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Abstract: Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-
term stability can be compromised due to photo-degradation and structural instability. To address
this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating
organic semiconductors into a stable framework or self-assembled structure. OSNs have shown
excellent performance and can be used as high-resolution biosensors in modern medical and biological
research. They have been used for a wide range of applications, such as detecting small biological
molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more.
In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with
an aerodynamic diameter less than or equal to 2.5 µm) and can be used to study the biodistribution,
clearance pathways, and health effects of such particles. However, there are still some problems that
need to be solved, such as toxicity, metabolic mechanism, and fluorescence intensity. In this review,
based on the structure and design strategies of OSNs, we introduce various types of OSNs-based
biosensors with functional groups used as biosensors and discuss their applications in both in vitro
and in vivo tracking. Finally, we also discuss the design strategies and potential future trends of OSNs-
based biosensors. This review provides a theoretical scaffold for the design of high-performance
OSNs-based biosensors and highlights important trends and future directions for their development
and application.

Keywords: biosensors; organic semiconducting nanoparticles; in vivo tracking; in vitro tracking

1. Introduction

In recent years, biosensor technology has experienced significant development due
to advances in biomedicine and computational science [1–4]. Biosensors have found
widespread use in medicine and biology, from detecting disease biomarkers [5,6] and
tracking drug release [7], to ion imaging [8–10] and fluorescence imaging in living ani-
mals [11–13]. These applications have greatly improved the imaging resolution and can
assist physicians in making more accurate disease diagnoses. In order to achieve tracking
detection in organisms, scientists have developed biosensors with different fluorescence
properties [14,15]. These biosensors have the ability to track and monitor specific targets
within the body, enabling real-time and precise detection.

Organic semiconductor materials can be excited by various forms of energy, such as
light or electricity, which leads to an excited state from the ground state S0 to the first
excited state S1, S2, or Sn. However, the excited state is unstable and will return to the
ground state via radiation transition and/or non-radiation transition [16]. Herein, radiation
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transition is typically divided into fluorescence and phosphorescence [17]. Due to their
π-conjugated structure, organic semiconductor materials possess semiconductor properties.

Recently, scientists have successfully developed a number of specific recognition fluo-
rescent probes using different strategies, for example, through binding different identifying
groups or changing the molecular structure by reaction with the target [18,19]. The organic
semiconductor with high biocompatibility is widely used in biosensors [20,21], such as AIE
(aggregation-induced emission) based probes. The small size of the organic semiconductor
probes makes it easy to penetrate cells [22]. In addition, the outstanding diffusion proper-
ties of organic semiconductor probes help improve the resolution of imaging [23]. However,
there are still some problems that restrict the development of organic semiconductor probes.
On the one hand, organic semiconductor probes usually have poor photostability [24,25].
On the other hand, their toxic effects and metabolism in organisms remain a challenge
for organic semiconductor probes application. To solve these problems, researchers have
constructed OSNs (organic semiconductor nanoparticles) by attaching or wrapping organic
semiconductors in inorganic matrices [26], Metal-organic frameworks (MOFs) [27–29],
polymers [30], etc. Due to their excellent properties, OSNs are widely used in biosensors
(Figure 1).
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OSNs are widely used as biosensors for high-resolution tracking in vitro and
in vivo [31,32]. Compared to inorganic fluorescent materials, OSNs can be designed with
various photosensitive properties and high biocompatibility through different design strate-
gies [33,34]. However, to construct high-performance OSNs for bioimaging, the materials
must not only exhibit intense fluorescence, but they must also be designed in a comprehen-
sive manner. For instance, the attachment and wrapping between OSNs and nanoparticles
should be stable to prevent detachment [35,36]. Additionally, toxicity is a crucial factor
in bioimaging, as some reacting OSNs may be non-toxic before reacting with the target,
but they could become toxic when combined with it [37]. Furthermore, the sensitivity and
effectiveness of OSN sensors still require further improvements for practical applications.

This review systematically describes the application of OSNs as biosensors in tracking
technologies within medicine. Although some articles have reviewed OSNs, only a few
have extensively discussed their applications for in vivo and in vitro tracking. Here, we
introduce different structures and design strategies based on the tracking targets. Further-
more, we describe different applications of OSNs as biosensors and their potential future
applications. The properties and biomedical applications of OSN sensors summarized in
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this review are listed in Table 1. Ultimately, this review provides a theoretical scaffold for
the design of high-performance OSNs and highlights important trends and future direc-
tions for their development and application. The properties and biomedical applications of
the OSN biosensors summarized in this review are listed in Table 1.

2. In Vitro Tracking

By binding of different functional groups or changing the structures of OSNs, we can
design specific detecting fluorescent probes. Those probes are widely used for in vitro
tracking, which can detect the ions, pH, temperature, amino acid, genetic material, enzyme,
and so on in cell models or organizational models. Due to the complexity and potential
possible toxic effects of biosensors, they are commonly used for in vitro experiments. It can
be well tested for stability and toxicity while tracing in vitro.

2.1. Biological Small Molecules Tracking

Biological small molecules in the body can reveal health conditions, and their detec-
tion and tracing are of great importance for biomedical research. Glutathione (GSH), the
essential endogenous antioxidant, is the most abundant intracellular nonprotein thiol in
mammalian and eukaryotic cells [38,39]. The disturbances in GSH content are generally
considered to be associated with various human diseases, such as psoriasis, human im-
munodeficiency virus (HIV), liver damage, and diabetes [40–42]. Given its importance in
medicine, achieving highly sensitive detection of GSH, as well as tracking of GSH in living
cells, is urgent. Moreover, the tracking of GSH in organisms is favorable for biological
investigations and early disease diagnoses [43].

Cheng et al. inserted the tetraphenylporphyrin (TPP) into poly[(9,9′-dioctyl-2,7-
divinylene-fluorenylene)-alt-2methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene] (PEPV) chains
and poly (styrene-co-maleic anhydride) (PSMA) to form near-infrared P-dots [44]. Then,
they enclosed the P-dots by MnO2. The fluorescence of P-dots quench because of the
enclosed MnO2. However, the MnO2 will decompose when meeting the GSH. Thus,
the fluorescence can be recovered (Figure 2a). This fluorescence-quenching-fluorescence
process makes the highly sensitive detection of GSH with a detection limit of 0.26 µM
possible. The author further assesses the potential of P-dot@MnO2 as fluorescence imag-
ing probes for monitoring cellular GSH. HeLa cells were incubated with P-dot@MnO2,
and then the fluorescence images were recorded by a confocal laser scanning microscopy.
Figure 2(b A Blank) shows no obvious fluorescence in blank HeLa cells. When the cells were
imaged under 458 nm, obvious red fluorescence can be clearly observed.
(Figure 2(b B Untreated)) This phenomenon suggests that the membrane-permeable of
P-dot@MnO2 is remarkable. In order to verify the concentration assessment of GSH, HeLa
cells were incubated with the N-methyl maleimide (NEM) (a GSH scavenger 500 µM) to
reduce the concentration of GSH. Apparently, the fluorescence intensity was obviously
declined with the reduction of GSH. (Figure 2(b C NEM)). This work ingeniously takes
advantage of the reaction between MnO2 and GSH. However, the mechanism of selective
decomposition may cause the run-off of biological small molecules, which will injure the
cells or organs in long-term in vitro tracking.
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nanocomposites, and (C NEM) HeLa cells treated with NEM, as well as P-dot@MnO2 nanocomposites.
Adapted with permission from [44].

Besides the reaction of coating materials, Sun et al., through the structure-changing
design strategy build a GSH probe named DQ-CD@Pdots [45]. The DQ-CD@Pdots is
constructed from PSMA, β-cyclodextrin (β-CD), poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-
(1,4benzo-{2,1′,3}-thiadiazole)] (PFBT), and dopamine (DA). (Figure 3c) The DA molecules
are anchored on the surface of the nanoparticles, then the DA molecules are further oxidized
to the quinone-like structures (DQ). The DQ is a good electron accepter structure, which can
quench the fluorescence of Pdots by intraparticle photoinduced electron transfer (PET) and
the “molecular-wire effect”. When the DQ-CD@Pdots combine with GSH, the DQ molecules
will be reduced into catechol molecules instantaneously. Thus, the PET phenomenon is
inhibited, and the fluorescence will recover (Figure 3(b A Blank, B Untreated)). Thus, the
fluorescent intensity will be enhanced or reduced as the concentration of GSH rise (by
adding GSH) (Figure 3(b D GSH)) or decrease (by adding NEM) (Figure 3(b C NEM)). In
addition, because of the benefits of the highly directional, solid state, and polarized emission
of surface plasmon-coupled emission (SPCE) (Figure 3c), scientists have developed some
meaningful plasmonics-based GSH sensors. Seemesh Bhaskar et al. [46] reported the silver
Soret colloids (Ag-SCs), by changing the adiabatic cooling period, and they constructed
SC60, SC90, and SC120 as GSH sensors. The Ag-SCs sensors can achieve femtomolar and
high-sensitivity detection of GSH. Significantly, the detection effect can easily acquire by the
camera of a smartphone (Figure 3d–f), which can sharply increase the efficiency of clinical
diagnosis. This work provides a future development direction and designing guidance for
high-performance OSN GSH sensors.

2.2. Enzyme Concentration Measurement

Enzymes are widely present in the body and act as biocatalysts. The International
Union of Biochemistry and Molecular Biology (IUBMB) classifies enzymes into seven
categories, including oxidoreductases, transferases, hydrolases, lyases, isomerases, ligases,
and translocases [47]. They all play decisive roles in the activity of the organism. If the
activity of enzymes is weakened due to certain defects caused by various factors, it can
lead to abnormal reactions, disorders of substance metabolism, and even development of
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clinical diseases. As a consequence, tracking the concentration and activity of enzymes is
of major importance.
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Figure 3. (a) Schematic Illustration of the Designed Two-Photon Hybrid Pdots for GSH Sensing.
Adapted with permission from [45]. (b) Fluorescence microscopic images of (A Blank) HeLa cells
only, (B Untreated) HeLa cells treated with DQ-CD@Pdots, (C NEM) HeLa cells treated with NEM
as well as DQ-CD@Pdots nanocomposites, and (D GSH) HeLa cells treated with GSH as well as
DQ-CD@Pdots nanocomposites. Adapted with permission from [45]. (c) Optical setup of the SPCE
Framework. Adapted with permission from [46]. Fluorescence emission intensities for Ag-SCs
(SC60, SC90, and SC120) architectures represented by (d) CIE chromaticity plots, (e) shade cards, and
(f) smartphone camera images. Adapted with permission from [46].

Glutathione S-transferase (GST), which belongs to phase II metabolic enzymes, is
crucial for living organisms [48–50]. On one hand, GST plays an important role in detoxifi-
cation. On the other hand, GST can decompose endogenous superoxide radicals by cat-
alyzing the GSH [51,52]. Yameng Han and his co-worker developed a new single-particle
enumeration (SPE) method for the sensitive GST assay (Figure 4a) [53]. They synthesize
polyethyleniminecapped gold nanoparticles (GNPs@PEI) and glutathione-modified FCP-
NPs (FCPNPs-GSH). The fluorescence resonance energy transfer (FRET) is formed between
the GNPs@PEI and FCPNPs-GSH. Thus, the fluorescence of the system is quenched re-
markably. To the contrary, in the presence of GST, the GSH prefers to combine with the GST.
Then, the fluorescence emission of FCPNPs-GSH is restored because of the inhibition of
FRET. The SPE method is similar to acid–base titration, providing a channel for quantitative
measurement of enzyme concentration (Figure 4b) and allowing for sensitive and selective
detection of GST with a limit of detection (LOD) of 1.03 ng/mL.

Tyrosinase (TR) is an important polyphenol oxidase, which can catalyze the aerobic
oxidation of tyrosine [54]. The disordering of TR in the human body may be a cause
of Parkinson’s disease. In addition, TR has been considered as a mark for melanoma,
which corresponds to the concentration and activity of TR [55–59]. Feng Gao’s team used
the coprecipitation method to build TR detection pedots with two different fluorescent
emissions [60] (Figure 4c). The pedots are combined by poly(9,9-dioctylfluorenyl-2,7-diyl)
(PFO) and poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)] (CN-
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PPV), followed by further functionalization with L-tyrosine methyl ester (Tyr-OMe) via
electrostatic assembly. As shown in Figure 4d, the TR-catalyzed oxidation product of
Tyr-OMe could selectively quench the orange fluorescence emission from CN-PPV Pdots
through the PET effect. At the same time, the blue fluorescence emission from PFO Pdots
was preserved. This design strategy is very original. However, the electrostatic force is not
strong enough, which may induce the reduction of sustainability and leads to detachment
in long-period tracking. On this basis, introducing other kinds of intramolecular force, such
as hydrogen bonding, can enhance binding between the pedots [61].
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Figure 4. (a) Schematic Diagram of the Light Path for Single-Particle Imaging and the Principle of SPE
Assay for GST Detection. Adapted with permission from [53] (b) Fluorescence images of FCPNPs-
GSH on the glass slide surface at various concentrations of GST. Adapted with permission from [53]
(c) Schematic Illustration of Tyr-OMe Functionalized Pdots for Fluorescence Sensing of Tyrosinase.
Adapted with permission from [60] (d) (A–C) Two-photon fluorescence images of B16 cells labeled
with Pdots@Tyr-OMe. (D–F) Two-photon fluorescence images of Pdots@Tyr-OMe-stained B16 cells
pretreated with tropolone (50 µM) for 10 min. (G–I) Two-photon fluorescence images of untreated
control B16 cells. RPMI 1640 media supplemented with 10% fetal bovine serum is used for imaging
experiments, and the concentration of Pdots@Tyr-OMe is 1.0 µg/mL. The scale bar represents 100 µm.
Adapted with permission from [60].

2.3. Nucleic Acid Concentration Measurement

Nucleic acid concludes deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It
is a biological macromolecular compound polymerized by many nucleotides and is one
of the most basic substances of life [62–64]. DNA is the main basis for storing, replicating,
and transmitting genetic information. Meanwhile, RNA plays an important role in protein
synthesis. Thus, facile and reliable methods for the detection of DNA are of vital importance
to the medical field, such as medical diagnosis, mutational analysis, gene therapy, biological
studies, and specific genomic techniques [65,66].
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Mi-RNA-122 (microRNA) is a kind of small non-coding RNA, which participates in
cell proliferation and apoptosis by regulating gene expression after transcription [67]. An
increasing amount of evidence suggests that miRNA-122 is involved in the occurrence
and development of various liver diseases [68–71]. Xu et al. [72] developed an electro-
chemiluminescence (ECL) sensing platform, which can achieve ultrasensitive detection of
mi-RNA-122 (Figure 5a). Firstly, they synthesized a novel polymer with a carboxyl group
consisting of fluorene derivate and benzothiadiazole by the nanoprecipitation method.
Secondly, they construct the ECL biosensor based on the Pdots for miRNA-122 detection.
The system can capture a large number of ferrocene-modified DNA (Fc-DNA). The Fc-DNA
can quench the fluorescence of the OSNs by combining them with miRNA-122. In this
way, the accurate concentration of miRNA-122 can be determined. This biosensor achieved
high-sensitivity detection of miRNA-122 with a wide linear range of 0.1 fM to 100 pM and
a LOD of 36 aM (Figure 5c).
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Figure 5. (a) Diagram and principle for miRNA-122 detection by the ECL sensor. Adapted with per-
mission from [72]. (b) Schematic Diagrams of preparation of Probe 21 and Probe 205. Adapted with
permission from [73]. (c) The relationship between the ∆ECL intensities and the concentrations of
miRNA-122 from 0.1 fM to 100 pM. Inset: the linear relationship. Adapted with permission from [72].
(d) Blue and red channels for detection of 10, 5, 0.5, and 0.05 nM miRNA-21, miRNA205, and their mix-
ture of equivalent concentration, respectively. Adapted with permission from [73]. (e) Specificity of
the proposed imaging method for detection of miRNA-21, miRNA-205, their single-base-mismatched
and three-base-mismatched miRNA, miRNA-141, and miRNA-203 at 1 nM. Adapted with permission
from [73].
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Similarly, using the ECL strategy, the Huangxian Ju team [73] developed two miRNA
probes named L-Pdot and N-Pdot (Figure 5b) using DA (dopamine) and BHQ2 (black
hole quencher 2) as the quencher. Probe 21 can specifically distinguish the miRNA-21,
while Probe 205 can distinguish the miRNA-205. The concentration of miRNA-21 and
miRNA-25 (Figure 5d,e) can be quantitatively identified through the analysis of (PL)
photoluminescence spectroscopy and ECL images. These findings show the potential
of the ECL strategy in clinical diagnosis. However, these probes commonly can only
detect RNA in cell lysates, and designing in-cell RNA-detecting probes or further in-vivo
RNA-detecting probes is very meaningful.

DNA carries all of the genetic information for life [74]. In recent years, DNA analysis
has attracted many scientists because of its importance in hereditary diseases, clinical
diagnosis, and emerging DNA nanotechnology [75–79]. Bao et al. [80] reported a DNA
sensor that selectively (label-free) detects target ssDNA in serum. The sensor is formed by
the anionic carboxylic acid-functionalized polyfluorenes PFCOOH and the functionalized
PF-COOH Pdots (Figure 6a). Then, the dye Picogreen was embedded as the energy acceptor.
The fluorescence of Pdots will redshift from 390 nm to 530 nm when the Pdots meet the
target DNA. At the same time, the color of fluorescence corresponds from blue to green
(Figure 6b). In addition, the PF-DNAP Pdots specifically detected the DNA in serum
successfully (Figure 6c). In general, the flexible structure of DNA makes research on DNA
probes difficult. This work is meaningful for DNA probes, and more DNA OSNs probes
that can specifically detect different kinds of DNA are expected in the future. Moreover, for
long-time nucleic acid measurements, the influence on the transcription of DNA/RNA also
is a key issue. Tracking nucleic acid helps us further the study in biology and medicine.
However, there is a key problem in the designing of nucleic acid probes, especially in
in-vivo nucleic acid tracking, and the combination of the probes and nucleic acid may
cause abnormal nucleic acid transcription [81]. Thus, the in vivo nucleic acid OSNs probes
are possible to solve this challenge, such as by developing corresponding non-destructive
probes with regards to removal medicine.
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Figure 6. (a) Schematic illustration of the PF-DNAP CPNs for label-free DNA detection. Adapted
with permission from [80]. (b) PL change in PF-DNAP CPNs/PG before and after hybridization
between complementary target ssDNAC and non-complementary ssDNANC in HEPES containing
10 vol% serum. [ssDNAC] = [ssDNANC] = 8 × 10−9 M. Adapted with permission from [80]. (c) PL
spectra of PF-DNAP CPNs/PG in the presence of ssDNAC with [ssDNAC] ranging from 0 to 15 nM
in HEPES containing 10 vol% serum. Insets: fluorescence photographs of PF-DNAP CPNs/PG with
and without ssDNAC. λex = 390 nm. Adapted with permission from [80].
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3. In Vivo Tracking

Different from the biosensors used for in vitro imaging, the influencing factors for
in vivo tracking are more complex. Factors, such as water solubility, diffusion resistance,
blood circulation, pH, and temperature, all need to be systematically considered during
probe design. Moreover, the probes may be non-toxic to the target but toxic to other cells or
organs. Therefore, before applying probe technology for in vivo tracking, in vitro exper-
iments should first be performed to ensure its biosafety. Additionally, the probe should
have different metabolism speeds corresponding to different tracking periods. In addition,
stability and biocompatibility both are decisive factors for OSNs probes in in vivo track-
ing [82]. Reasonable molecular designing can improve the stability and biocompatibility
of OSNs, such as designing a stable molecular skeleton, reducing halogen atom content,
and so on [83–86]. Moreover, changes in molecular polarity due to changes in molecular
structure may change the toxicity of the system.

3.1. Tumor Localization

Today, cancer is a major public health problem and the major cause of death glob-
ally [87,88]. At present, the main diagnostic methods of cancer include ultrasound imaging
(US) [89], single photon emission computed tomography (SPECT) [90–92], positron emis-
sion tomography (PET) [93–95], electronic computed tomography (CT) [96], magnetic
resonance imaging (MRI) [97–99], and optical imaging [100–102]. Among them, radiolog-
ical imaging has not only unavoidable radiological risks but also certain deficiencies in
specificity, sensitivity, resolution, etc. [103–106]. As a non-invasive technique, fluorescence
imaging has the advantages of low risk of harm to humans, high sensitivity, and short
response time, thus receiving increasing attention from researchers.

Song et al. [107] reported a fluorescent nanoparticle named MMPF NPs (Figure 7a).
The MMPF NPs can multimodality locate the tumor in organisms. Combined with MPI,
MRI, and photoacoustics to enhance the imaging accuracy of tumors, this MMPF NP
has been confirmed as an effective research method. In addition, the half-time of the
MMPF NPs in circulation is 49.16 h, and they possess high tumor accumulation (18% ID/g)
(Figure 7b). The ultralong half-time and high tumor accumulation mean that the probe has
more chances to enter the viscera and accumulate more in the target tumor after injection
into the body. Thus, the imaging performance can be substantially improved. Moreover,
MMPF NPs offer ultrasensitive MPI imaging of tumors, enabling long-term tracking in
mice (nearly three months) (Figure 7c). This work developed a multimodality tracer that
has great potential in long-period tumor tracking. However, further medical experiments
are needed to determine whether the long-term presence of the probe in the body would
cause adverse effects on the health of the organism.

Nanoparticles are commonly prepared by the method of nanoprecipitation. How-
ever, the instability of the nanoparticle structure greatly weakens the performance of the
biosensor [108–110]. Chao Yin and his coworkers reported a new self-assembly method to
replace the nanoprecipitation method [111]. They reported non-dissociable near-infrared
(NIR)-absorbing OSNs for in vivo PA (photoacoustic imaging) and fluorescence imag-
ing. The OSNs are constituted of amphiphilic semiconducting oligomer (ASO) and hy-
drophilic poly (ethylene glycol) (PEG) side chains (Figure 7d). The ASO consists of pyrroli-
dine (DPP) and triphenylamine (TPA). The DPP and TPA both are organic photoelectric
molecules with excellent performance, which are widely used in organic field-effect transis-
tors (OFET) [112–114], Perovskite solar cells (PSCs) [115], and so on.

In the ASO system, the DPP acts as the accepter (A), while the TPA acts as the donor
(D). The D-A design strategy can enhance the carrier transfer rate to improve the strength
of fluorescence. Besides, adjusting the lowest non-occupied molecular orbital (LUMO) and
the highest occupied molecular orbital (HOMO) levels of the molecules can change the
emission wavelength. The ASO and PEG can form water-soluble nanoparticles by self-
assembly. At the same time, the PEG side chains can reduce nonspecific interactions with
plasma proteins. Thus, the system overcomes the dissociation issue of SPNs. The probe
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achieves efficient accumulation in the tumor of living mice with high signal-to-background
ratio tracking (Figure 7e,f).
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Figure 7. (a) Schematic preparation of MMPF NPs. Adapted with permission from [107]. (b) Longitu-
dinal MPI images of mice injected with MMPF NPs (2 mg/kg). Adapted with permission from [107].
(c) Longitudinal fluorescence images of mice (excitation: 680 nm; emission: 810 nm) after i.v. injection
of MMPF NPs (2 mg/kg). Adapted with permission from [107]. (d) Illustration of the synthesis of
ASO nanoparticles via self-assembly. Adapted with permission from [111]. (e) Fluorescence images
of a subcutaneous 4T1 tumor in a nude mouse 0, 8, and 24 h after intravenous administration of ASO.
Adapted with permission from [111]. (f) Fluorescence imaging of major organs of mice 24 h after
systemic administration of ASO. Adapted with permission from [111].
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3.2. Blood Vessel Imaging

In the biomedical field, fluorescence imaging, as a highly sensitive non-invasive
imaging technique, poses less risk of harm to the human body and has a shorter response
time. It has great potential in organ tracking, especially for deep-tissue diagnosis [116].
X-ray radiography is a common method for gastrointestinal disease diagnosis [117–119].
Before the X-ray radiography, the patient needs to take the contrast agent orally, such
as in the form of a barium meal. The barium meal will be excreted out of the body by
defecation [120–124]. In short-period medical examinations, metabolism is crucial for the
contrast medium.

Up to now, there were few studies on the biodegradability of biosensors. To solve
this problem, Jiang et al. [125] developed the first series of metabolizable NIR-II PA agents
named SPN-PT. They combine the hydrolyzable amphiphilic polymer, PA generator, and
poly (ethylene glycol)-methyl ether-block-poly (lactide-co-glycolide (PLGAPEG) to form
OSNs with great water solubility (Figure 8a), and benzobisthiadiazole (BBT) was selected
as the PA generator. BBT is a strong electron-withdrawing monomer, which can extend
the system absorbance into the NIR-II region. Because of its excellent water solubility, this
material can readily be degraded by phagocytes and be transformed into NIR fluorescent
ultrasmall metabolites (≈1 nm). In this way, the OSNs can excrete effectively, leaving no
toxicity to organisms (Figure 8b). Furthermore, the SPN-PT overcomes the strong scattering
of light by the skull in traditional brain imaging, and brain vasculature can be observed by
deep transcranial NIR-II PA imaging (Figure 8c,d).
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Figure 8. (a) Scheme of preparation of NIR-II PA SPNs via nanoprecipitation. Adapted with per-
mission from [125]. (b) Quantification of fluorescence intensities of the liver region in living mice
as a function of post injection time. Adapted with permission from [125]. (c) Quantification of PA
amplitudes of major blood vessels in panel. Adapted with permission from [125]. (d) PA images
of brain vasculature at designated time points at 1064 nm after intravenous administration of SPN-
PT (1.1 mg mL−1, 1 mL per rat) into living rats: (i) superior sagittal sinus; (ii) transverse sinus;
(iii) vascular branches; and (iv) middle cerebral artery. Adapted with permission from [125].
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Besides the strong scattering of light by the skull, there are many factors that affect imag-
ing performance, including photon scattering in biological tissues. In recent years, scientists
found that fluorescence imaging in the NIR-II window affords reduced photon scattering
in biological tissues and lower tissue background [126–131]. Thus, further improving the
tissue penetration depth is a way to enhance the imaging resolution and imaging fidelity.
Jiang et al. [132] reported the first organic imaging agent, named SPN-II (Figure 9a), which can
absorb both NIR-I and NIR-II light. In order to compare NIR-II with NIR-I imaging in terms
of imaging depth, they add four concentrations of agents into chicken breast tissues with
different thicknesses. As shown in Figure 9b–e, the signal-to-noise ratio (SNR) of all depths
are obviously higher in NIR-II imaging than that in NIR-I imaging. In addition, the lower
energy used for NIR-II allows for imaging of vulnerable areas of the body. Then, the SPN-II is
used for in vivo imaging of brain vasculatures in living rats (Figure 9f) Herein, the success-
ful development of the NIR-II imaging system demonstrates its potential for application in
high-penetration depth imaging with low damage.
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Figure 9. (a) Schematic illustration for preparation of SPN-II via nanoprecipitation method. Adapted
with permission from [132]. (b) Cell viability of NIH/3T3 cells after incubation with SPNs at different
concentrations. Adapted with permission from [132]. (c) SNR with [SPN-II] = 1 mg/mL at 750 or
1064 nm as a function of the depth of chicken breast tissue. Energy density: 5.5 mJ/cm2, R2 = 0.92549,
and 0.99172 for 750 and 1064 nm, respectively. Adapted with permission from [132]. (d) SNR with
different SPN concentrations at 1064 nm as a function of the depth of chicken breast tissue. Energy
density: 20 mJ/cm2. R2 = 0.99357, 0.98539, 0.98508, and 0.99005 for 0.05, 0.2, 0.5, and 1 mg/mL,
respectively. Adapted with permission from [132]. (e) Two-dimensional PA images of the agar
gel phantom containing SPN-II solutions were acquired in both NIR windows at different depths.
Adapted with permission from [132]. (f) PA images of rat cortex at 70 min postinjection of SPN-II
at 1064 nm. SPN-II was administered via tail vein injection with a dose of 1.8 mg per rat (n = 3).
Adapted with permission from [132].



Biosensors 2023, 13, 494 13 of 20

3.3. Particles Tracking

Air pollution is an important health concern globally. According to data published
by the World Health Organization (WHO), upwards of four million people die early
each year due to outdoor air pollution, and the main cause of this is particulate matter
pollution [133,134]. Therefore, exploring the deposition of particulate matter in the body
and developing imaging techniques for it is a crucial area of cutting-edge scientific research.
With the rapid development of nanotechnology, an increasing number of studies are
applying biosensors and nanotechnology for tracing particulate matter and in vivo imaging.
OSNs, consisting of fluorescently stained polystyrene nanoparticles, are now widely used
to model atmospheric particulate matter. In one study, this OSN was successfully used
to observe the dynamic deposition of particles in the lungs of mice in real-time using a
two-photon microscope [135]. As shown in Figure 10a, benefit from the excellent imaging
performance of OSN, the deposition and distribution pattern of particles in the lungs have
been tracked. Notably, OSN deposition was observed not only in the lung, but also in
the liver, where tissue density is higher and imaging is more difficult (Figure 10b). In
addition, using fluorescently stained polystyrene-stained nanoparticles, Furuyama et al.
were able to observe good imaging of OSNs in the liver, kidney, spleen, and other organs of
mice (Figure 10c) [136]. Quantum dots (QDs) are semiconductor nanocrystals with unique
optical and electrical properties. A team of researchers from the United States tracked QDs
by using fluorescence and transmission electron microscopy, and this was the first time to
observe the migration pathway of QDs from the nose to the brain of mice (Figure 10d) [137].
Previous studies have demonstrated the significant progress achieved in environmental
medicine through the use of OSN as a biosensor for in vivo imaging, overcoming the
bottleneck that limits high-resolution imaging of particles in vivo. Thus, there is a need to
develop different types of OSNs that can simulate natural particles, including PM2.5, to
explore the impact of particle pollution on human health.
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Figure 10. (a) Is the deposition patterns of PM2.0 and PM0.2 in a mouse lung by the fluorescent
intensity. (a1,a2) Show the high and low concentrations of PM2.0 particles in two local areas at the
left and right edges, respectively, of a mouse lung. Adapted with permission from [135]. (b) Is the
cross-section of the liver, with the deposition of PM0.2 particles. (b1) Is the amplified image of the
region in (b). Fluorescent particles are found on the wall of the lobular sinus of the liver. Adapted
with permission from [135]. (c) (A) The surfaces of the alveolar epithelial cells of mice receiving 20 nm
fluorescent particles; (B) the alveolar macrophages of mice receiving 200 nm fluorescent particles;
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(C) the red blood cells in the heart of mice receiving 20 nm fluorescent particles; (D) the phagocytes
on the surface of the endocardium of mice receiving 20 nm fluorescent particles; (E,F) the red blood
cells in the heart of mice receiving 20 nm fluorescent particles; (G) the glomeruli of the kidney of
mice receiving 20 nm fluorescent particles; (H) the glomeruli of the liver of mice receiving 20 nm
fluorescent particles. Adapted with permission from [136]. (d) Energy excitation-loss fluorescence
detection of quantum dots (QDs) in paraffin-embedded nasal tissues. This micrograph illustrates a
low level of diffuse false-colour imaging of excitation-loss regions within the nerve fascicles passing
through the cribiform plate of the cranium. Two small aggregates of more intense aggregation of QDs
(orange) are shown (arrows). TEM images showed the majority of QDs to be within axons. Therefore,
QD aggregates are most likely within axons; however, the possibility exists of a periaxonal location
as well. Adapted with permission from [137].

4. Conclusions and Outlook

Organic semiconductor nanoparticles (OSNs) offer several advantages for biosensing
applications, including strong fluorescence emission, adjustable emission wavelength,
and high biocompatibility, among others. Furthermore, by employing different design
strategies, we can develop a wide range of functional probes to meet various biosensing
requirements. The development of OSNs has the potential to advance the fields of biology
and medical science in several ways. Firstly, OSNs can serve as a platform for researchers
to monitor the circulation of ions or biological molecules in organisms, thus deepening our
understanding of their underlying mechanisms. Secondly, OSNs can be utilized for in vivo
tracking to enable faster and more accurate disease diagnosis. Overall, the development of
OSNs has the potential to significantly enhance medical science.

Despite several years of development, organic semiconductor nanoparticles (OSNs)
are still in the early stages of their development, and further advancements are required.
There are several issues that must be addressed to facilitate the continued progress of OSN
technology. (i) Although many probes have demonstrated non-toxicity to their targets,
their potential toxicity to other organs remains a concern. (ii) More investigations are
necessary to identify new applications of OSNs. (iii) The metabolism period of OSNs must
correspond to the intended tracking period. (iv) Design OSNs with multiple advantages,
including strong fluorescence in the NIR or NIR-II region and good stability. (v) Conducting
more clinical trials is essential to validate the accuracy and stability of OSN technology.
(vi) The sensitivity and effectivity of OSNs sensors need further enhancement to promote
the practical applications of OSNs in clinical diagnoses.

Table 1. The important parameters of OSNs biosensors.

Probe Target Emission Spectra
(λem) (nm)

Excitation Spectra
(λex) (nm) Ref.

P-dot@MnO2 GSH 510 458 [44]
DQ-CD@Pdots GSH 541 450 [45]

FCPNPs-GSH, GNPs@PEI GST 500–600 470 [53]
PFO/CN-PPV@Tyr-OMe TR 586 380 [60]

MiRNA-122 Probe MiRNA-122 543 - [72]
L-Pdots MiRNA-21 425 - [73]
N-Pdots MiRNA-205 672 - [73]

PF-DNAP CPNs ssDNAC 530 390 [80]
MMPF NPs tumor 810 680 [107]

ASO tumor 790 600 [111]
SPN-PT brain vasculature 820 710 [125]
SPN-II vessels 1064 - [132]
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