheng et al.
reported a scanometric strategy for the determination of matrix metalloproteinases using
His6-tagged peptide-AuNPs [188]. The metalloproteinases could cleave the specific substrate
peptide to release AuNPs from the NTA–Ni2+-modified chips. The greyscale signal from the
silver enhancement decreased with the reduction of the amount of bound AuNPs.

2.5. Others
2.5.1. SERS

SERS can provide the molecular fingerprint information for sensitive chemical andbio-
logical detection. However, most of biomolecules only produce weak SERS response due to
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their small Raman cross-section and low polarizability. To enhance the sensitivity, silver and
gold nanoparticles could be used as the substrates to amplify the SERS signal. NTA–metal
complexes modified on the substrate can act as the recognition elements to capture targets
from complex samples. The captured target in proximal to the substrate surface would
offer a Raman signal. For example, catechol can bind to Fe3+ ions with exceptional stability
via the coordination interaction. Kaya et al. used NTA–Fe3+ complex-modified AgNPs
as the substrate for the SERS detection of dopamine in the presence of ascorbic acid [189].
The formed NTA–Fe3+–dopamine complexes caused the signal enhancement. In addition,
Cao et al. reported the sensitive SERS determination of catecholamine by using NTA–Fe3+

complexes-modified polyvinylpyrrolidone-capped AuNPs as the substrates [190]. Li et al.
prepared NTA–Ni2+ complex-modified AuNPs active substrate to capture histamine via
the formation of NTA–Ni2+–histamine complex for histamine detection [191].

2.5.2. Chemiluminescence

Chemiluminescence signal can be generated by a redox reaction in which the electron-
ically excited species from a chemical reaction return to the ground state. Based on this
principle, Han et al. developed a chemiluminescence immunosensor for the detection of
allergen-specific IgE (sIgE) by immobilizing the His6-tagged allergens to the NTA-modified
MNPs [192]. As shown in Figure 8, NTA was conjugated to the surface of Fe3O4@SiO2 through
the amidation reaction and the recombinant His6-tagged Can f 1 (rCan f1), which was then
adsorbed onto the Fe3O4@SiO2-NTA surface in the presence of Ni2+ ions. Next, sIgE in sera
from allergic patients specifically captured by Fe3O4@SiO2-NTA@rCan f1 was labeled with
HRP-modified anti-IgE. After the magnetic separation, HRP on MNPs surface-catalyzed the
chemiluminescence reaction, achieving the quantitative detection of sIgEs.
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rCan f1 via Ni–NTA and His-tag interaction, and (b) the immunosensor Fe3O4@SiO2-NTA@rCan f1
for quantitative detection of sIgE in real samples [192]. Copyright 2020 Elsevier.

2.5.3. Immunochromatic Rapid Diagnostic Tests (RDTs)

RDTs show the advantages of easy operation, wide applicability, rapid response and
low cost [193]. Wright’s group used NTA–Ni2+-coated MBs to concentrate the malarial
biomarker of histidine-rich protein II (pf HRP-II) for enhancing test performances [194]. To
realize the detection of low level of infection by multiantigen RDTs, they further developed a
magnetically assisted multiplex biomarker enrichment strategy [195]. As shown in Figure 9,
the antibodies were first modified with His6 tags by maleimide-thiol interaction and then
captured by NTA–Ni2+-coated magnetic beads. The captured antibody–antigen conjugates
could be magnetically purified, concentrated, and then released into a RDT-compatible
volume for assay.
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Particles in an evaporating colloidal drop can migrate onto the drop’s edge to form a
ring on the underlying substrate, which has been widely exploited in the analytical science
called as the coffee-ring effect [196]. Wright’s group reported an RDT for the detection of
poly-L-histidine (PLH) as a pf HRP-II biomimic based on the biomarker-mediated disruption
of coffee-ring formation [197]. In this work, pf HRP-II promoted the cross-linking between
NTA–Ni2+-functionalized magnetic particles and indictor particles with red fluorescence.
The conjugates were then pulled to the center under a magnetic field. Meanwhile, the
indictor particles with green fluorescence were transported to the edge. However, in the
absence of pf HRP-II, the colocation of both indicator particles at the edge led to a ring with
yellow emission with no center signal. However, this method exhibited the shortcomings
of low sensitivity, the requirement of an extra magnetic field and a high background signal.
To solve those problems, Wright’s group developed a platform for recombinant HRP-II
detection using NTA–Ni2+ complex-modified gold-plated polystyrene microspheres (AuPS)
and NTA–Ni2+ complex-functionalized glass [198]. During the coffee ring formation, the
conjugate of recombinant HRP-II and AuPS particles moved to the drop edge by binding to
the NTA–Ni2+ complex-functionalized glass. The non-specific materials could be washed
away from the surface.

Table 1. Biosensors based on the binding events of NTA–metal complexes.

Detection
Techniques Substrate Biorecognition

Elements Metal Ions Target Linear Range LOD Ref.

SPR

NTA-modified gold-coated
fiber-optic probe

His6-tagged
scFv-33H1F7 Co3+ PAI-1 3.125~400 ng/mL 0.20 ng/mL [70]

Polypyrrole-NTA-modified
graphene-gold chip

BiotinylatedCT
cholera toxin Cu2+ Anti-CT 4 × 10−3~4 ng/mL 4 pg/mL [101]

TrisNTA-modified chip His6-tagged S1
protein Ni2+ Anti-SARS-CoV-2

antibody 0.5~96 µg/mL 57 ng/mL [111]

TrisNTA-modified chip His6-tagged
protein G Ni2+ IgG 0.5~20 µg/mL 47 ng/mL [113]

NTA-modified gold-coated
fiber-optic probe

His6-tagged
ADAMTS13 Co3+ Anti-ADAMTS13

autoantibodies 1.56~100 ng/mL 0.24 ng/mL [116]

NTA-modified electrode His6-tagged
receptor Cu2+ Amyloid-beta16–23 1 × 10−3~1 µM 1.43 nM [82]
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Table 1. Cont.

Detection
Techniques Substrate Biorecognition

Elements Metal Ions Target Linear Range LOD Ref.

EC

NTA-modified gold
electrode NTA–Cu2+ Cu2+ Lipopolysaccharide 1 × 10−4~0.1 ng/mL 0.1 pg/mL [84]

NTA-modified carbon
electrode

His6-tagged
SOD Ni2+ O2

•− 0.1~100 µM 21 nM [132]

NTA-modified SPCEs His6-tagged
PBP Co2+ Ampicillin 1.3~9.9 ng/mL 0.7 ng/mL [133]

NTA-modified Au-coated
quartz electrode

His6-tagged
peptide Ni2+ PKA 0.64~22.33 mU/µL 0.061 mU/µL [134]

Polypyrrole-NTA-modified
electrode

NH2–His5-
DNA Cu2+ HIV DNA 1 × 10−6~10 nM 1 fM [135]

Polypyrrole-NTA-modified
electrode

His5-modified
aptamer Cu2+ Thrombin 4.7 × 10−3~0.5 nM 4.4 pM [136]

Polypyrrole-NTA-modified
electrode

His5-modified
aptamer Cu2+ Bisphenol A 1 × 10−5~1µM 10 pM [137]

NTA-modified gold
electrode

His6-tagged
Ara h 2 Ni2+ Ara h 2 antibody 1~10 pM 1 pM [138]

Polypyrrole /NTA-modified
electrode

Biotinylated
CT B Subunit Cu2+ Anti-CT 1 × 10−7~10 µg/mL 0.1 pg/mL [141]

NTA-modified gold
electrode NTA Cu2+ 0.4~100 µM 10 nM [144]

NTA-modified thin-film
transistor NTA Cu2+ 0~15 µM 0.51 µM [145]

FL Zr–NTA-modified MNPs EGFP Ni2+ thrombin 3× 10−4~5× 10−2 U/mL 0.3 mU/mL [151]

Zr–NTA-modified MNPs FITC-labeled
peptide Zr4+ PKA 0~1 U/µL 0.5 mU/µL [152]

Color Carboxy AuNPs
Dual
His6-tagged
peptide

Ni2+ MMP-7 3~52 nM 10 nM [184]

NTA-modified chip His6-tagged
peptide Ni2+ MMP-7 0.1~100 ng/mL 97 pg/mL [188]

SERS
NTA-modified AgNPs NTA–Fe3+ Fe3+ Dopamine 0.5~4 nM 60 pM [189]

NTA-modified AuNPs NTA–Fe3+ Fe3+
Dopamine,
norepinephrine
and epinephrine

0.556~10 µM;
0.125~10 µM;
0.2~9.09 µM

Notreported [190]

NTA-modified AgNPs NTA–Ni2+ Ni2+ Histamine 1~100 µM 1 µM [191]

CL Fe3O4@SiO2-NTA
His6-
taggedCan f
1

Ni2+ SpecifcIgE 2.52~10.02 ng/mL 0.35 ng/mL [192]

Abbreviation: EC, electrochemistry; FL, fluorescence; CL, chemiluminescence; CT, cholera toxin; PKA, pro-
tein kinase A; Ara h2, Arachishypogaea2; SOD, superoxide dismutase; SPCEs, screen-printed carbon electrodes;
PBP, penicillin binding protein; MNPs, magnetic nanoparticles; FITC, fluorescein isothiocyanate; recombinant-
enhanced green fluorescence protein; MMP-7, matrix metalloproteinase-7; AuNPs, gold nanoparticles; AgNPs,
silver nanoparticles.

3. Conclusions

NTA–metal complexes were initially developed as coordination-bonding-based ar-
tificial receptors for protein purification. Their pleiotropic merits have facilitated their
expanded applications recently as functional and structural agents in multidisciplinary
research such as protein engineering, synthetic chemistry and biological analysis. The
noncovalent, specific and strong interaction between NTA–metal complexes and His6 tags
enabled the site-specific and reversible immobilization or labeling of biomolecules, which
is helpful to fabricate versatile optical and electrochemical biosensors, especially for point-
of-care tests in low-resource settings. For example, NTA–metal complex-functionalized
materials, such as cellulose membranes and MBs, have been successfully used to enrich
the biomarker concentration for sample preparation, resulting in the enhanced sensitivity
of diagnostics. NTA–metal complexes-based affinity techniques provide site-specific, con-
trollable and reversible approaches to immobilize biorecognition elements on detection
platforms or nanomaterials under mild conditions without decreasing their functional
activities. Moreover, NTA–metal complexes conjugated with other functional species can
be used to label His6-tagged proteins, and their unique optical, catalytic, electrochemical
and magnetic properties have endowed them with signal generation ability in diagnostics.

Despite the successful applications in different research fields, there are still some
important challenges to be resolved. For example, the cytotoxicity of NTA–metal-His6 tags
and their influence on the structure, function and stability of proteins should be carefully
investigated even though the site-specific modification of proteins by NTA derivatives
have already been widely used for living-cell and single-molecule imaging. In addition,
the insufficient fouling resistance ability should be improved when the biosensors are used
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for the assays of undiluted blood plasma samples. NTA–metal complexes can be coupled
with other strategies for signal amplification, such as DNA techniques and enzymes. We
believe that the integration of NTA–metal complexes with modern analytical techniques
would result in a remarkable boost for the design and implementation of powerful and
novel biosensors.
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