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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing
coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate,
timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in gen-
eral. Currently, traditional virus screening methods such as plate culturing and real-time PCR are
considered the gold standard with accurate and sensitive results. However, these methods still
require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the
integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability
to perform sample preparation and simultaneous detection of many analyses in one platform. High
sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved
using a single platform. This review presents recent advances in microfluidic-based biosensors from
many works to demonstrate the advantages of merging the two technologies for sensing viruses.
Different platforms for virus detection are classified into two main sections: immunoassays and
molecular assays. Moreover, available commercial sensing tests are analyzed.
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1. Introduction

Viruses are infectious microorganisms that contain genetic materials, either RNA or
DNA, and are encapsulated by a protein coat called a capsid [1,2]. Viruses must replicate
within host organisms and respond to the host metabolism. They can infect a wide range
of life forms and cause cell changes or even cell death [3]. The early diagnosis of viruses is
critical to save lives and control the spread of viral infection. Accurate, sensitive, and im-
mediate virus diagnosis usually requires the laboratory testing of clinical samples to detect
the presence of viruses [4]. Recently, there has been a major revolution in virus diagnostic
methods that have played a leading role in controlling the spread of viral infections [5]. For
virus detection, standard methods such as virus isolation [6], immune assays [7], nucleic
acid amplification methods [8], and hemagglutination/inhibition assays [9] are usually
employed. These methods typically require sophisticated and expensive instruments and
trained operators to perform them. The assay for virus detection generally takes place
in a central lab or hospital and requires a long analysis time, making it unsuitable for
on-site detection in low-resource areas [10]. With the spread of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), especially during the pandemic, rapid, sufficient,
and sensitive diagnostic methods for virus detection are required to control the outbreak in
both developing and developed countries.

Microfluidic technology manipulates fluids in channels with micrometer dimen-
sions [11]. Inside a microfluidic chip, there are networks of microchannels engraved.
The fluid is delivered into and out of the network of the channels through the inlet and
outlet holes of the chip. Fluids are accurately manipulated to perform analysis by specific
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systems such as pumps, valves, and the micromixer system. Microfluidic chips have a
high surface-to-volume ratio, which reduces the volume of reagents and increases the
effectiveness of thermal and mass aspects. This technology has the potential to be applied
in several fields, including physics, chemistry, biotechnology, and biochemistry [12]. The
microfluidic system offers many advantages that provide high-throughput analysis and
portability, decrease reaction time and sample and reagents used, enhance the control of
fluid flow, and increase the mixing rate and sensitivity [13,14]. To design a microfluidic
device, some dominant phenomena should be considered such as laminar flow, diffusion,
surface tension, and electrokinetics. Many materials are good candidates for the fabrication
of microfluidic devices. Among them, polymers are the most common because of their low
price and well-established fabrication processes. Silicon-glass heterogeneous assembly is
also a good choice for fabricating microfluidic chips which can resist chemicals and endure
application of high pressure. Recently, paper has been considered an alternative choice
in fabricating devices due to its biocompatibility, low cost, ease of use, and excellence in
chemical analysis. A biosensor is an analytical device with biological recognition elements
(such as nucleic acids, aptamers, antibodies, or enzymes). The recognition element is
immobilized on a physicochemical transducer, and a detector is connected to identify the
presence of specific analytes in the sample [15,16]. Owing to their portability, simplic-
ity, accuracy, rapid analysis, and low cost, biosensors have wide applications in medical
diagnosis, health care, food safety, and environmental monitoring [17–19]. Because of
these advantages, integrating microfluidics and biosensors offers the benefit of merging
biochemical and chemical processes into a single platform to produce a portable, dispos-
able, accurate, specific, sensitive, high-throughput, and low-cost tool for viral infection
monitoring. In this review, we comprehensively cover and update the research progress
on the relevant microfluidic devices involved in virus detection in the past five years. The
following section describes microfluidic platforms for several detection methods which
can be broken down into (1) immunoassay-based biosensors for detecting antigens from
virus particles and (2) molecular diagnostic biosensors for detecting DNA/RNA of viruses.
Among immunoassay-based methods, the lateral flow assay (LFA) and Enzyme-Linked
Immunosorbent Assay (ELISA), which are considered the gold standards for detecting pro-
tein components of viruses, are introduced together with their integration with biosensors.
Antigen-antibody interaction-based virus sensing platforms other than LFA and ELISA are
also reviewed to enhance some limitations of conventional LFA or ELISA. Another main
component of the virus—nucleic acids—is discussed to target the molecules associated with
virus detection in Section 2.2. The DNA/RNA-based detection methods are categorized as
PCR and isothermal amplification reactions, and several compelling methods combining
microfluidic technology for virus detection as well as the methods for detecting unamplified
DNA/RNA are also introduced.

2. Virus Detection on Microfluidic Platform
2.1. Immunoassay Methods

Immunoassay methods are based on the highly specific interaction between the target
antigen and corresponding antibody, which can rapidly recognize the virus protein and
bind. Among the immunological detection methods developed to detect viruses, LFA and
ELISA are most widely used because of their rapid and simple usage and high sensitivity.
The following sections introduce many works of literature integrating biosensors with LFA
and ELISA, as well as other immunological methods.

2.1.1. Lateral Flow Assay-Based Tests

The lateral flow assay (LFA) is a widely accepted analytical approach that adopts
paper-based biosensors to detect various analytes (e.g., heavy metals, proteins, and nucleic
acids), owing to its advantages such as high specificity, sensitivity, user-friendliness, and
affordability [20,21]. Accordingly, LFA-based devices hold great promise for point-of-
care testing (POCT) applications in virus detection because of their low price and simple
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operation [22]. With the use of LFAs, various viruses (e.g., influenza A, B, and C; HIV; and
Ebola) were successfully detected for on-site diagnosis without an expert. In addition, LFA
has been the most used method for monitoring SARS-CoV-2, especially during the COVID
pandemic [23]. In general, LFAs utilize antibodies as recognition elements and AuNPs as
reporter probes, and the detection result is directly visualized on the test strip without
requiring external energy sources [24]. For instance, Roberts et al. reported a portable LFA
for on-site detection of the Japanese Encephalitis virus in serum (Figure 1a) [25]. Using
AuNPs as immunoprobes, the test line turned red in the presence of the antigen, with
a limit of detection (LOD) of 10 pg/mL within 10 min. In Le et al.’s study, the authors
attempted to represent a dual-recognition element lateral flow assay for detecting influenza
viruses [26]. In this study, the combination of an aptamer with an antibody was adopted to
discriminate influenza virus types and subtypes, and a sensitivity of 90% was achieved as
compared with quantitative real-time PCR (qRT-PCR).

Biosensors 2023, 13, x FOR PEER REVIEW 3 of 26 
 

nucleic acids), owing to its advantages such as high specificity, sensitivity, user-
friendliness, and affordability [20,21]. Accordingly, LFA-based devices hold great promise 
for point-of-care testing (POCT) applications in virus detection because of their low price 
and simple operation [22]. With the use of LFAs, various viruses (e.g., influenza A, B, and 
C; HIV; and Ebola) were successfully detected for on-site diagnosis without an expert. In 
addition, LFA has been the most used method for monitoring SARS-CoV-2, especially 
during the COVID pandemic [23]. In general, LFAs utilize antibodies as recognition 
elements and AuNPs as reporter probes, and the detection result is directly visualized on 
the test strip without requiring external energy sources [24]. For instance, Roberts et al. 
reported a portable LFA for on-site detection of the Japanese Encephalitis virus in serum 
(Figure 1a) [25]. Using AuNPs as immunoprobes, the test line turned red in the presence 
of the antigen, with a limit of detection (LOD) of 10 pg/mL within 10 min. In Le et al.’s 
study, the authors attempted to represent a dual-recognition element lateral flow assay 
for detecting influenza viruses [26]. In this study, the combination of an aptamer with an 
antibody was adopted to discriminate influenza virus types and subtypes, and a 
sensitivity of 90% was achieved as compared with quantitative real-time PCR (qRT-PCR).  

 
Figure 1. (a) Schematic representation of the colorimetric sandwich-based LFA for rapid detection 
of the Japanese Encephalitis virus using gold nanoparticles. Reprinted with permission from [25]. 
Copyright (2022) RSC publications. (b) Schematic representation of the MQBs-based fluorescent 
LFA for rapid and enrichment and ultrasensitive detection of influenza A virus in a human speci-
men. (i) Schematic diagram of influenza A virus detection using MQBs-based LFA. (ii) Images and 
(iii) corresponding fluorescence intensities of the LFA for H1N1 virions and is insensitive to other 
respiratory viruses. Reprinted with permission from [27]. Copyright (2020) Elsevier. 

Figure 1. (a) Schematic representation of the colorimetric sandwich-based LFA for rapid detection
of the Japanese Encephalitis virus using gold nanoparticles. Reprinted with permission from [25].
Copyright (2022) RSC publications. (b) Schematic representation of the MQBs-based fluorescent LFA
for rapid and enrichment and ultrasensitive detection of influenza A virus in a human specimen.
(i) Schematic diagram of influenza A virus detection using MQBs-based LFA. (ii) Images and (iii) cor-
responding fluorescence intensities of the LFA for H1N1 virions and is insensitive to other respiratory
viruses. Reprinted with permission from [27]. Copyright (2020) Elsevier.

In another investigation, Wiriyachaiporn et al. used carbon nanotag-based LFAs for the
rapid detection of influenza A virus in allantoic fluids [28]. In the presence of the virus, the
formation of an antibody-antigen-carbon nanotag complex provided direct visualization
of the virus through carbon nanotag accumulation on the test line. Thus, the detection
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limit of the virus reached approximately 350 TCID50/mL. Using carbon nanoparticles as
reporters, this proposed LFA method could achieve better sensitivity and lower cost than
other nanotag reporters (e.g., gold nanoparticles, and latex beads).

On the other hand, for quantitative detection, fluorescence-based LFA was also ap-
plied and demonstrated high sensitivity. A fluorescence-based approach was designed
by Wang et al. in 2020 to detect SARS-CoV-2 RNA on an LFA strip [29]. The probe DNA-
functionalized fluorescent nanoparticles were used to capture the RNA of SARS-CoV-2
as well as for signal amplification. In total, 734 clinical samples were evaluated, and the
proposed LFA achieved a sensitivity of 100% and specificity of 99% compared to the results
obtained from quantitative RT-PCR. Furthermore, Bai et al. constructed a magnetic quan-
tum dot nanobead-based LFA (MQB-based LFA) for influenza A virus in clinical samples,
with aLOD of 22 PFU/mL of H1N1 virahions within 35 min (Figure 1b) [27]. In addition,
the high specificity of the MQB-based LFA for H1N1 virus strains against several other
respiratory viruses was confirmed.

On the other hand, the surface-enhanced Raman scattering (SERS) technique has been
extensively adopted for virus detection, owing to its ultrahigh sensitivity and label-free
detection. As a potent analytical technique for diagnostic investigations, many researchers
have adopted SERS for the detection of various viruses such as SARS-CoV-2 [30], influenza
viruses A and B [31], rotavirus [32], and hepatitis C virus [33]. Therefore, several studies
have suggested that combining SERS with LFA can improve assay sensitivity. For example,
Park et al. introduced a SERS-based LFA for the early diagnosis of influenza virus A [34]. In
particular, instead of using gold nanoparticles, a SERS-active nano tag was embedded in the
LFA strip, which led to an LOD as low as 1.9 × 104 PFU/mL. Xiao et al. utilized an antibody-
based SERS LFA to detect avian influenza virus H7N9 [35]. Core-shell AuAg4−ATP@AgNPs
was first used as a Raman probe, and the LOD was as low as 0.0018 HAU with a total
analysis time of 20 min. Lu et al. developed a dual-mode SERS-based LFA that can detect
both SARS-CoV-2 and influenza A virus from clinical samples [36]. This approach can
significantly reduce false-negatives compared with commercial colorimetric LFA assays. In
addition, Young et al. developed a portable SERS-LFA system (SERS-LFA strip and reader)
to resolve the sensitivity issues raised in commercial LFAs targeting SARS-CoV-2 from
clinical samples (Figure 2) [37]. This system could detect the SARS-CoV-2 antigen on-site
with high sensitivity within 15 min, with an LOD of approximately 3.53 PFU/mL.

In recent years, CRISPR-based LFAs have been developed to enhance the sensitivity
and specificity of nucleic acid detection in biological samples containing a low number of
targets [38,39]. In addition, a LFA strip combined with CRISPR/Cas9 allows multi-target
detection and eliminates the need for instruments for nucleic acid-based detection [40]. In
summary, LFA is a compelling approach for virus detection, especially multiplex detection.
With the integration of other detection strategies, the sensitivity and specificity of LFAs can
be enhanced, making commercialization more attainable.

2.1.2. Enzyme-Linked Immunosorbent Assay-Based Tests

The enzyme-linked immunosorbent assay (ELISA) is the gold standard for the de-
tection of proteins, peptides, antibodies, and RNA/DNA of viruses because it has high
sensitivity with a very low LOD and a high affinity for a surface epitope of viruses or bacte-
ria [41–43]. However, commercial ELISA kits are relatively expensive and time-consuming
(>120 min) [44,45]. To overcome these problems, many researchers have combined ELISA
with microfluidics to improve the convenience of ELISA by making it a low-cost and rapid
diagnostic tool [46–48]. Among other formats (such as direct, indirect, sandwich, and
competitive ELISA), sandwich ELISA is the most widely adopted, owing to its highly
efficient detection because two or more types of antibodies bind to samples [49,50]. For
example, Wu et al. reported a sandwich ELISA-based microfluidic chip for nucleocapsid
(N) protein detection in COVID-19 (Figure 3a) [51]. In this study, a synthesized platinum-
decorated gold nanoparticle (Au@Pt NP) that displayed high catalytic activity was utilized
for naked-eye detection less than 40 min, and the LOD was 0.1 pg/mL of N protein in a
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throat swab sample. Ma et al. reported an indirect multicolorimetric ELISA integrated
with a microfluidic device for rapid visual detection of the hepatitis C virus, with an LOD
of 9.1 ng/µL within 50 min [52]. Kasetsirikul et al. reported ELISA-based colorimetric
detection of SARS-CoV-2 antibody, and the LOD was 9 ng/mL [53]. With the use of a
paper-based microdevice, the sample volume needed for analysis was only 5 µL, and the
results were validated by naked-eye readout within 30 min of analysis. Ozefe et al. also
developed a micro-paper ELISA (µPISA) for rapid detection of the hepatitis C virus (HCV),
and the LOD was approximately 10 ng/mL for HCV when a human blood plasma sample
was used [54].
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In another study, Song et al. introduced a digital protein microarray platform pre-
equilibrium digital enzyme-linked immunosorbent assay (PEdELISA) microarray for the
fast detection of four types of cytokines (IL-6, TNF-α, IL-1β, and IL-10) from COVID-19
patients for clinical applications, and an LOD as low as <0.4 pg/mL from clinical samples
was achieved [55]. Significantly, this platform could achieve a rapid digital immunoassay
with a clinically relevant fM–nM dynamic range without losing signal-sensing linearity
by combining single-molecular counting with early pre-equilibrium reaction quenching.
Furthermore, Clark et al. presented an electrochemical capillary-driven immunoassay
device for directly detecting SARS-CoV-2, influenza A, and sindbis virus [56]. In particular,
the automated sandwich ELISA sequentially introduced all reagents using a flow device,
enhancing user-friendliness and reducing the analysis time and cost of this platform. In
another investigation, Samper et al. reported a novel low-cost electrochemical capillary-
flow device for the rapid quantification of IgG antibodies targeting SARS-CoV-2 protein
in human whole blood samples based on a competitive ELISA method, and the LOD was
approximately 5 ng/mL (Figure 3b) [57]. Recently, Samper et al. also used electrochemical
immunoassays for the rapid detection of SARS-CoV-2 in nasopharyngeal samples within
70 min [58]. This device could achieve high specificity using a sandwich ELISA for captur-
ing the antigen of the virus, and the LOD was approximately 50 PFU/mL from 20 µL of the
virus sample.
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based microfluidic chip immunoassay for COVID-19 detection. (i) Schematic diagram of COVID-19
immunoassay microdevice operation procedure. (ii) Analytical performance: Images of the mi-
crofluidic chip immunoassay and absorbance intensity obtained at different concentrations of N
protein ranging from 0.1 to 1000 pg/mL. Reprinted with permission from [51]. Copyright (2022)
ACS publications. (b) Schematic representation of the electrochemical capillary-flow immunoassay
for SARS-CoV-2 detection. (i) Schematic overview of the entire smartphone-based detection system
using electrochemical capillary-flow immunoassay. (ii) Sequential delivery of blood sample inside a
microdevice within 20 min. Reprinted with permission from [57]. Copyright (2021) ACS publications.

Wang et al. developed an ELISA-based microfluidic immunoassay for the rapid, high-
throughput, and ultrasensitive detection of multiple SARS-CoV antigens and antibodies
in serum samples [59]. By integrating graphene oxide quantum dots and microdevices,
this biochip could simultaneously detect 60 serum samples in a single assay. It only takes
10 min for qualitative detection with high sensitivity (LOD ~0.3 pg/mL).

To improve the efficiency of virus diagnosis, Gong et al. proposed a paper-based
microfluidic ELISA for SARS-CoV-2 detection in human blood [60]. In this study, the mi-
crofluidic platform was used to collect the serum by a pulling-force spinning top, and then
the IgA/IgM/IgG was measured by ELISA without the use of any instrument. This device
achieved a high specificity and sensitivity (>>99% accuracy) for confirming SARS-CoV-2
infection. In addition, the fabrication cost of this device was less than 5.00 USD, which could
provide an excellent option for the detection of other viruses in low resource-setting areas
or even home diagnosis of SARS-CoV-2 or other viruses. In another study, Chen et al. fabri-
cated an electricity and external instrumentation-free 3D origami paper-based biosensor-
based ELISA for the detection of HIV, and the limit of detection was 0.03 ng/mL [61]. Thus,
ELISA-based microfluidic immunoassay opens a new door for commercializing a portable,
cost-effective, and rapid immunosensing platform with ultra-sensitivity, on-site detection,
and use in low-resource setting areas.

2.1.3. Others

Other than the abovementioned methods, alternative approaches have been exploited
to achieve a higher degree of sensitivity in determining the presence of virus antigens. These
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include electrochemistry-based methods (e.g., field-effect transistor (FET)), optical-based
methods (e.g., SERS), and more recently, terahertz-wave-based methods. The following
section discusses about the adaptation of these techniques in immuno-based sensors.

Field-effect transistor (FET) biosensors have been actively applied for virus detection,
especially during the COVID-19 pandemic, owing to their small size, label-free nature,
multiplex detection, and ultra-high sensitivity [62–64]. Seo et al. developed a graphene-
based FET biosensing device for the early diagnosis of SARS-CoV-2 in clinical samples [65].
This FET sensor achieved a high sensitivity (1 fg/mL) by integrating the SARS-CoV-2 spike
antibody with graphene. Chen et al. reported that reduced graphene oxide-based FET
were useful as conducting channels in FET-based biosensors for real-time detection of the
Ebola virus in clinical samples, and the limit of detection was approximately 1 ng/mL
with a real-time response [66]. Wasfi et al. also used a graphite oxide-based FET for
real-time detection of the COVID-19 spike protein antigen, and the limit of detection was
approximately 1 fg/mL of the COVID-19 spike antigen in phosphate-buffered saline [67].
In another study, Fathi-Hafshejani et al. reported a novel WSe2-based FET biosensor for
the rapid detection of SARS-CoV-2 in vitro (Figure 4a) [68]. This FET could achieve such a
high sensitivity (LOD = 25 fg/mL) by functionalizing WSe2 monolayers with a monoclonal
antibody against the SARS-CoV-2 spike protein. Therefore, this platform shows immense
potential for immunological diagnosis and can be applied for rapid virus detection in
clinical diagnosis, on-site detection, and POCT.

Optical-based methods were also exploited to detect viruses. Park et al. introduced
a SERS microdroplet sensor for the rapid detection of SARS-CoV-2 using magnetic beads
(Figure 4b) [69]. In this study, using a combination of SERS and microdroplets, this platform
dramatically improved the limit of detection (0.22 PFU/mL) within 10 min of the total assay
time. This SERS-based microdroplet sensor has high potential for developing a new POCT
for the detection of viruses, including SARS-CoV-2. Furthermore, Achadu et al. reported a
SERS-based biosensor for ultrasensitive immunoassays of hepatitis E virus or norovirus
using molybdenum trioxide quantum dots (MoO3-QDs) as SERS nanotags. In addition,
this SERS-based biosensor achieved a signal enhancement factor, and the limit of detection
was approximately 6.5 and 8.2 fg/mL for the hepatitis E virus and norovirus in the fecal
specimens and clinical samples, respectively. More recently, there have been efforts to de-
velop more direct and non-destructive methods for identifying viruses, and terahertz-based
spectroscopy has gained attention [70–72]. Terahertz waves have a low photon energy of
around 4 meV for 1 terahertz, which avoids damaging analytes from heat and ionization. In
addition, the terahertz range includes binding energies between major biological molecules
such as hydrogen bonding, which can be engaged in the investigation and identification
of unique spectral properties of biological matters including viruses. However, the strong
absorption to water molecules limits their application to hydrated samples, and low sensi-
tivity and specificity restrict the virus identification, as demonstrated by Lee et al., where
the H9N2 virus pellet showed no spectral difference from its control [73]. They further
improved its detection sensitivity by constructing a terahertz metamaterial-based sensor,
which can greatly enhance the electric field depending on the incoming radiation of tera-
hertz wavelengths. The metamaterial chip was designed to have three different resonance
frequencies which aided in the detection of optically unknown viruses. Ahmadivand used
a toroidal metamaterial sensor with bimetallic asymmetrical planar resonators to detect the
envelop protein of the Zika virus [74]. Zika virus antibody was immobilized on the surface
of the structure, and the shift in toroidal resonant frequency in response to Zika virus
envelop protein added to the chip was measured to obtain ~24 pg/mL LOD. Results from
other studies suggest that incorporating gold nanoparticles (AuNPs) into terahertz sensors
can remarkably enhance their sensitivity [75]. Shi constructed all-dielectric terahertz meta-
material sensors to detect human influenza hemagglutinin tag protein, assisted by AuNPs
functionalized with the specific antibody [76]. According to the results, 2.66 times higher
sensitivity was achieved when compared to the counterpart without the functionalized



Biosensors 2023, 13, 490 8 of 24

AuNPs, and its specificity was validated by comparing the target against bovine serum
protein, ovalbumin, and whey proteins.
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In addition, “machine learning” has been intensively used to help enhance the per-
formance of microfluidics with higher sensitivity and specificity [77]. Gao reported a
machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine
monitoring in COVID-19 patients (Figure 5) [78]. This study used a facile one-step sand-
wich immunoassay format for the simultaneous detection of six cytokines (IL-1β, IL-2, IL-6,
IL-10, TNF-α, and IFN-γ) in a single run using only 3 µL serum samples, and the LOD was
approximately 0.46–1.36 pg/mL. The combination of microfluidic technology and machine
learning effectively achieved the high-throughput detection of multiple immune biomark-
ers in a rapid, sensitive, selective, accurate, and easy-to-implement manner to be exploited
as an advanced point-of-care (POC) detection platform for immune biomarkers effectively
applicable for the early-stage diagnosis of diseases. In another study, Teengam et al. intro-
duced a smartphone-based portable immunosensing device for the detection of HBV, and
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the limit of detection was about 0.17 µg/mL of HBsAg in the clinical samples [79]. With
the use of smartphones, this low-cost electrochemical immunosensor not only provides
real-time results with high sensitivity and portability, but could also help to upload and
share the results information for supporting treatment or outbreak prevention.

Biosensors 2023, 13, x FOR PEER REVIEW 9 of 26 
 

protein of the Zika virus [74]. Zika virus antibody was immobilized on the surface of the 
structure, and the shift in toroidal resonant frequency in response to Zika virus envelop 
protein added to the chip was measured to obtain ~24 pg/mL LOD. Results from other 
studies suggest that incorporating gold nanoparticles (AuNPs) into terahertz sensors can 
remarkably enhance their sensitivity [75]. Shi constructed all-dielectric terahertz 
metamaterial sensors to detect human influenza hemagglutinin tag protein, assisted by 
AuNPs functionalized with the specific antibody [76]. According to the results, 2.66 times 
higher sensitivity was achieved when compared to the counterpart without the 
functionalized AuNPs, and its specificity was validated by comparing the target against 
bovine serum protein, ovalbumin, and whey proteins. 

In addition, “machine learning” has been intensively used to help enhance the 
performance of microfluidics with higher sensitivity and specificity [77]. Gao reported a 
machine-learning-assisted microfluidic nanoplasmonic digital immunoassay for cytokine 
monitoring in COVID-19 patients (Figure 5) [78]. This study used a facile one-step 
sandwich immunoassay format for the simultaneous detection of six cytokines (IL-1β, IL-
2, IL-6, IL-10, TNF-α, and IFN-γ) in a single run using only 3 µL serum samples, and the 
LOD was approximately 0.46–1.36 pg/mL. The combination of microfluidic technology 
and machine learning effectively achieved the high-throughput detection of multiple 
immune biomarkers in a rapid, sensitive, selective, accurate, and easy-to-implement 
manner to be exploited as an advanced point-of-care (POC) detection platform for 
immune biomarkers effectively applicable for the early-stage diagnosis of diseases. In 
another study, Teengam et al. introduced a smartphone-based portable immunosensing 
device for the detection of HBV, and the limit of detection was about 0.17 µg/mL of HBsAg 
in the clinical samples [79]. With the use of smartphones, this low-cost electrochemical 
immunosensor not only provides real-time results with high sensitivity and portability, 
but could also help to upload and share the results information for supporting treatment 
or outbreak prevention.  

 
Figure 5. Schematic representation of the machine-learning-assisted microfluidic nanoplasmonic 
digital immunoassay for high-throughput, multiplex cytokine detection in COVID-19 patients. Re-
printed with permission from [78]. Copyright (2021) ACS publications. 

2.2. Molecular Methods 
Early diagnosis can effectively control the spread of viral infection. Therefore, reliable 

and rapid screening methods are needed. Immunoassays and molecular methods are the 

Figure 5. Schematic representation of the machine-learning-assisted microfluidic nanoplasmonic digi-
tal immunoassay for high-throughput, multiplex cytokine detection in COVID-19 patients. Reprinted
with permission from [78]. Copyright (2021) ACS publications.

2.2. Molecular Methods

Early diagnosis can effectively control the spread of viral infection. Therefore, reliable
and rapid screening methods are needed. Immunoassays and molecular methods are the
most common technologies used for virus detection [80]. Although immunoassays are
simple and rapid, they still require more sensitivity and accuracy in the initial stages of
infection. Molecular methods that detect viruses based on their nucleic acids are highly
sensitive and specific [81,82]. Microfluidic-based biosensors for molecular methods have
been developed based on the standard approach of nucleic acid analysis involving conven-
tional PCR and isothermal amplification. These methods were adapted from macroscale
molecular methods, mainly by integrating multiple steps into a microfluidic platform.
The downscaling process benefits sample and reagent savings, decreases contamination,
and has a rapid turnaround time. In this section, we summarize several examples of
microfluidic devices for virus detection based on molecular methods.

2.2.1. PCR

The gold standard for detecting viral infection is a nucleic acid amplification test
using PCR [83,84]. These methods offer excellent accuracy, sensitivity, specificity, and time
efficiency. However, the major disadvantage of PCR is the requirement of sophisticated
equipment for the reaction [85,86]. Owing to the success of conventional PCR, many mi-
crofluidic platforms have been integrated with PCR for virus detection without the need
for a complicated thermocycler. Research published in 2022 introduced a portable and
magnetofluidic cartridge platform for the multiplexed detection of SARS-CoV-2 [87]. The
platform can identify SARS-CoV-2 variants and screen for influenza A and B. Automated
PCR was integrated for virus detection within 30 min [87]. Clinical samples, including
saliva and nasopharyngeal samples, were collected for testing. The magnetofluidic car-
tridge ensured transportation of the sample for nucleic acid purification and amplification.
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In another study, a platform for sensitive POC HIV load quantification was developed
(Figure 6a) [88]. HIV can be quantified from the blood. The device has a plasma separation
membrane and absorbent material. After plasma separation, the viral RNA was extracted
using a magnetofluidic cartridge. Purified RNA was then amplified and quantified using
a portable instrument for RT-PCR within 15 min, and the limit of detection was approx-
imately 500 HIV RNA copies/mL. A ”FilmArray” was developed to detect and identify
21 common viral and bacterial respiratory pathogens from one sample in one hour. The
platform combined nucleic acid extraction and PCR to simultaneously screen a wide range
of nucleic acid targets [89]. A fully automatic integrated digital PCR system has been
proposed for the quantitative detection of hepatitis B. The greatest advantage of this system
is that it is an automatic and fully integrated all-in-one system. Unlike existing digital
PCR systems, which require many separate devices, including sample loading, droplet
generation, PCR reaction, and signal analysis, this system simplifies multi-step operation
on one platform (Figure 6b). For analysis, the sample was added to the entrance of the
instrument, and the test results were directly obtained [90].

2.2.2. Isothermal Amplification

Isothermal nucleic acid amplification is an alternative method to conventional PCR.
Owing to the use of a thermocycler, PCR has limitations in its application for POCT.
Meanwhile, isothermal amplification requires only one constant temperature for the reac-
tion; therefore, it eliminates the need for complicated temperature control [91–93]. Many
isothermal amplification methods have been developed and extensively applied to POCT,
including nucleic acid sequence-based amplification (NASBA), recombinase polymerase
amplification (RPA), loop-mediated isothermal amplification (LAMP), helicase-dependent
amplification (HDA), and recombinase aided amplification (RAA) (Figure 7) [94,95]. Cur-
rently, isothermal amplification has attracted significant attention for its wide application
in the diagnostic field, especially for SARS-CoV-2 detection, without the need for sophisti-
cated instruments [96]. LAMP is a promising candidate for developing rapid and simple
molecular-based microfluidic-based biosensors to detect viral infections [97]. This tech-
nique employs between two and three primer sets to recognize many regions of the target
sequence with high specificity and sensitivity. The temperature required for the reaction
was approximately 60–65 ◦C with a reaction time of less than 1 h. Owing to these ad-
vantages, LAMP has been employed to develop microfluidic-based biosensors. A POCT
platform was developed to detect SARS-CoV-2 with a high accuracy, specificity, and sen-
sitivity. The LAMP assay was used to detect SARS-CoV-2 [98]. The platform, in which
sample transportation, extraction, and amplification steps were integrated into a disposable
cartridge, was ultra-portable. The entire process for sample analysis was controlled by a
unit with a pocket size and was operated by a battery. Colorimetric results were obtained
within 35 min [98]. A paper-based device has been introduced to detect SARS-CoV-2
in human saliva. RT-LAMP was integrated into the device to target SARS-CoV-2. The
colorimetric signal obtained from the reaction enabled a user-friendly response. Within
60 min, the device could detect the virus in the sample without sample preparation, with
a high specificity of 100% and high sensitivity of 97%. The LOD for this device was
200 copies/µL [99]. In another study, Wang introduced a dual microchip (Dµchip) and
portable detection device for simultaneous detection of SARS-CoV-2, influenza viruses A,
H1N1, H3N2, and influenza viruses B using RT-LAMP and Cas12a assays, and the LOD
was 10 copies/sample [100].
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(2020) Elsevier.

RPA employs a recombinase and polymerase for amplification. Primer hybridization
is catalyzed by recombinase. The recombinase-primer complex scans through double-
stranded DNA and searches for homologous sequences. Upon recognition of the cognate
site, the complex promotes strand exchange. Single-stranded DNA-binding proteins help
stabilize the resulting DNA structure. DNA polymerase catalyzes DNA prolongation.
The reaction temperature was quite low—approximately 37–42 ◦C—and results were ob-
tained in less than 30 min [101]. An electrochemical biosensor was developed to detect
SARS-CoV-2 rapidly and accurately. The sensor was combined with RPA on a multi-
microelectrode platform and targeted multiple SARS-CoV-2 genes. Primer sets for each
gene were immobilized on the electrodes, and the production of amplicons resulted in a
significant reduction in the current density. Signals from different electrodes were recorded
using differential pulse voltammetry. RdRP gene and N gene of the virus could be detected
at a low level with the limit of detection of 0.972 fg/µL and 3.925 fg/µL, respectively [102].
A wearable device was used to detect the HIV-1 DNA. The microfluidic device was com-
bined with the RPA, and body heat was used as the heat source for amplification. A
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cellphone-based fluorescence detection system was integrated into the device to realize a
portable, electricity-free device for the POCT of infectious pathogens in low-resource areas.
The LOD of the device was approximately 102 copies/mL within 24 min [103].

Rolling circle amplification (RCA) used unique DNA or RNA polymerases and circu-
lar DNA templates to amplify short DNA or RNA. The RCA product had a concatemer
structure. The structure contained tandem repeats with sequences complementary to the
circular template [104]. A microfluidic system using mesh-based RCA was developed to
detect SARS-CoV-2. The most exciting feature of this approach is that the system combined
RCA, DNA gelation, blockage by gelation in the mesh micropores, and hydrostatic mi-
crofluidics. The system offered a rapid and ultra-sensitive detection of SARS-CoV-2 with a
DNA concentration of 3–30 aM in 5 to 15 min [105].
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2.2.3. CRISPR-Assisted Method

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-
associated (Cas) protein systems were first discovered in 1987 [107]. The CRISPR system,
originating from archaea and bacteria, is the immune mechanism of these microorganisms.
The system contains the CRISPR gene and CRISPR-Cas proteins, which can cleave specific
nucleic acids under the guidance of RNA [108]. Recently, CRISPR-Cas systems have
been widely applied in the diagnostic field because of their specificity, ease of use, and
programmability [109–111]. In this section, we discuss the different Cas enzymes and their
applications in diagnostic assays. Based on genes encoding effector modules, the CRISPR-
Cas system can be divided into two main classes: “class 1” and “class 2” [112]. Furthermore,
based on the organization of their loci and proteins, these classes can also be subdivided into
distinct types. The class 1 system, which employs a complex of multiple effector proteins,
includes types I, III, and IV. The class 2 system encompasses single crRNA-binding proteins,
such as Cas9, Cas12, and Cas13. Because of the activities of different Cas systems, class 2
systems are widely used for diagnostic purposes. For example, CRISPR/Cas13 can be used
to target single-stranded RNA, and CRISPR/Cas14 can be used to target single-stranded
DNA [113]. In addition, the use of the CRISPR/Cas system for nucleic acid detection can
achieve multiplexing and high sensitivity down to the attomolar level [113]. Therefore,
the integration of CRISPR/Cas into microfluidic-based biosensors may provide accurate,
highly sensitive, rapid, and powerful tools for nucleic acid detection (Figure 8) [114–116]. A
face mask with a SARS-CoV-2 sensor was developed for wearable, simple, and noninvasive
detection. The detection process required minimal user intervention with only one button-
pressing step [117]. The sensor combined RT, RPA, and CRISPR/Cas12a for SARS-CoV-2
detection. The limit of detection of the sensor was 500 viral copies. An automated system
was developed to detect Ebola RNA with the aid of RNA-guided RNA endonuclease
Cas13a. The microfluidic system provided an automatic mixing and hybridization strategy
for sample analysis. The generated signals were measured using a custom-integrated
fluorometer [118]. Another study introduced a rapid assay for the sensitive detection
of SARS-CoV-2 by integrating isothermal amplification with CRISPR-Cas12. The target
RNA was amplified by reverse transcriptase recombinase polymerase and recognized by
the CRISPR assay. The signal was collected by fluorescence measurements or a lateral
flow strip [119]. Recently, Zhou et al. reported a heating-membrane-assisted multiplexed
microfluidics for the fast and low-cost detection of HPV subtypes using a combination
of RPA and CRISPR assays [120]. This device could simultaneously detect HPV16 and
HPV18 within 30 min, and the LOD was approximately 1 × 10–18 M using plasmids.
In addition, Zhao et al. developed a dual-droplet device for simultaneous detection of
HPV16 and HPV18 by combining the CRISPR-Cas12a system with a multiplexed RPA
assay, and the LOD was about 1 copy/reaction [121]. Two types of influenza virus, A
and B, were successfully detected using a rapid on-site assay. This assay was developed
based on the activity of the CRISPR/Cas system in combination with RT-LAMP. The lateral
test strips provided a naked-eye read-out. The results were obtained in less than 85 min
with high sensitivity and specificity [122]. An autonomous lab-on-paper platform has
been developed to detect SARS-CoV-2 rapidly. The assay combined RT-RPA and CRISPR-
Cas12a to simultaneously identify multiple genes, including the nucleoprotein gene, spike
gene of the virus, and human housekeeping RNAse P gene. The assay can detect down
to 102 copies of viral RNA in less than one hour [123]. A diagnostic platform called
microfluidic Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids
(mCARMEN) was proposed to effectively detect viruses and their variants. The platform
combined microfluidic technology with the CRISPR/Cas system to test up to 21 viruses.
Many samples collected from clinical settings were tested to prove the effectiveness of
the system [124]. A microfluidic system (MAPnavi) was introduced to accurately and
sensitively detect multiple respiratory viruses in less than 40 min. The system integrated
nested RPA with CRISPR/Cas12a to achieve a low detection limit of 50–200 copies/mL.



Biosensors 2023, 13, 490 14 of 24

Swab samples collected from COVID-19 patients were used to demonstrate the success of
this approach [125].

2.3. Others

In addition to nucleic acid amplification and immune assay methods, other approaches,
including electrochemical detection, advanced microscopy, and plasmonic sensing, have
been applied to detect various viruses.

An inexpensive and rapid assay for the colorimetric detection of SARS-CoV-2, termed
MARVE (for multiplexed, nucleic-acid-amplification-free, single-nucleotide-resolved viral
evolution), was developed to detect SARS-CoV-2 variants at the single-nucleotide level.
For user-friendly and cost-effective purposes, the assay was integrated into a foldable
paper platform. The assay detected viral variants based on a nucleic acid amplification-free
strategy. Upon recognizing the specific sequence of the virus, an enzyme-based assay
generated a colorimetric signal to realize a simple method for the result readout [126].

A sample preparation multiplexer (SPM) was introduced to improve the speed, ex-
traction efficiency, and throughput of the optofluidic system. The system increased the
efficiency and speed of the target capture by employing metered air bubbles. The bubbles
stirred up the magnetic beads in which the capture probes were immobilized (Figure 9) [127].
An impedance biosensor was developed to detect the H5N1 avian influenza virus. The
microfluidic flow cells and microelectrodes were integrated into the biosensor. The DNA
aptamer was immobilized on the electrode to identify specific targets. When the virus was
specifically captured on the microelectrode surface, the magnitude of impedance increased.
This biosensor can detect viruses within 30 min [128]. An electromechanical biosensor
was used to detect SARS-CoV-2 RNA. The biosensor was incorporated into a portable
device. The detection was performed using a molecular system. The system consisted
of an aptamer probe bound to a cantilever made of flexible single-stranded DNA. The
cantilever was linked to a tetrahedral double-stranded DNA structure. The system offered
an ultrasensitive diagnostic tool with 1–2 copies in 100 µL in less than 4 min [129].
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3. Microfluidic Assists in the Pandemic Era

In late 2019, the COVID-19 outbreak caused by SARS-CoV-2 spread rapidly across the
globe, leading to a great crisis in global health, life, and the economy. To limit the damage
cause by COVID-19 and other infectious diseases, effective and rapid diagnostic tools are
necessary. During the pandemic, the market witnessed a substantial number of commercial
assays for the rapid detection of the virus. Technological innovations have played an impor-
tant role in the early detection of viruses. The integration of microfluidic-based biosensors
offers many advantages for infection monitoring compared with conventional laboratory-
based methods, especially for applications in low-resource areas. Its advantages include
ease of use, low cost, high throughput, rapid analysis time, affordable accuracy and sensitiv-
ity, and portability. To guide the development of diagnostic tools in low resource areas, The
World Health Organization has set guidelines referred to as “ASSURED”—(a) affordable,
(b) sensitive, (c) specific, (d) user-friendly, (e) rapid and robust, (f) equipment-free, and
(g) deliverable to end users [130,131].

Over the past two decades, the growth rate of microfluidic products in the medical
diagnosis market has been sharply increasing, which indicates the potential for the com-
mercialization of microfluidics. Driven by the great demand for portable, wearable devices,
point-of-care testing, and personal healthcare, the global microfluidic components market
is expected to grow from 20.7 billion USD in 2021 to 23.2 billion USD in 2026 [132]. Several
ventures have commercialized a variety of microfluidic platforms to monitor different types
of targets, including pathogens and cancer markers (Table 1).

In this section, we summarize some outstanding products for virus detection [133,134].
We mainly focused on common microfluidic platforms for virus detection, especially during
the pandemic period.
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Table 1. Commercialized microfluidic products.

Company Main Products

Roche Diagnostics Rapid antigens test
cobas® SARS-CoV-2 & Influenza A/B test

Cepheid GeneXpert System
Xpert® Xpress SARS-CoV-2

Caliper Life Sciences LabChip system

Abbott Laboratories ID Now™
Determine™ HIV-1/2 AG/AB Combo

Standard BioTools Inc. BioMark HD System
X9™ Real-Time PCR System

Agilent Technologies The AriaDx instrument

Elecsys® Anti-SARS-CoV-2, developed by Roche, is an immunoassay used for the
qualitative detection of SARS-CoV-2 antibodies. Human serum or plasma samples were
used for testing. The test was intended to indicate whether the user has had a recent or
prior infection. The analysis time for the test was approximately 18 min [135].

The Cobas® SARS-CoV-2 test is a qualitative assay developed by Roche that targets
SARS-CoV-2 based on nucleic acid amplification reactions. A fully automated cobas®

6800/8800 system was used for the test. The samples collected for the test were oropharyn-
geal, nasal, and nasopharyngeal swab [136].

The ID NOW™ COVID-19, produced by Abbott, is one of the leading molecular
point-of-care platforms for COVID-19 diagnosis. The assay was performed using the ID
NOW Instrument. The nucleic acid isothermal amplification technology integrated into the
assay targeted a unique region of the RdRp segment of the virus. The results were obtained
within 13 min [137].

Xpert® Xpress CoV-2 plus is a rapid, real-time RT-PCR test developed by Cepheid.
This was intended to qualitatively detect nucleic acid of SARS-CoV-2. The samples used
for the test were nasopharyngeal swabs, anterior nasal swabs, mid-turbinate nasal swabs,
oropharyngeal swabs, and nasal wash/aspirate specimens. GeneXpert Dx, GeneXpert
Infinity, and/or GeneXpert Xpress systems were used to perform the assays [138].

Table 2 summarizes some commercialized microfluidic platforms for the rapid detec-
tion of COVID-19.

Table 2. Commercialized microfluidic products for COVID-19 screening.

Platform Manufacturer Assay Target Analysis Time Ref.

Elecsys® Anti-SARS-CoV-2 Roche Immunoassay SARS-CoV-2 antibodies 18 min [135]

Cobas® SARS-CoV-2 Roche RT-PCR ORF1a/b non-structural
region, E gene 20 min [136]

ID NOW™ COVID-19 Abbott NEAR RdRp gene 15 min [137]

Xpert® Xpress CoV-2 plus Cepheid RT-PCR N, E gene 45 min [138]

1copy COVID-19
qPCR Kit 1drop Inc RT-PCR E, RdRp gene 22 min [139]

Lucira COVID-19
All-In-One Test Kit Lucira Health RT-LAMP N Gene 30 min [140]

Biosynex
COVID-19 Ag+
BSS Rapid Test

BIOSYNEX S.A. RT-PCR N-protein 10 min [141]

The combination of two advanced technologies, namely microfluidics and biosensors,
creates a promising diagnostic platform for the timely screening of viral infection. For final
commercial applications, manufacturers should consider the design of the device and the
compatible integration of each component such as the incorporation of a pump system,
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power supply, or detection system into one platform for result readout. Importantly, an
ideal platform should minimize the interpretation of the operator to reduce errors made by
non-expertise. Therefore, the development of a fully integrated product without the need
for prior sample preparation is needed. With strong expertise in marketing, the company
should provide feedback on consumers’ requirements and the potential of the products
in a certain market. In turn, scientists should develop a microfluidic platform that meets
all requirements.

4. Conclusions

Recently, with the application of biosensors and microfluidic technology, the diagnostic
field for infectious diseases caused by viruses has seen great development (Table 3). Routine
methods for virus detection such as plate culture, immunoassays, or PCR are usually time-
consuming, expensive, and limited to well-developed areas. Conventional methods are not
prone to rapid diagnosis and therefore prevent the timely controlling of the spread of viral
infection. Microfluidic-based sensors are fast, simple to use, portable, and inexpensive. It
is critical that these inventions can reach all corners of the globe, from highly equipped
labs to low-resource areas, to screen for viral transmission and control the spread of
infection. Although the development of these devices is rapid and promising, there are
some limitations in terms of accuracy, sensitivity, and system integration compared to
standard detection methods. Real samples, such as clinical samples, contain a complex of
components, including some proteins which tend to adsorb nonspecifically to the surface of
the microchannels, and the nonspecific adsorption can reduce the accuracy and sensitivity
of the assay at low concentrations of analytes. Another challenge in device development is
the full integration of all analysis procedures into one single platform. Bulky equipment is
usually needed to manipulate and control the fluid inside the microchannel for analysis,
hindering the full integration of the microfluidic devices. Future improvements should be
implemented to address these problems and to become one of the standard diagnostic tools
for the detection of virus infection.

Table 3. An overview of molecular and immunological diagnostic platforms for virus detection.

Detection
Method Sensing Platform Virus Target Analytes LOD Assay Time Year of

Publication Ref.

Immunoassay
methods

Immuno-chromatic
probe based LFA

Japanese
Encephalitis

Non-structural 1 (NS1)
secretory protein 10 pg/mL 10 min 2022 [25]

Magnetic quantum
dot nanobeads

based LFA
Infuenza A Virus particle 22 PFU/mL 35 min 2020 [27]

SER-based LFA Influenza A Virus particle 1.9 × 104

PFU/mL
- 2016 [34]

Portable SERS-LFA
system SARS-CoV-2 Nucleocapsid protein 3.53 PFU/mL 15 min 2022 [37]

ELISA-based
microfluidic chip SARS-CoV-2 Nucleocapsid (N)

protein 0.1 pg/mL 40 min 2022 [51]

Multicolorimetric
ELISA integrated with

microfluidic device
Hepatitis C Core antigen 9.1 ng/µL 50 min 2021 [52]

Electrochemical
immunoassay SARS-CoV-2

Antigen
(Nasopharyngeal

samples)
50 PFU/mL 70 min 2022 [57]

ELISA-based
microfluidic

immunoassay
SARS-CoV-2

Antigens and
antibodies

(Serum sample)
0.3 pg/mL 10 min 2021 [59]

Graphene-based
FET biosensing SARS-CoV-2

Spike protein
(Nasopharyngeal

samples)
1 fg/mL - 2020 [65]
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Table 3. Cont.

Detection
Method Sensing Platform Virus Target Analytes LOD Assay Time Year of

Publication Ref.

Molecular
methods

Portable
Magnetofluidic

real-time RT-PCR
instrument

HIV RNA extraction (Whole
blood sample) 500 copies/mL 15 min 2023 [88]

“FilmArray”: Nested
multiplex PCR

21 common
viral and
bacterial

respiratory
pathogens

DNA/RNA extraction

Coronavirus
HKU1

(1.9 × 106

RNA
copies/mL)

60 min 2011 [89]

Continuous-flow
digital PCR device Hepatitis B DNA extraction (Serum

sample)
103 to 105

IU/mL
- 2020 [90]

Pocket-size Reverse
transcription

(RT)-LAMP device
SARS-CoV-2

RNA extraction
(Oropharyngeal swab

samples)

300 RNA
copies/reaction 35 min 2021 [98]

Paper-based
colorimetric

LAMP device
SARS-CoV-2 Virus particle

200 genomic
copies/µL

(Saliva sample)
60 min 2021 [99]

Wearable RPA
microfluidic device HIV-1 DNA 100 copies/mL 24 min 2019 [103]

RT-RPA and
CRISPR-based paper

microdevice
SARS-CoV-2 Nucleoprotein (N) gene

and spike (S) gene
102 copies viral

RNA/test
60 min 2021 [123]

Microfluidic
Chip-Powered

CRISPR/Cas12a
System

Multiple
respiratory

viruses

DNA/RNA extraction
(Swab samples)

50–200
copies/mL <40 min 2022 [125]

Graphene-based
FET biosensing SARS-CoV-2

Unamplified nucleic
acids (Nasopharyngeal

samples)
1–2 copies/100 µL <4 min 2022 [129]
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