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Abstract: Non-invasive, non-destructive, and label-free sensing techniques are required to monitor
real-time stem cell differentiation. However, conventional analysis methods, such as immuno-
cytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are
complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and
optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and
quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with
cell-friendly properties can greatly improve the performance of existing sensors. This review focuses
on nano- and micromaterials that have been reported to improve sensing capabilities, including
sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell
differentiation. The information presented aims to motivate further research into nano-and micro-
materials with advantageous properties for developing or improving existing nano-biosensors to
achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
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1. Introduction

Stem cells can differentiate into specific cell subtypes, which has resulted in the
development of tissue engineering and regenerative medicine [1,2]. Due to stem cells’
ability to produce cells in vitro that are associated with the physiological functions of
specific tissues, stem cell therapy has emerged as a potential solution for many diseases
that are difficult to treat with conventional chemotherapy over the past few decades [3–6].
There have been 40,183 research papers about stem cell therapy published between 1971
and 2021; many of these studies demonstrated its clinical potential. However, the only
stem cell therapy approved by the United States Food and Drug Administration to date is
haematopoietic (or blood) stem cell transplantation [7–10].

There are many challenges in the development of stem cell therapy, including low
differentiation efficiency, differentiation into undesired cell subtypes, carcinogenesis, and
post-transplant inflammatory response [11,12]. Therefore, many stem cell differentiation
studies have been conducted to (i) understand the developmental stages of stem cell differ-
entiation, (ii) control stem cell behaviour in vitro, and (iii) enhance stem cell differentiation
efficiency [13–16]. Consequently, a need for measuring stem cell differentiation using
a variety of analytical methods has arisen. These techniques include polymerase chain
reaction (PCR), immunocytochemistry, flow cytometry and Western blot (WB), which
have been widely used with biomarkers, such as proteins, ribonucleic acid (RNA) and
deoxyribonucleic acid (DNA) [17–20]. However, these techniques are destructive, labo-
rious, and costly; therefore, they are inappropriate for the quantitative and qualitative
analysis of differentiated cells prearranged in therapeutic transplantation [21]. Hence, non-
destructive and real-time monitoring of cell differentiation is necessary for efficient stem
cell therapy. Many biosensing and nanotechnology methods have been proposed for the
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non-invasive monitoring of stem cell differentiation, such as impedance and Raman spec-
troscopy, deep learning-based approaches, electrochemical immunoassay biosensors, and
electroluminescence [22–33]. In particular, electrochemistry-based sensing methods, such
as impedance spectroscopy and electroluminescence, have been demonstrated as analytical
techniques that selectively detect target materials through electrical signals generated from
the redox reaction of analytes. These techniques have the following advantages: (i) facile,
(ii) inexpensive, (iii) simple, portable analytical devices, and (iv) non-invasive [34–38].
Similarly, optical sensing methods, such as fluorescence, near-infrared (NIR), and Raman
spectroscopy, can selectively detect the optical properties or signals of target materials.
These methods have the following advantageous features: (i) high selectivity, (ii) flexibility,
and (iii) non-invasive [39–44].

The medium for in vitro stem cell cultivation contains cells with many organelles, but
also several types of proteins, small molecules, and other chemicals; this means that the
analytical conditions for cell-based sensing are highly complex [41,45]. Therefore, improv-
ing sensing performance, including sensitivity and selectivity towards target analytes, is
essential for the accurate and sensitive label-free monitoring of stem cell differentiation
with electrochemical or optical-based sensors. More specifically, a highly sensitive sensing
capability for differentiation-associated targets is required to quantitatively analyse how
much differentiation was induced from the stem cells in real-time. In addition, to qualita-
tively analyse whether specific differentiation into desired cell subtypes has been induced
during stem cell differentiation, selectivity for the analytes is a key indicator.

Various nano- and micromaterials have been used to modify sensor surfaces to im-
prove performance, including sensitivity, selectivity, and reliability [44,46]. For instance,
highly conductive metal nanomaterials, such as gold nanoparticles (AuNPs) and silver
nanoparticles (AgNPs), and carbon-based conductive materials, such as graphene oxide
(GO), have excellent electrical or electrochemical properties and are widely used in elec-
trochemical sensors [47,48]. In addition, three-dimensional (3D) micromaterials, such
as microelectrode assays and microfluidics, have been used to improve electrochemical
sensors’ performance by increasing the active surface area [49–51]. In the case of Raman
spectroscopy-based sensors, two-dimensional (2D) or 3D combinations of metal nanoparti-
cles with good optical properties and carbon-based conductive materials have been used to
improve the sensitivity [52,53]. However, each electrochemical and optical-based sensor’s
sensing mechanism is different; therefore, the strategies for improving the sensing perfor-
mance and capabilities and the techniques for sensor surface modification are different.

This review highlights and compares recent studies on non-invasive and real-time
monitoring of stem cell differentiation, including neurogenesis, cardiomyogenesis, osteo-
genesis, and adipogenesis (Figure 1). In addition, various biosensors fused with specific
analysis technology, such as electrochemistry and optical sensing, and various nano- and
micro materials, such as AuNPs, AgNPs, upconversion nanoparticles (UCNPs), autofluores-
cence probes, nucleic acids, microfluidic systems, and microelectrode arrays, are reviewed
and compared (Table 1).
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Figure 1. Schematic illustration of traditional sensing and nano- and micromaterial-based methods
for monitoring stem cell differentiation. Created with BioRender.com.

2. Electrochemical Sensors
2.1. Gold Nanoparticle-Based Electrochemical Sensors

Gold’s conductivity is 4.11 × 107 S/m, which is highly favourable for electrochemical
sensors [54]. Moreover, gold is colloidal in AuNPs, which has various advantageous
features for electrochemical sensors [55–63]. For example, AuNPs are easy to synthesise
and can be conjugated with multiple biomolecules, such as protein ligands, nucleic acids,
and antibodies, which can enforce the intrinsic properties of the AuNPs [64–66]. Moreover,
it has been reported that AuNPs are non-cytotoxic, cell-friendly materials with great
potential for sensing biomolecules in a cell-based environment and for cell cultivation
platforms [67–72]. Therefore, AuNPs have been widely used to develop electrochemical
sensors with new nanostructures or modify existing electrochemical electrode surfaces at
the nanoscale.
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Many studies have described AuNP-based electrochemical sensors capable of sens-
ing stem cell differentiation. For example, Suhito et al. developed an electrochemical
AuNP-based electrochemical nano-biosensor to identify the differentiation of embryonic
stem cells (ESCs) [59]. To fabricate this sensor, AuNPs were densely deposited on a trans-
parent indium–tin oxide-coated glass electrode through electrochemical deposition. The
study’s cell detection results using differential pulse voltammetry (DPV) showed that
the undifferentiated ESCs generated relatively strong electrochemical signals compared
with differentiated ESCs-derived endothelial cells. Interestingly, this sensor could sensi-
tively measure ESCs based on the high electrical conductivity of gold, detecting at least
12,500 cells on one platform. Moreover, it was shown that this sensor could ensure ESCs’
adhesion and long-term cell growth, suggesting its application as an ESCs’ cultivation
platform and a platform for electrochemically monitoring various stem cell differentiation.

In another study, Lee et al. described a AuNP-based nano-biosensor for non-invasive,
real-time monitoring of the osteogenesis of mesenchymal stem cells (MSCs) [73]. Specifi-
cally, this sensor comprised a 3D AuNP-based nanoarray; the surface of the gold nanoarray
was modified with GO. This nanostructure efficiently increased gold’s electrical conduc-
tivity and electron transfer rate through GO modification, allowing the detection of p-
aminophenol (PAP) produced by the enzymatic reaction occurring in MSCs’ osteogenesis.
Furthermore, this study observed that this nanoarray provided physicochemical cues ben-
eficial to cellular adhesion and osteogenic differentiation. As a result, this gold-based
electrochemical sensing platform detected the anodic signals of PAP using cyclic voltam-
metry (CV), quantitatively monitoring differentiation during 3 weeks of osteogenesis.

In 2021, a AuNP-based sensing platform was developed that monitored the differenti-
ation of stem cells and controlled their cell differentiation by regulating cellular adhesion
(Figure 2a,b) [74]. This sensor was based on a nanoassembly in which AuNPs and Arg-
Gly-Asp peptide (RGD) ligands were conjugated on the surface of magnetic iron (II, III)
oxide (Fe3O4) nanoparticles. Specifically, the magnetite mediated the control of falling and
rising ligand movements via linker compression and stretching, thereby regulating MSCs’
integrin expression pattern, cellular adhesion, and consequent osteogenic differentiation.
Additionally, due to the high electrical conductivity of the AuNP nanoassembly-based
sensor, osteogenic differentiation could be monitored by sensitively measuring PAP’s redox
using CV.

In 2022, a AuNP-based electrochemical nano-biosensor capable of sensing the gen-
eration process and maturity of kidney organoids produced through the differentiation
of induced pluripotent stem cells (iPSCs) was developed (Figure 2c,d) [75]. Moreover,
the variations of organoids led to the need for a non-destructive evaluation of their matu-
rity [76–78]. Therefore, this sensor was developed to assess the iPSCs differentiation into
kidney organoid by sensitively detecting the electrochemical signals originating from the
organoids through a gold film structure on which there was electrochemically deposited
AuNPs. Interestingly, while monitoring the kidney organoid generation on this sensor, two
peaks were detected in the DPV results. Specifically, it was confirmed that the first peak
corresponded to cell outgrowth, while the second peak differed depending on the maturity
of kidney organoids. A strong second peak was observed for organoids with distinct
tubular structures. These results demonstrate that this electrochemical sensor could detect
the successful production of kidney organoids in a label-free, non-destructive manner.

In general, studies have shown that AuNPs can be applied to develop electrochemi-
cal sensors that sensitively detect the target analytes involved in stem cell differentiation
because of AuNPs’ excellent electrical conductivity, versatility, and ease of synthetic manip-
ulation with various biomolecules and nanomaterials.
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Figure 2. Gold nanoparticle-based electrochemical sensors. (a) Characterisation of gold nanoassem-
bly and magnetic nanoparticles. (b) Time-dependent monitoring of osteogenesis using the gold
nanoassembly-based electrochemical sensors. (c,d) DPV results of iPSCs differentiation and organoid
generation on gold-based electrochemical electrode. Reprinted with permission from [74]. Copyright
2021, Wiley Online Library; Reprinted with permission from [75]. Copyright 2022, Wiley Online
Library. AuNPs, gold nanoparticles; DPV, differential pulse voltammetry; Fe3O4, iron (II, III) oxide;
iPSCs, induced pluripotent stem cells. N.S. indicates “not significant.” ** p < 0.01, and *** p < 0.001.

2.2. Nucleic Acid-Based Electrochemical Sensors

Nucleic acids, including DNA and RNA, are biopolymers composed of nucleotide
units [79]. Nucleic acid molecules have specific nucleotide sequences, which comprise
of the bases of adenine, thymine, cytosine, and guanine, that can bind strongly with
complementary base-pair sequences. The intrinsic properties of nucleic acids have the
potential as nanomaterials for biosensors [74,80–83], as they impart high selectivity in
terms of the capability to detect target molecules selectively. In addition, nucleic acid-
based aptamers can be developed as ligands for target materials through the systematic
evolution of ligands by exponential enrichment technology [84,85]. These aptamers can
be developed faster and cheaper than antibodies. Moreover, aptamers have unique 3D
structures (e.g., loop, stem, quadruplex, bulge, hairpin, and pseudoknot) through the
nucleotide sequence alignment of the nucleic acids; this allows the aptamers to bind more
strongly and selectively to the target [86–88]. In addition, nucleic acid materials can be
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chemically conjugated to fluorescent or electrochemical probes, giving a stronger signal
and higher affinity toward analytes.

Park et al. [89] described a microelectrode based on carboxylated polypyrrole nan-
otubes conjugated with aptamers capable of evaluating the neuronal maturation of neurons.
These authors showed that the aptamer-based sensor could sensitively and selectively
measure dopamine (DA) exocytosis as a neuronal function. To improve the sensor’s perfor-
mance, the DA sensitivity according to the carboxylated polypyrrole nanotube diameter
was first analysed. Then, the optimised aptamer-based sensor was evaluated for DA-
sensing performance using amperometry, which showed an excellent limit of detection
(LOD) of 100 pM. Furthermore, the sensor could electrochemically distinguish DA in the
presence of other neurotransmitters, such as norepinephrine, serotonin, and phenethy-
lamine. This study demonstrated that the developed sensor could electrochemically detect
exocytotic DA released from neuronal cells due to DA’s high sensitivity and selectivity.
The study’s results suggested the possibility of aptamer-based electrochemical sensors to
monitor the neural differentiation process of stem cells.

A nucleic acid-based electrochemical sensor capable of monitoring cardiomyocyte
differentiation was reported in 2021 [90]. This nucleic acid-based sensor contained hybrid
materials, including short DNA domains and peptide motifs that bind complementarily
to cardiomyocyte-specific regulatory proteins. Notably, this sensor showed a low level
of LOD of 0.42 pg/mL. In addition, the sensor selectively detected electrochemical sig-
nals from cardiac troponin (cTnl) as a target molecule in the presence of other proteins,
including human serum albumin and human brain natriuretic peptide. Due to the sensor’s
high affinity and sensitivity to cTnl, it was possible to determine the cTnl expression level
through electrochemical signals measured from cardiomyocytes differentiated from MSCs.
In addition, the electrochemical signal for cTnl obtained while monitoring the cardiomy-
ocyte differentiation process was consistent with the result of flow cytometry, validating
the high reliability of this sensor.

In another study, an aptamer-based electrochemical sensor was developed to evaluate
the neuronal function at the single cell level [91]. This sensor comprised micro-wells, DA
aptamers, and co-reactant-embedded polymer dots (Pdots). The sensor’s embedded Pdots
provided electrochemical luminescence signals, which served to visualise the electrochem-
ical DA signal (Figure 3a,b). The hybrid structure of this sensor allowed it to capture a
single or a small number of differentiated cells inside a micro-well, which then selectively
detected the DA released from the captured neurons using the DA aptamer. This sensor
exhibited stable cell viability as a cell cultivation and differentiation platform with low cell
toxicity. In addition, this sensor demonstrated a low LOD of 53 pM DA (Figure 3c,d) and
was capable of evaluating the amount of DA exocytosis.

Nakatsuka et al. reported a DNA aptamer-based nanopipette capable of monitoring
the differentiation process of iPSCs into serotonin neurons [92]. This sensor was used to
electrochemically detect 5-hydroxytryptamine (5-HT) release from serotonin neurons as
differentiated cells. In addition, the nanopipette form of the sensor allowed size exclusion
of non-specific proteins in complex culture medium environments, further enhancing the
sensor’s 5-HT selectivity. Specifically, this sensor was able to detect 5-HT of less than 3 nM
using fast scan CV, which is an excellent sensing capability for DA, similar to the sensing
capability of enzyme-linked immunosorbent assay (ELISA). Above all, this sensor was able
to detect 5-HT released at the cellular level through the introduction of an aptamer capable
of binding specifically to 5-HT.

These studies support that nucleic acid materials can greatly improve electrochemical
sensing ability, especially target selectivity, through their specific binding sites. In addi-
tion, nucleic acid materials can be combined with other types of biomolecules or sensing
probes through chemical conjugation to provide various 3D ligands, which can improve
electrochemical sensors’ capabilities.
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2.3. Carbon Nanomaterial-Based Electrochemical Sensors

Carbon nanomaterials (CNPs), such as graphene and its derivatives, fullerene and
carbon nanotubes (CNTs), and nanofibres are composed of chemical structures in which
carbon atoms are combined through sp2 hybridisation, resulting in the delocalisation of
electrons [93]. The intrinsic properties of CNPs depend on their configuration and include
good thermal stability, mechanical properties and chemical resistance. Furthermore, due
to their structural characteristics, they have good electrical properties, including electron
mobility and electrical conductivity. Moreover, CNPs can be synthesised into specific
3D structures, such as CNTs, and sheet forms, such as graphene. In addition, CNPs
are biocompatible and can improve cellular functions, for example, cell adhesion and
proliferation, making them suitable for stem cell cultivation platforms [94–103].

In a 2021 article, Castagnola et al. describe a graphene-based electrochemical nanosen-
sor to evaluate neuronal function [104]. This sensor comprised graphene flakes with a
3D arrangement via photolithographic processes. This sensor showed high electrochemi-
cally active area enhancement. Specifically, the electrochemically active area of the sensor
was about 88 times higher than that of conventional carbon fibre electrodes. The sensor
sensitively and selectively detected DA as a target analyte using fast scan CV to evaluate
neuronal function; the LOD for DA was calculated to be approximately 364.44 nM. Further-
more, the sensor was demonstrated to discriminate between serotonin and DA. Overall,
this sensor’s enhanced electrochemical properties for sensitive and selective sensing of DA
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suggested that neurogenesis could be monitored in real-time by sensing DA released from
neurons in vitro.

Vasudevan et al. [105] developed a nanosensor based on CNPs (Figure 4a). Specifi-
cally, this sensor was composed of carbon fibre, which detected DA released from neural
stem cell-derived dopaminergic neurons and promoted neurogenesis in vivo based on
optogenetics as an optical fibre. To improve the electrochemically active surface area of the
sensor, a 15 µm thick polyimide buffer layer was coated onto the surface of a silica-based
optical fibre; then, this layer was processed to form of 8 µm thick pyrolytic carbon fibre
surrounded by cladding. Subsequently, human neural stem cells (hNSCs) were cultured on
the sensor surface and differentiated into dopaminergic neurons to detect DA exocytosis
electrochemically using an amperometric method. According to the amperometric results,
the electrochemical signal towards DA was not confirmed from undifferentiated cells on the
sensor surface. However, a clear electrochemical current peak towards DA was confirmed
from the differentiated cells (Figure 4b,c). Moreover, as a result of monitoring the DA
signals on the sensor surface during the 10-day differentiation period, it was observed that
the DA signal gradually improved according to dopaminergic differentiation. These results
suggested that the sensor could monitor dopaminergic differentiation non-invasively.
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graph of non-differentiated and differentiated cells after stimulating DA exocytosis. (c) Electrochemical
current peaks toward DA for time-dependent monitoring of the dopaminergic differentiation on the
sensor. Reprinted with permission from [105]. Copyright 2019, Wiley Online Library. DA, dopamine;
DNA, deoxyribonucleic acid; hNSCs, human neural stem cells; TH, tyrosine hydroxylase.

Similarly, Pham Ba et al. constructed a CNT-based nanosensor to monitor neuronal
differentiation [106]. This sensor’s Nafion®-radical layer was composed of CNT transistors
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and was demonstrated to selectively detect DA in the presence of the interfering molecules
acetylcholine and glutamine. In addition, it was confirmed that neuronal cells could be
normally attached and cultured on the sensor surface. Moreover, an amperometric response
to DA was observed immediately after potassium chloride (KCl) stimulation from neurons
cultured on the sensor surface. Furthermore, the sensor obtained different amperometric
responses to DA by adding different concentrations of KCl, suggesting that the sensor
could discriminate between different degrees of DA exocytosis.

The previously mentioned studies support that carbon nanomaterials, including
graphene, carbon fibre, and CNT, can be actively utilised to construct excellent sensing
platforms with high electrical properties. In particular, nanosensors based on the graphene
family have been demonstrated to monitor neuronal differentiation by sensitively and
selectively sensing DA through π-π stacking. Moreover, CNPs’ biocompatibility and high
sensing capability make them suitable for stem cell cultivation platforms and non-invasive
monitoring of various types of stem cells, such as ESCs and MSCs.

2.4. Microfluidic System-Based Electrochemical Sensors

Microfluidic systems refer to systems in which fluid can flow through micro-scale
channels fabricated on a substrate [107]. The microfluidic system has the advantage that
it can be performed on a single chip under various conditions in a short time using only
a small volume of reagents. Due to these structural features, microfluidic systems have
been actively applied as biosensors [108–110]. Furthermore, given that the microchannel
in microfluidic systems enables electrochemical species in the analytes to be confined
near the electrochemical electrodes, they are advantageous to electrochemical sensing
with high performance [111]. Above all, microfluidic systems can mimic the cellular
microenvironment, which can be applied as a stem cell cultivation platform [112].

An example of an electrochemical sensor based on a droplet microfluidic system
capable of sensing osteogenic differentiation was described by Fan et al. in 2019 [113]. This
sensor could detect the impedance of a single cell; therefore, it was possible to analyse
the differentiation of stem cells non-invasively without a label. The sensor detected a
difference between the impedance of undifferentiated and differentiated cells. As osteogenic
differentiation progressed, the variation in cell impedance decreased. In addition, the
average impedance decreased as the differentiation progressed. Conversely, the capacity
of the cells analysed on the sensor gradually increased with differentiation. These results
were consistent with the fact that calcium ion channels were gradually formed on the cell
membrane following osteogenic differentiation.

In 2020, a brain-on-a-chip device based on a microfluidic system capable of analysing
neural differentiation was developed [114]. This platform’s design structure included three
isolated compartments, suggesting that this structure was suitable for pharmacological
manipulations, and a plastic lid and a specific gas supply chamber to build a gas sup-
ply system. It was validated that neurons could be cultured and maintained for up to
98 days on the platform. In addition, it was confirmed that neurons were differentiated
normally on the device with positive expression of axonal and dendritic markers and
that their neuronal networks were formed normally. Furthermore, the spike train tiling
coefficient was successfully measured from the neuronal network of neurons differentiated
on the platform.

Another study by Lee et al. described a microfluidic system-based sensing and cultiva-
tion platform capable of electrochemically analysing the cellular function of cardiomyocytes
differentiated from iPSCs [115] (Figure 5a). Interestingly, the platform developed contained
an aptamer and a gold-based microfluidic system. The functionality of cardiomyocytes
could be electrochemically monitored by selectively sensing markers, such as troponin T,
creatine kinase, and human epidermal growth factor receptor 2; these markers are related
to the functionality of cardiomyocytes (Figure 5b). In addition, to investigate the interaction
between cardiac and heart cancer tissues cultured on the platform, troponin secreted from
each cell was detected after single or dual interaction with the platform on which each
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tissue was cultured (Figure 5c). Results showed that troponin released from healthy cardiac
tissues increased in the single and dual platforms. In contrast, troponin released from
healthy tissues on the dual platform was lower than from cells that did not interact with
heart cancer tissues. In addition, cell functionality was evaluated electrochemically by
measuring biomarkers released from healthy cardiomyocytes and heart cancer cells on the
aptamer and microfluidic system-based platforms. The results obtained on the platform
were consistent with ELISA results.
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entiation. (a) A schematic illustration showing an aptamer and microfluidic system-based electro-
chemical sensor. (b) Analysis of the important role of interaction between cardiac and heart cancer
tissues through biomarkers sensing. (c) Monitoring of cardiotoxicity-associated biomarkers using the
aptamer and microfluidic system-based electrochemical sensor. Reprinted with permission from [115].
Copyright 2020, Wiley Online Library. DOX, doxorubicin; HER2, human epidermal growth factor
receptor 2; TGFβ1, transforming growth factor beta 1.* p < 0.05, ** p < 0.01, and *** p < 0.001.

Therefore, it can be concluded that microfluidic systems are effective micromaterials
for constructing sensing platforms for the non-invasive and label-free monitoring of stem
cell differentiation. In particular, microfluidic systems are suitable for application as a
stem cell culture platform and can considerably improve the performance of existing
electrochemical sensors.

2.5. Microelectrode Array-Based Electrochemical Sensors

Microelectrode arrays refer to micromaterials in which multiple micro-scale electrodes
are arranged on a single substrate [116]. Microelectrode arrays are based on a 3D structure
that improves and increases the electrochemically active area in which analytes participate
in the redox reaction, providing a high sensing performance [117]. In addition, considering
that a plurality of electrodes is spatially arranged in a microelectrode array, it is possible
to analyse signals of cells by position on a single substrate and to analyse single cells and
spheroids electrochemically [118].

The literature reports that microelectrode array-based electrochemical sensors that
can non-invasively monitor stem cell differentiation have been developed. For example,
a microelectrode array that electrochemically monitors cardiomyocyte differentiation has
been described [119]. This platform was designed to culture iPSCs for an extended period
and to perform qualitative and quantitative analyses of the differentiated cells’ maturity for
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efficient cardiomyocyte differentiation. The platform was used to monitor the cardiomy-
ocyte differentiation of iPSCs for 119 days using electrochemical impedance spectroscopy.
In addition, the effect of 2D and 3D culture environments on cardiomyocyte differentiation
was evaluated non-invasively by analysing the differentiated cells’ impedance. The results
confirmed that more mature cardiomyocytes were produced in a 3D environment.

Gao et al. [120] decribed a microelectrode array-based sensing platform that monitors
neuronal differentiation by electrochemically detecting neurotransmitters released from
olfactory bulb neurons. The olfactory bulb neurons were cultured in a microelectrode array
located on the corresponding platform; cells were stimulated using glutamate and gamma-
aminobutyric acid (GABA) to detect electrochemical signals from the cells. As a result of
detecting cells at various concentrations of glutamate and GABA, it was confirmed that cell
signals depended on the concentration of the stimulant and that neurotoxicity occurred at
high concentrations. The sensing ability of the platform to detect neurotransmitters through
GABA stimulation can be used to detect neural differentiation of stem cells non-invasively
and label-free.

Similarly, a sensing platform capable of electrochemically analysing DA exocytosis
in dopaminergic neurons differentiated from human ESCs was developed in 2020 [121].
The microelectrode array in the platform was composed of reduced GO and poly(3,4-
ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanocomposites. Due to
the nanocomposites’ excellent electrochemical properties, the device’s LOD for DA was
calculated to be 2 nM. Moreover, it could detect DA released from neurons in a location-
by-amperometric manner thanks to the intrinsic advantage of the microelectrode array
(Figure 6). The platform’s superior dopaminergic sensing ability allowed dopaminergic
differentiation to be detected in real-time.
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Figure 6. A microelectrode array-based electrochemical sensor. (a) Analysis of dopaminergic differen-
tiation of hESCs cultured on the platform. (b) Detection of DA exocytosis on the platform. Reprinted
with permission from [121]. Copyright 2022, Elsevier. DA, dopamine; DAPI, 4′,6-diamidino-2-
phenylindole; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; hESCs, human embryonic stem
cells; mRNA, messenger ribonucleic acid; TH, tyrosine hydroxylase. “n.d.”, indicates non-detected;
“n.s.”, indicates non-significant; ** p < 0.01, *** p < 0.001.
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A review of the current literature supports that microelectrode arrays have several
advantages as electrochemical sensors. First, the 3D regularly arranged electrodes could
considerably improve existing electrodes’ electrochemical sensing ability by increasing the
electrochemically active area. Second, the microelectrode array can be used as a stem cell
cultivation platform to analyse cells on a single substrate by location. In addition, single
cells and spheroids can be effectively detected.

3. Optical Sensors
3.1. Gold and Silver Nanoparticle-Based Optical Sensors

Nanomaterials, such as AuNPs and AgNPs, have excellent optical properties [122],
which are unique depending on their particle size [123,124]. In addition, AuNPs can be
modified through chemical conjugation with various other nanomaterials and probes to
form new types of hybrid nanomaterials; this allows sensors with higher selectivity and
sensitivity to target analytes to be developed [125,126]. In particular, AuNPs can greatly
enhance the surface plasmon effect because they are mainly applied to optical sensing
Raman spectroscopy methods [127].

Various AuNP-based optical sensors capable of monitoring stem cell differentiation
non-invasively and in real-time have been reported. For example, Cao et al. report a
gold-based surface-enhanced Raman spectroscopy (SERS) sensor for monitoring osteogenic
differentiation [128]. This sensor had a hybrid structure based on AuNPs and nucleic
acids and sensitively detectable micro-RNAs (miRs), such as miR-144-3p, associated with
osteogenesis. The DNA nucleic acid binds site-specific targets via its complementary in-
teraction. Therefore, hybrid nanostructures in which a specific DNA strand is conjugated
on the surface of AuNPs are highly selective. Furthermore, the gold-based nanostruc-
tures selectively detected the Raman signals from the target miR. In addition, the probe
showed high optical properties and enhanced Raman signals. These advantageous features
allowed the sensor to be used in stem cell cultivation and long-term monitoring of their
osteogenic differentiation.

In another study, Sun et al. developed a smart gold nanoprobe for detecting alkaline
phosphatase (ALP) activity during bone marrow MSCs’ osteogenic differentiation [129].
The smart nanoprobe was designed by decorating the surface of AuNPs with 5-bromo-
4-chloro-3-indolyl phosphate (Au@BCIP), which is suitable for use as a SERS nanoprobe.
This probe allowed non-invasive and living-cell permeable monitoring of ALP activity with
high sensitivity and selectivity. Moreover, this probe could detect a single cell without cell
deformation, and the preparation process was simple, so time and effort could be saved
compared to conventional methods. Therefore, the non-invasive detection of ALP activity
associated with bone disease in vivo models and osteogenic differentiation of bone marrow
MSCs can be more fully understood from the perspective of ALP activity.

A 2021 article by Hua et al. describes the development of an imaging probe consisting
of gold nanostars (AuStar) and silver sulphide quantum dots for labelling and accurately
tracking MSCs in a hypodermic and myocardial infarction model with deep tissue penetra-
tion [130] (Figure 7). The probe’s AuStar-disseminated tumour cell cluster section enabled
high-resolution Raman imaging, effectively delineating stem cells in surrounding normal
tissues at a single-cell resolution scale. In addition, the labelling agents were biocompati-
ble and did not alter the MSCs’ biological properties, compensating for existing invasive
monitoring methods used for tracking stem cells’ shortcomings.

Lee et al. [131] fabricated magneto-plasmonic nanorods that detected the expression
level of miRNA-124 and characterised the neurogenesis of human-iPSC-derived hNSCs in
a non-destructive and efficient way. The plasmonic (gold) parts of the nanorod selectively
and sensitively recognised target exosomal miRNAs using a molecular beacon (MB), which
was on the gold component. The MB and miRNA hybridised to form an MB–miRNA
complex with an increased fluorescence signal, increasing the signal-to-noise ratio through
the metal-enhanced fluorescence effect. This system was non-destructive and could possibly
advance the transplantation of differentiated stem cells.
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Figure 7. A gold-based NIR sensor for monitoring of chondrogenic differentiation. (a) Characteri-
sation of the AuStar-DTTC-Ag2S (GDS) nanoparticles. (b) Ex vivo Raman imaging of GDS-MSCs
in a myocardial infarction model. Reprinted with permission from [130]. Copyright 2020, Wiley
Online Library. Ag, silver; Ag2S, silver sulphide; Au, gold; AuStar, gold nanostar; BSA, bovine
serum albumen; DMEM, Dulbecco’s modified eagle medium; DTTC, 3.3′-diethylthiatricarbocyanine
iodide; GFP, green fluorescent protein; MSCs, mesenchymal stem cells; NIR, near-infrared; PBS,
phosphate-buffered saline; S, sulphur; SERS, surface-enhanced Raman spectroscopy.

An ultrasensitive nanosensor consisting of a Au-coated nanopore thin film was re-
ported by Yang et al. in 2021 [132]. This nanosensor was developed for the detection of
N27 cells’ Glial cell-derived neurotrophic factor (GDNF) secretion [132]. The GDNF is a
small protein that strongly promotes the survival of dopaminergic and motor neurons,
and the evaluation of its magnetic stimulation is valuable. Due to the characteristics of
gold, the nanosensor’s conversion signal appeared as an optical signal (optical interference
fringes) reflected from the nanopore thin film. The optical signal shift occurred because
of changes in the effective optical thickness when the GDNF bound to its antibody. The
nanostructure helped coat more gold, greatly increasing the sensor’s sensitivity; this was
demonstrated by a significantly improved GDNF LOD (2 pg/mL) compared with the rat
ELISA kit assay (32 pg/mL). In addition, it was inexpensive, easy to use, and suitable for
measuring GDNF secretion with ultra-high sensitivity. Furthermore, it can potentially be
used for other highly secreted substances.

In a study on AgNP-based optical sensors, Koh et al. [133] developed a 3D cell culture
scaffold and SERS-based biosensor to detect multiple differentiated markers from adipose-
derived MSCs. Scaffolds were composed of electrospun nanofibres with hydrogel patterns.
Moreover, the sensing scaffolds were coated with AgNPs, which can be conjugated with
specific antibodies for SERS analysis. This type of scaffold culture platform successfully
supported adipose-derived MSCs’ proliferation and differentiation in osteogenic differ-
entiation media. In addition, the SERS-capture substrate detected various differentiation
markers with SERS tags made of Au-Ag alloy nanoboxes. The time-dependent release
of three different osteogenic differentiation markers (ALP, osteocalcin, and fibronectin)
were detected up to the pg/mL levels without interference or crosstalk for three weeks.
Therefore, the platform was sufficiently sensitive to monitor markers during osteogenic
differentiation. This platform was suggested to overcome the limitations of existing stem
cell differentiation monitoring methods, as it did not require cell pre-processing, enabled
continuous analysis with a single platform, and the multi-sensing scaffold could detect
various biomarkers.

Similarly, Li et al. [134] developed a SERS sensor for accurate and quantitative detec-
tion of DA in blood. The sensor consisted of zipper-like ortho-nanodimers and AgNPs with
a uniform 1 nm gap. The AgNPs were electrostatically self-assembled onto a glass slide;
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then, the complementary DNA of the DA aptamer was bound to the surface of the AgNPs.
The SERS probe was synthesised by decorating AgNPs with DA aptamers and the Raman
reporter 5,5’-dithiobis-(2-nitrobenzoic acid). When these SERS probes were added to a sub-
strate, they combined with the complementary DNA forming zipper-like ortho nanodimers
with a 1 nm gap between the probe and AgNPs on the substrate in a state of equilibrium
between electrostatic repulsive force and hybridisation contractility. The uniform gap
allowed the SERS sensors to detect DA with ultra-high sensitivity (LOD = 10 aM) while
maintaining signal uniformity (relative standard deviation < 5%). Even in a complex serum
environment, the sensor maintained excellent validity and stability from 1 pM to 10 nM,
which was about two times lower than conventional methods. In addition, monitoring
the DA of cells released from living neurons was performed for the first time. This was
achieved by introducing a single microfluidic chip containing a 3D cell culture device.
The DA quantification in human blood samples showed recoveries ranging from 87.5%
to 123.7%. Given the difficulty of DA quantification in complex physiological samples,
this SERS sensor may provide a powerful tool for the in vitro investigation of neurological
processes and clinical examination of dopaminergic disorders.

Based on the literature reviewed, gold- and silver nanomaterials have excellent optical
properties and the advantage of being easily transformable into various 3D nanostructures.
In addition, AuNPs can be widely applied to optical sensing methods because of their easy
surface modification with other nanomaterials.

3.2. Upconversion Nanoparticle-Based Optical Sensors

Upconversion refers to a phenomenon in which external energy is changed into higher
energy through a phosphor [135]. Considering that UCNPs show unique optical properties
different from conventional phosphors, they have been applied to bioimaging and the
optical applications of conventional phosphors. Specifically, UCNPs do not quench and
are chemically stable. Furthermore, unlike conventional quantum dots, the maximum
emission wavelength does not depend on particle size. In addition, UCNPs can easily emit
multi-colour emissions by changing doping materials. In particular, UCNPs doped with
lanthanum elements are excited by long wavelengths and have very low cytotoxicity; there-
fore, they are very useful for use in cell-based sensors [136]. To date, various UCNP-based
sensors capable of monitoring stem cell differentiation have been reported in the literature.

For example, Wang et al. [137] developed a multifunctional UCNP capable of real-time
detection and control of osteogenic differentiation in MSCs using NIR. The researchers
synthesised thulium/erbium-doped core-shell UCNPs coated with mesoporous silica for
drug loading and to install photomechanical azobenzene that acted as an agitator. Then,
the RGD peptide and matrix metalloproteinase 13 (MMP13) sensitive peptide-black hole
quencher-3 group were conjugated to the UCNP surface responsible for cell targeting
and detecting differentiation. Finally, icariin, a drug that can induce MSCs’ osteogenic
differentiation, was loaded onto the UCNPs to form a nanocomplex. The drug was released
from the fabricated UCNP nanocomplexes using NIR light in a controlled way, which was
based on trans-azobenzene being converted to a cis isomer under UV and visible light.
According to the results of reverse transcription (RT)-PCR, WB, and autonomously replicat-
ing sequence (ARS), the UCNP nanocomplex efficiently induced osteogenic differentiation
of MSCs under NIR light at a wavelength of 980 nm and successfully detected MMP13
produced by osteogenesis. Therefore, this developed multifunctional UCNP could control
the osteogenesis of MSCs and detect cell differentiation in real time, making it a potential
tool for progressing regenerative medicine.

Similarly, Yan et al. [138] reported on the controlled osteogenic differentiation of MSCs
with a light-responsive nanoplatform to treat osteoporosis (OP). The nanoplatform was a
modification of that of Wang et al. described previously. Like Wang et al.’s method, the
UCNPs were first doped with thulium/erbium and coated with mesoporous silica. Then
photocaged linker 4-(hydroxymethyl)-3-nitrobenzoic acid and polyethylene glycol linker
were linked to the surface to conjugate to the cap β-cyclodextrin and the RGD-targeted
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peptide/MMP13-sensitive peptide-black hole quencher, creating a drug loading nanoplat-
form. According to the RT-PCR, WB, ALP/ARS/immunofluorescence staining, and ALP
activity results, the release of icariin by NIR light at 980 nm induced controlled osteogenic
differentiation of MSCs for OP treatment. In addition, MMP13 produced by the MSCs’
osteogenic differentiation cleaved the MMP13-sensitive peptide, removing the peptide-
black hole quencher and allowing the UCNPs to fluoresce; this allowed real-time detection
of osteogenic differentiation. The results of haematoxylin and eosin, Masson’s trichrome,
immunohistochemical, tartrate-resistant acid phosphatase, and toluidine blue staining of a
femoral terminal section showed that significant bone remodelling had occurred in the OP
rat model. This study’s results suggested that the synthesised UCNP nanoplatform enabled
remote control and real-time detection of osteogenic differentiation for OP treatment by
NIR and could be a potential alternative to current OP treatment.

Non-destructive stem cell differentiation control and monitoring using UCNPs has
also been studied for neural differentiation from MSCs. However, conventional UCNPs
have shortcomings, such as low emission intensity due to undesirable energy transfer paths.
Low power density excitations can minimise detrimental energy reverse transitions and
produce bright visible emissions. Therefore, Rabie et al. [139] developed a core–shell–shell
sandwich-structured UCNP with enhanced luminescent output relative to conventional
UCNPs. This core–shell–shell UCNP was then used to construct a biosensor to detect DA
released from stell cell-derived dopaminergic neurons (Figure 8). This UCNP detected DA
released in vivo during the differentiation of stem cells into specific neurons at the single
cell level in a highly selective, real-time, and non-invasive manner, with a sensitivity of at
least three times higher than similarly designed systems. This sensor was demonstrated
to detect DA at low concentrations. The developed NIR-based neurotransmitter detection
method has significant potential for the diagnosis of diseases related to neurodegenerative
diseases and stem cell treatment strategies.
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The literature identified several UCNPs with high optical properties and low cytotox-
icity. Moreover, UCNP-based sensors can monitor stem cell differentiation in real-time,
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non-invasively, without a label. In addition to cell imaging, UCNPs are potential drug
delivery systems to control stem cell differentiation.

3.3. Autofluorescence-Based Optical Sensors

Various biomaterials derived from cellular organisms have autofluorescence proper-
ties, which allows them the potential to be used in biosensors for invasive and label-free
sensing to obtain information about cells and tissues [140]. Furthermore, autofluores-
cence techniques do not require treatment or fixing of specimens and can be performed
in real-time. In addition, autofluorescence-based sensors can be applied to monitor stem
cell differentiation with invasive optical sensing methods, such as Raman spectroscopy
and NIR, because autofluorescence can indicate a specific cellular component [141,142].
Raman-based sensing applied with autofluorescence is especially advantageous to anal-
yse information about intracellular dynamics, which can be utilised to investigate the
intracellular changes during stem cell differentiation [103].

A label-free autofluorescence-based imaging system combining optical metabolic
modelling with quantitative image analysis was developed by Qian et al. [143] for moni-
toring human PSC (hPSC) differentiation into cardiomyocytes (Figure 9). This study was
based on the fact that hPSC-derived cardiomyocytes undergo significant metabolic changes
during differentiation. Specifically, the amount or ratio of oxidised flavin adenine dinu-
cleotide (FAD) and reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H),
both autofluorescence metabolic materials, is influenced by the cellular conditions and
differentiation and can be imaged to collect metabolic information at the single cell level.
Furthermore, the ratio of NAD(P)H to FAD provides information about the relative oxida-
tive state of the cells. Therefore, cardiomyocytes differentiated from different hPSC lines
were visualised with NAD(P)H and FAD autofluorescence probes. According to the autoflu-
orescence imaging on the eighth day, the intensity of NAD(P)H autofluorescence differed
depending on the differentiation efficiencies. In addition, the cardiomyocytes and non-
cardiomyocytes showed different autofluorescence intensities. For instance, NAD(P)H and
FAD fluorescence after 8 days was exhibited in 84.1% of the differentiated cells, compared
with 0.3% in undifferentiated cells.

Biosensors 2023, 13, x FOR PEER REVIEW 18 of 28 
 

 
Figure 9. An autofluorescence imaging for monitoring of cardiomyocyte differentiation. Single-cell 
quantitative analysis of NAD(P)H during 8 days of the differentiation period. Reprinted with per-
mission from [143]. Copyright 2019, Wiley Online Library. EGFP, enhanced green fluorescent pro-
tein; NAD(P)H, reduced nicotinamide adenine dinucleotide (phosphate); NKX2.5-EGFP, homeobox 
protein NKX2.5-EGFP.**** p < 0.0001. 

In another study, Suhito et al. [144] reported on an autofluorescence-integrated Ra-
man mapping analysis for label-free monitoring of adipogenic differentiation. Raman 
mapping analysis has the critical issue of long detection time, which results in cell apop-
tosis. To address this issue, these researchers developed a novel optical sensing method 
that enabled the rapid and non-destructive analysis of adipogenesis. The authors con-
firmed that the lipid droplets present in adipocytes were identified with the developed 
autofluorescence-integrated Raman sensing method; the Raman scattering of lipid drop-
lets was aroused at 2850–2855 cm−1. In addition, this method was utilised in the large-scale 
sensing analysis of multiple cells in culture plates by obtaining Raman mapping images 
at low magnification. Moreover, the analysis required a very short time (<20 min) and 
could scan 440 × 330 µm area per mapping image. Furthermore, the authors analysed in-
batch and batch-to-batch variations of adipogenic differentiation throughout the autofluo-
rescence-Raman imaging. 

Similarly, Li et al. showed a label-free autofluorescence sensing system capable of 
monitoring of neurogenesis [145]. The optical sensor was based on tetrapod-shaped ZnO 
(t-ZnO) microparticles capable of label-free monitoring of neuronal differentiation. Spe-
cifically, this sensor formed 3D scaffolds that analysed DA released from neurons embed-
ded on the surface using autofluorescence imaging. Interestingly, t-ZnO nanoparticles 
with four hexagonal arms were biocompatible and autofluorescence materials that fluo-
resced under UV light because they contained anion vacancies. The nanoparticles’ auto-
fluorescence was demonstrated to be very sensitive to hole scavengers, which was used 
for quantitative DA analysis. Furthermore, nanoparticles’ autofluorescence acted as a 
quencher for the autofluorescence of the t-ZnO nanoparticles. Due to its 3D structures 
with high surface area and autofluorescence, the t-ZnO nanoparticles-based sensor 
showed a high sensing performance toward DA (LOD: 0.137 µM). Furthermore, DA was 
selectively datable in the presence of interfering molecules, including citric acid, gluta-
mine, ascorbic acid, glucose, KCl and calcium chloride. 

Autofluorescence-based optical sensing techniques were reported as suitable for non-
invasive, non-destructive, and label-free monitoring of stem cell differentiation. Chronic 
lymphocytic leukaemia-derived autofluorescence could be utilised to analyse the 

Figure 9. An autofluorescence imaging for monitoring of cardiomyocyte differentiation. Single-
cell quantitative analysis of NAD(P)H during 8 days of the differentiation period. Reprinted with
permission from [143]. Copyright 2019, Wiley Online Library. EGFP, enhanced green fluorescent pro-
tein; NAD(P)H, reduced nicotinamide adenine dinucleotide (phosphate); NKX2.5-EGFP, homeobox
protein NKX2.5-EGFP.**** p < 0.0001.
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In another study, Suhito et al. [144] reported on an autofluorescence-integrated Raman
mapping analysis for label-free monitoring of adipogenic differentiation. Raman mapping
analysis has the critical issue of long detection time, which results in cell apoptosis. To
address this issue, these researchers developed a novel optical sensing method that enabled
the rapid and non-destructive analysis of adipogenesis. The authors confirmed that the
lipid droplets present in adipocytes were identified with the developed autofluorescence-
integrated Raman sensing method; the Raman scattering of lipid droplets was aroused at
2850–2855 cm−1. In addition, this method was utilised in the large-scale sensing analysis of
multiple cells in culture plates by obtaining Raman mapping images at low magnification.
Moreover, the analysis required a very short time (<20 min) and could scan 440 × 330 µm
area per mapping image. Furthermore, the authors analysed in-batch and batch-to-batch
variations of adipogenic differentiation throughout the autofluorescence-Raman imaging.

Similarly, Li et al. showed a label-free autofluorescence sensing system capable of
monitoring of neurogenesis [145]. The optical sensor was based on tetrapod-shaped ZnO
(t-ZnO) microparticles capable of label-free monitoring of neuronal differentiation. Specifi-
cally, this sensor formed 3D scaffolds that analysed DA released from neurons embedded
on the surface using autofluorescence imaging. Interestingly, t-ZnO nanoparticles with four
hexagonal arms were biocompatible and autofluorescence materials that fluoresced under
UV light because they contained anion vacancies. The nanoparticles’ autofluorescence was
demonstrated to be very sensitive to hole scavengers, which was used for quantitative
DA analysis. Furthermore, nanoparticles’ autofluorescence acted as a quencher for the
autofluorescence of the t-ZnO nanoparticles. Due to its 3D structures with high surface
area and autofluorescence, the t-ZnO nanoparticles-based sensor showed a high sensing
performance toward DA (LOD: 0.137 µM). Furthermore, DA was selectively datable in the
presence of interfering molecules, including citric acid, glutamine, ascorbic acid, glucose,
KCl and calcium chloride.

Autofluorescence-based optical sensing techniques were reported as suitable for non-
invasive, non-destructive, and label-free monitoring of stem cell differentiation. Chronic
lymphocytic leukaemia-derived autofluorescence could be utilised to analyse the biological
changes in stem cell differentiation. Furthermore, most autofluorescence is biocompatible,
which allows stem cells to be stably cultured and differentiated on the sensor for long
time periods.

4. Conclusions and Future Perspectives

This review summarised recent progress in nano-biosensors for non-invasively mon-
itoring of stem cell differentiation. Various nano- and micromaterials, such as AuNPs,
AgNPs, UCNPs, autofluorescence probes, nucleic acids, microfluidic systems and micro-
electrode arrays, were reviewed and compared. Furthermore, their advantageous use to
improve the biosensors’ performance, including sensitivity and selectivity, for monitor-
ing stem cell differentiation was appraised. In the case of electrochemical sensors, the
electrochemically active surface area was found to be a crucial parameter; this is because
the redox reaction of target analytes occurs on the electrode surface via electron transfer.
Moreover, various nanomaterials were identified that could be applied to improve the
electrochemically active surface. Furthermore, specific micro-scaled systems were identi-
fied that could be utilised to enhance the advantage of existing nanomaterials, providing
more sensitive and selective sensing capabilities toward target molecules. The literature
scrutinised supported that many nanomaterials have been applied in optical sensing to
enhance the optical signal intensity to target analytes specifically or to make the analysis
process simpler and faster. In addition to excellent sensing capabilities, various nano-
biosensors have functioned as stem cell cultivation platforms by providing cell-friendly
surfaces. In conclusion, electrochemical or optical nano-biosensors capable of monitoring
stem cell differentiation in a non-invasive, non-destructive, and label-free sensing system
could be used to control stem cell differentiation and develop practical and efficient stem
cell therapies.
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Table 1. Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation.

Method Material and
Technique Advantages Limitations Target/Sensitivity Differentiation Ref.

Electrochemical
sensing

AuNPs
� High biocompatibility towards hESC growth

and adhesion
� Label-free identification of differentiated cells

� Insufficient sensitivity Cells/12,500 cells Epithelial
differentiation [59]

AuNPs-nanoarray

� Non-destructive and real-time sensing system
for monitoring of osteogenic differentiation

� Providing topographical cues favourable for
stem cell differentiation

� Low sensing performance at
early differentiation stages ALP/0.03 unit/mL Osteogenic

differentiation [73]

AuNPs-RGD-Fe3O4

� Capable of regulation of mechanotransduction-
mediated stem cell differentiation

� In-situ time-resolved monitoring of osteogenic
differentiation

� Difficult analysis of early differ-
entiation ALP/- Osteogenic

differentiation [74]

AuNPs

� Simultaneous electrochemical monitoring and
kidney organoid generation on-a-chip

� Electrical signal interpretation in multiple de-
tection of kidney

� organoid on-a-chip

� Difficult to identify detailed cell
subtypes Cells/21,363 cells Kidney organoids [75]

Aptamer-CPNTs
� Highly sensitive and selective detection of DA
� Non-destructive monitoring of exocytotic DA

release from living neurons

� Potential colouration effect and
its poor stability

DA/100 pM Neuronal
differentiation [89]

Peptide-
Oligonucleotide

� Non-destructive detection of cardiomyogenic
differentiation

� Applicable to label-free drug screening

� Insufficient selectivity for applica-
tions in cell culture environments

cTnI/0.42 pg/mL Cardiomyocyte
differentiation [90]

Aptamer-Pdots-
microarray

� High throughput DA sensing at the single
cell level

� Imaging of exocytotic DA release from liv-
ing neurons

� High variations in DA signals DA/53 pM Neuronal
differentiation [91]

Aptamer

� Based on a nanostructure suitable for excluding
non-specific proteins as interfering molecules

� Suitable to track in situ neurochemical flux in
the complex cell media

� Difficult sensor operation 5-HT/< 1 nM Neuronal
differentiation [92]

Graphene-
� Simultaneously detection of DA and serotonin
� Potential for multi-site neurotransmitter map-

ping with high spatial and temporal resolution

� Platform not proven applicable
to cell culture DA/61.67 nM Neuronal

differentiation [104]
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Table 1. Cont.

Method Material and
Technique Advantages Limitations Target/Sensitivity Differentiation Ref.

Electrochemical
sensing

Pyrolytic carbon fibre
� Real-time monitoring of exocytotic DA release
� Multifunctional platform applicable to stem

cell-based sensing and therapeutics

� Insufficiently proven sensor se-
lectivity

DA/- Neuronal
differentiation [105]

Carbon nanotube
� Label-free and non-invasive evaluation of an-

tipsychotic drugs on DA release from neu-
ronal cells

� Insufficient selectivity toward DA DA/<10 nM Neuronal
differentiation [106]

Microfluidics

� Label-free and non-invasive impedance mea-
surements of single cells

� Insufficient for practical applica-
tions in terms of throughput

- Osteogenic
differentiation [113]

� Compartmentalised the neuronal culture into
three distinct but axonally connected networks

� Mimicking local and circuitry functionality of
brain tissue

� Includes complicated devices
and procedures

- Neuronal
differentiation [114]

� Non-invasive monitoring of cell-secreted multi-
ple biomarkers in response to chemotherapeu-
tic drugs

� Contains 3D cardiac and BC spheroid-based
microtissues with mechanical properties mim-
icking individual native tissues

� Short-term (<6 days) analysis of
differentiation

Troponin T and
HER-2/<0.1 pg/mL

Cardiomyocyte
differentiation [115]

Microelectrode array

� Long-term (>100 days) monitoring of cardiomy-
ocyte differentiation with 3D cultivation system

� Signal variations during moni-
toring differentiation

E4031/<1 nM Cardiomyocyte
differentiation [119]

� In vitro multi-site and long-term monitoring of
bioelectrical activity changes in the neuronal
network

� Cross-correlation analysis between channels ca-
pable of evaluating the connection status in the
neuronal networks

� Insufficient biological validation
Glutamate and

GABA/100 nM and 50 nM,
respectively

Neuronal
differentiation [120]

Microelectrode
array-rGO

� Stable monitoring of neuronal differentiation
from long-term cultured neurons

� Quantitative analysis of different types of DA
vesicular exocytosis

� Insufficient selectivity toward DA DA/2 nM Neuronal
differentiation [121]

Optical sensing AuNPs-DNA

� Long-term (>21 d) sensing of biomarkers in-
volved in osteogenic differentiation

� Label-free monitoring of osteogenic differentia-
tion

� Potential side effects of cellular
uptake of AuNPs

miR-144-3p/13.6 aM Osteogenic
differentiation [128]
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Table 1. Cont.

Method Material and
Technique Advantages Limitations Target/Sensitivity Differentiation Ref.

Optical sensing

AuNPs-BCIP � Label-free monitoring of osteogenic differentia-
tion

� Potential side effects of cellular
uptake of AuNPs

ALP/1.0 U/L Osteogenic
differentiation [129]

AuStar-DTCC-Ag2S

� Depth-independent and high-resolution stem
cell-tracking strategy

� Real-time sensing of in vivo functionality of
stem cells

� Potential side effects of cellular
uptake of AuNPs

Cells/<100 cells

Adipogenic
differentiation

Osteogenic
differentiation
Chondrogenic
differentiation

[130]

Au-Ni nanorods

� Highly selective detection of stem cell differen-
tiation

� Applicable to in vitro and in vivo stem cell dif-
ferentiation modulation

� Potentially undesired effects of
magnetic fields on cell behaviour

miR-124/<1 pM Neuronal
differentiation [131]

AuNPs-nanopore � Cost-effective and sensitive sensing method for
detection of neuronal differentiation

� Signal variations during moni-
toring differentiation

GDNF/<2 pg/mL Neuronal
differentiation [132]

AgNPs
� Label-free sensing system for sensing multiple

osteogenic differentiation-involved markers.
� 3D culture system integrated-sensing system

� Signal variations during moni-
toring differentiation ALP, OC, and FN/- Osteogenic

differentiation [133]

AgNPs-Aptamer
� Ultrasensitive and reliable detection of exocy-

totic DA release from living neurons
� 3D culture system integrated-sensing system

� Insufficient biological validation DA/10 aM in PBS and
10 fM in serum

Neuronal
differentiation [135]

UCNP

� Simultaneous differentiation control and sens-
ing of osteogenic differentiation

� Label-free detection of osteogenic differentiation

� Potential cytotoxicity by pho-
tothermal effect MMP13/- Osteogenic

differentiation [137]

� Simultaneous differentiation control and sens-
ing of osteogenic differentiation

� Applicable to in vitro and in vivo stem cell dif-
ferentiation modulation

� Potential cytotoxicity by pho-
tothermal effect

MMP13/- Osteogenic
differentiation [138]

� Monitoring of neuronal differentiation at single-
cell level

� Real-time analysis of the function of DAnergic
neurons

� Potential cytotoxicity by pho-
tothermal effect DA/<1 pM Neuronal

differentiation [140]
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Table 1. Cont.

Method Material and
Technique Advantages Limitations Target/Sensitivity Differentiation Ref.

Optical sensing

Autofluorescence

� Label-free monitoring of cardiomyocyte differ-
entiation

� Can predict the cardiomyocyte differentiation
efficiency early in the differentiation process

� Potential phototoxicity during
imaging procedures FAD and NAD(P)H/- Cardiomyocyte

differentiation [143]

� Non-destructive and large-scale analysis
(440 × 330 µm area) of adipogenic differentiation

� Rapid visualisation (<20 min) of the cell mor-
phology and cytosolic microstructure

� Difficult to apply to multiple-cell
analysis Lipid droplets/- Adipogenic

differentiation [144]

t-ZnO

� Utilisable directly without complicated probe
immobilisation or modification

� High resolution detection of DA release from
neural tissue

� Insufficient lifetime for living tis-
sue cultivation DA/0.137 µM Neuronal

differentiation [145]

Note: 3D, three-dimensional; 5-HT, 5-hydroxytryptamine; AgNPs silver nanoparticles; Ag2S, silver sulphide; ALP, alkaline phosphatase; AuNPs, gold nanoparticles; Au-Ni, gold-nickel;
AuStar, gold nanostar; BC, breast cancer; BCIP, 5-bromo-4-chloro-3-indolyl phosphate; CPNTs, carboxylated polypyrrole nanotubes; cTnI, cardiac troponin I; DA, dopamine; DAnergic
neurons, dopaminergic neurons; DNA, deoxyribonucleic acid; DTCC, disseminated tumour cell clusters; E4031, N-[4-[1-[2-(6-methylpyridin-2-yl)ethyl]piperidine-4-carbonyl]phenyl];
FAD, flavin ade-nine dinucleotide; Fe3O4, iron (II, III) oxide; FN, fibronectin; GABA, γ-aminobutyric acid; GDNF, glial cell-derived neurotrophic factor; HER-2, human epidermal growth
factor receptor-2; miR, microRNA; MMP13, metalloproteinase 13; NAD(P)H, nicotinamide adenine dinucleotide (phosphate); OC, osteocalcin; Pdots, polymer dots, RGD, Arg-Gly-Asp
ligand; rGO, reduced graphene oxide; t-ZnO, tetrapod zinc oxide; UCNPs, upconversion nanoparticles.
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