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Abstract: A novel colorimetric aptasensor based on charge effect-assisted silver enhancement was
developed to detect ochratoxin A (OTA). To achieve this objective, gold nanoparticles (AuNPs), which
can catalyze silver reduction and deposition, were used as the carrier of the aptamers tagged with a
positively charged tetramethylrhodamine (TAMRA). Due to the mutual attraction of positive and
negative charges, the TAMRA attracted and retained the silver lactate around the AuNPs. Thus, the
chance of AuNP-catalyzed silver reduction was increased. The charge effect-assisted silver enhance-
ment was verified by tagging different base pair length aptamers with TAMRA. Under optimized
conditions, the as-prepared OTA aptasensor had a working range of 1 × 102–1 × 106 pg mL−1. The
detection limit was as low as 28.18 pg mL−1. Moreover, the proposed aptasensor has been successfully
applied to determine OTA in actual samples with satisfactory results.

Keywords: aptamer; ochratoxin A; gold nanoparticle; silver enhancement; colorimetric aptasensor

1. Introduction

Aptamers (Apts) are oligonucleotide or peptide molecules created by selecting from a
large random sequence pool. They are prized for explicitly binding the target and recog-
nized as valuable application tools, including biosensing, bioimaging, and therapeutics [1,2].
In particular, due to the in vitro selection mechanism, aptamers are unprecedented recep-
tors for substances that are difficult to obtain antibodies, such as metal ions and lethal
toxins [3]. In addition, aptamers have several advantages over antibodies, such as simple
synthesis, uniformity between batches, easy labeling, low cost, and high stability [4–6]. A
biosensor using an aptamer as a biological identification element was first introduced in
1996 and has been applied to detect various targets, including toxins [7–10]. Depending
on their signal readouts, aptamer-based biosensors (aptasensors) can be categorized as
colorimetric, fluorescent, surface-enhanced Raman scattering, or photoelectrochemical
sensors. The colorimetric signal is attractive because it makes equipment-free testing pos-
sible. Moreover, using a colorimetric aptasensor for on-site detection in solution would
eliminate the separation of bonded and unbonded components and significantly simplify
the reaction scheme.

Ochratoxin A (OTA), a crucial group of mycotoxins, is mainly produced by two genera:
Aspergillus and Penicillium. OTA is the most harmful mycotoxin found extensively in
contaminated food among the A, B, and C categories of ochratoxins [11]. It is considered
neurotoxic, nephrotoxic, hepatotoxic, carcinogenic, teratogenic, and immunotoxic to hu-
mans [11]. In addition, the International Agency for Research on Cancer (IARC) has listed
OTA as a possible human carcinogen (2B group) [12–14]. Therefore, sensitive detection
of OTA has application significance in food surveillance. Although a variety of detection
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methods have been developed for mycotoxin detection, such as electrochemical detec-
tion [14], mass spectrometry [15], chromatography [16,17], enzyme-linked immunosorbent
assay [18,19], fluorometry [13,20,21], chemiluminescence [22], and surface-enhanced Ra-
man spectroscopy [23,24], colorimetric OTA aptasensors are attractive because of their low
cost and simple and convenient reading without any expensive instruments [25,26].

Silver enhancement, a procedure for electroless silver deposition, has been used for
immunoassays to increase the signal readout. Wang et al. reported an aptamer-based PDMS-
gold nanoparticle composite aptasensor and discussed the electrostatic repulsion effects
between the negatively charged aptamer and silver lactate on silver enhancements [27].
In previous studies, gold nanoparticles (AuNPs) have been used to catalyze silver re-
duction on silicon chips [28], glass surfaces [29,30], gold electrodes [31], paper [32], and
poly(dimethylsiloxane) (PDMS) [27,33]. In those detection schemes, the AuNP-labeled
probes (antibodies or aptamers) were captured on a solid surface, while the unbonded
AuNP-labeled probes were removed by washing steps. Thus, washing steps were criti-
cal to separate reacted and free AuNPs-labeled probes. During the silver enhancement
process, the effective component of the silver enhancement kit is the negatively charged
silver lactate. This electron-rich molecule acts as a metal ligand to bind silver ions through
coordination [27]. As illustrated in Scheme 1, the AuNPs catalyze silver reduction and act
as the nuclei for silver precipitation. In this study, we developed a silver enhancement-
based aptasensor for detecting OTA. The 3′-end and 5′-end of the OTA aptamer were
tagged with a thiol group (-SH) and a molecular tag tetramethylrhodamine (TAMRA),
respectively. As the TAMRA molecule is positively charged, the silver lactate should be
attracted and retained around the AuNPs by the TAMRA [34], thus increasing the efficiency
of the AuNP-catalyzed silver reduction. In the presence of OTA, the OTA aptamer bound
and enwrapped the OTA. The conformation changes of the aptamer formed a barrier
to cover TAMRA, thereby interrupting the electrostatic attraction between TAMRA and
silver lactate, eventually inhibiting the AuNP-catalyzed silver reduction. The increased
barrier of the OTA aptamer complex covering the AuNPs further hindered the interac-
tion between AuNPs and silver lactate. Both effects ultimately reduced the probability of
AuNP-catalyzed silver reduction (Scheme 1). With the optimized aptamer concentration
and reaction time, the analytical performance of the TAMRA-assisted OTA aptasensor was
studied. The potential application of the proposed aptasensor was validated by testing
trace OTA spiked in peanuts, corn, and soybean extracts.
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2. Materials and Methods
2.1. Chemicals and Reagents

Tris (2-chloroethyl) phosphate (TCEP), Silver Enhancer Kit were purchased from
Sigma-Aldrich (St. Louis, MO, USA). HAuCl4 was purchased from Rhawn Reagent
(Shanghai, China), trisodium citrate dihydrate was purchased from Kelong Chemical
Reagent Factory (Chengdu, China), phosphate-buffered solution (PBS) was purchased
from Dingguo Changsheng Biotechnology Co., Ltd. (Beijing, China). OTA was obtained
from Cayman Chemical (Ann Arbor, MI, USA). Aflatoxin (AFB1), Fumonisin B1 (FB1), and
deoxynivalenol (DON) from Fermentek Ltd. (Jerusalem, Israel). The OTA aptamer (5′GAT
CGG GTG TGG GTGGCG TAA AGG GAG CAT CGG ACA-SH-3′) [35], TAMRA tagged
OTA aptamer (TAMRA-OTAApt-SH), FAM tagged OTA aptamer (FAM-OTAApt-SH), and
ROX tagged OTA aptamer (ROX-OTAApt-SH) were chemically synthesized and purified by
Sangon Biotech Co. Ltd. (Shanghai, China). Deionized (DI) water was produced by a water
purification system, PURELAB flex (ELGA, High Wycombe, UK).

2.2. Apparatus

The UV-vis spectra were recorded on a UV-2250 spectrophotometer (Shimadzu, Kyoto,
Japan). The transmission electron microscope technique (TEM, JEOL JEM-2100, Tokyo,
Japan) was used to analyze the morphologies of the samples. X-ray photoelectron spec-
troscopy (XPS) was performed by an ESCALAB 250Xi multi-technique surface analysis
system (Thermo Fisher, Waltham, MA, USA). Hydrodynamic size and zeta potential were
measured by a Malvern Nano ZS90 Zetasizer (Malvern, Worcestershire, UK).

2.3. Preparation of OTA Aptamer Conjugated AuNPs

AuNPs were synthesized by the citrate reduction method, as described previously [36].
Specifically, 2 mL of 1% (m/V) chloroauric acid (HAuCl4) was mixed with 198 mL of
distilled water in a 500-mL flask. The thoroughly mixed HAuCl4 solution was boiled in an
oil bath. Then, 4 mL of 1% (m/V) sodium citrate was added to the boiling solution. When
the solution turned red and no further color change occurred, the mixture was gradually
cooled to room temperature with continuous stirring. The UV-vis absorption spectra of
the AuNPs were characterized each time. The obtained AuNPs were stored at 4 ◦C for
future use.

The vial of TAMRA-OTAApt-SH was dissolved in 0.01 M PBS (pH 7.0) to obtain a
100 µM stock solution. The TAMRA-OTAApt-SH disulfide bond was reduced and activated
by adding 40 µM tris(2-carboxyethyl) phosphine (TCEP) and mixing for 1 h. Next, 25 µL
of 1 µM TAMRA-OTAApt-SH was mixed with 500 µL of AuNPs and incubated at 37 ◦C
for 40 h. Then the mixture was centrifugation at 12,000 rpm for 15 min to collect TAMRA-
OTAApt@AuNPs conjugates. The collected TAMRA-OTAApt@AuNPs conjugates were
washed three times with 0.01 M PBS (pH 7.0) by centrifugation at 12,000 rpm. Next, the
TAMRA-OTAApt@AuNPs conjugates were incubated with 1 µM 6-mercapto-1-hexanol
(MCH) at room temperature for 30 min and washed three times with PBS by centrifugation.
Then MCH-blocked TAMRA-OTAApt@AuNPs were collected for future use.

2.4. TAMRA-OTAApt@AuNP-Based OTA Aptasensors for Colorimetric Detection of OTA

The MCH-blocked TAMRA-OTAApt@AuNPs were incubated with 25 µL of different
concentrations of OTA for 30 min at 37 ◦C. Without washing steps to remove unbonded
OTA, the silver enhancement reagent was added into the TAMRA-OTAAPT@AuNP and
OTA mixture to test the AuNPs-catalyzed silver deposition. In brief, 40 µL of silver
enhancement solution A and solution B were combined in a 1:1 volumetric ratio and
incubated at room temperature for 30 min. Then, the UV-vis absorbances of the solutions
were measured.

To evaluate the specificity of the proposed OTA aptasensor, other myotoxins (aflatoxin
B1 (AFB1, 100 ng mL−1), deoxynivalenol (DON, 100 ng mL−1), and fumonisin B1 (FB1,
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100 ng mL−1)) were analyzed using the same procedure. All experiments were repeated
three times.

In addition, peanuts, corn, and soybean were used to test the feasibility of the TAMRA-
OTAApt@AuNP-based aptasensor in food sample detection. In brief, the ground non-
contaminated food (peanuts, corn, and soybean) were spiked with OTA at different concen-
trations and mixed in a vortex mixer, according to literature [35]. Then the food powders
were treated with extraction solvent (methanol:water = 6:4. v/v) and centrifuged to collect
the supernatant. The extract was passed through a 0.22 µm syringe filter and followed by
dilution with PBS buffer to a finally spiked OTA concentration of 1, 5, 10 ng mL−1. The
TAMRA-OTAApt@AuNP-based OTA aptasensors measured the concentrations.

2.5. Statistics Analysis

All experiments were repeated three times over different days. In each replication
experiment, the samples were tested triplicates. Data are expressed as the mean ± standard
deviation. The effects of oligonucleotide length, molecular tags (TAMRA, FAM, and
ROX) on silver deposition and specificity of TAMRA-OTAApt@AuNP in OTA testing were
analyzed using analysis of variance (ANOVA) (SPSS software, IBM SPSS Statistics, Chicago,
IL, USA). p-values less than 0.05 were considered statistically significant.

3. Results
3.1. Characterization of the TAMRA-OTAApt@AuNP

The AuNPs in each reaction were characterized by transmission electron microscopy
(TEM). As shown in Figure 1A, the as-prepared TAMRA-OTAApt@AuNPs were uniform
spheres with a diameter of ~15 nm. The silver-deposited TAMRA-OTAApt@AuNPs had a
dark center (AuNP) and a clear outer part, which indicated the formation of a core-shell
Ag@AuNPs structure (Figure 1B).
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Figure 1. TEM image of (A) AuNPs. (B) Ag-deposited TAMRA-OTAApt@AuNPs; outer scale
bars = 50 nm and inner scale bars = 5 nm. (C) The narrow-scan P 2p XPS (a) after and (b) before
the aptamer was conjugated on the AuNPs. (D) XPS survey of AuNPs, and Ag-deposited TAMRA-
OTAApt@AuNPs. (E) The hydrodynamic sizes of AuNPs, TAMRA-OTAApt@AuNPs, OTA/TAMRA-
OTAApt@AuNPs, Ag-deposited TAMRA-OTAApt@AuNPs. (F) UV-vis spectra of AuNPs (black line),
TAMRA-OTAApt@AuNPs (red line), and Ag-deposited TAMRA-OTAApt@AuNPs (blue line).
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X-ray photoelectron spectroscopy (XPS) analysis was also conducted to determine the
elemental composition of the AuNPs. As shown in Figure 1C, the P 2p peak at 134.5 eV
can be observed from the curve of the TAMRA-OTAApt@AuNP-conjugation, indicating
a successful attachment of the aptamer on the AuNPs. With the AuNP-catalyzed silver
reduction, apart from the C 1s, O 1s, and Au 4f peaks, an Ag 3d characteristic peak can be
observed at 368.7 eV (Figure 1D), suggesting the formation of an Ag shell on the surface of
the AuNPs.

The hydrodynamic sizes of the AuNPs and the TAMRA-OTAApt@AuNPs were
21.3 ± 0.9 nm and 31.5 ± 3.4 nm, respectively (Figure 1E). The incremental difference in
hydrodynamic size is attributed to coated aptamer oligonucleotides extending freely in
the solvent. The particle size decreased to 23.7 ± 0.57 nm after incubation with OTA. The
size change occurs because the recognition and bonding of aptamer and OTA leads to
a conformation change of the oligonucleotides. The addition of the silver enhancement
solution caused a significant increase in hydrodynamic size to 34 nm, further suggesting
Ag shell formation on the AuNPs (Figure 1E).

The UV-vis absorption spectra of the AuNPs, TAMRA-OTAApt@AuNPs, and silver-
deposited TAMRA-OTAApt@AuNPs are shown in Figure 1F. It was found that the adsorp-
tion peak of AuNPs is at 520 nm, which is a typic AuNPs’ surface plasmon resonance peak.
Conjugating the AuNPs with TAMRA-OTAApt did not induce a shift in the adsorption
peak. However, incubation with a silver enhancement solution led to a new peak at 408 nm,
a characteristic Ag peak. The changes in the UV-vis spectra demonstrated the deposition of
Ag on the TAMRA-OTAApt@AuNPs. Consequently, the absorbance ratio at 408 nm (Ag)
and 520 nm (Au) was used to quantify the AuNP-catalyzed Ag reduction and deposition.

3.2. Electrostatic Attraction between TAMRA and Silver Lactate Assists AuNP-Catalyzed
Silver Deposition

As illustrated in Scheme 1, the reaction principle is that a positively charged tag
will enrich the local concentration of silver lactate, thus increasing the probability of
AuNP-catalyzed silver reduction and deposition. The silver deposition catalyzed by
aptamer@AuNPs and TAMRA-Apt@AuNPs was compared to examine our hypothesis.
Oligonucleotides with 36 and 42 base pairs were tested (36 base pair: 5′-TAMRA-GAT
CGG GTG TGG GTGGCG TAA AGG GAG CAT CGG ACA-SH-3′; 42 base pairs: 5′-
TAMRA-ATC TAC GAA TTC ATC AGG GCT AAA GAG TGC AGA GTT ACT TAG-SH-3′).
As shown in Figure 2, the TAMRA-Apt@AuNPs, with 36 base pairs and 42 base pairs,
have significantly higher efficiency in catalyzing Ag deposition than the Apt@AuNPs.
In addition, when the aptamer length increased from 36 base pairs to 42 base pairs,
the capability of the aptamer@AuNPs catalysis Ag deposition decreased dramatically
(Apt36@AuNPs vs. Apt42@AuNPs: 1.86 ± 0.02 vs. 1.69 ± 0.01, p = 0.0002); meanwhile,
there was no significant difference between the efficiency of the TAMRA-Apt36@AuNPs and
TAMRA-Apt42@AuNPs (TAMR-Apt36@AuNPs vs. TAMRA-Apt42@AuNPs: 1.93 ± 0.01 vs.
1.92 ± 0.02, p = 0.51), suggesting that TAMRA can mitigate the impact of oligonucleotide
length on Ag deposition. The long aptamers may hinder the access of the AuNPs to
the silver deposition elements in the aptamer-AuNPs. However, the silver lactate trap-
ping capabilities of the TAMRA-Apt@AuNPs may alleviate the aptamer length-caused
signal decrease.

To further examine our hypothesis, molecular tags, fluorescein amidites (FAM) and
6-carboxy-x-rhodamine (ROX), were used to label OTA aptamer (5′-FAM-GAT CGG GTG
TGG GTG GCG TAA AGG GAG CAT CGG ACA-SH-3′, 5′-ROX GAT CGG GTG TGG
GTG GCG TAA AGG GAG CAT CGG ACA-SH-3′). The molecular tag labeled OTA
aptamers were conjugated on AuNPs (FAM-OTAApt@AuNPs, and ROX-OTAApt@AuNPs)
to test the capability of the AuNPs on Ag reduction. The labeling of the molecular tag
(TAMRA, FAM, and ROX) did not induce the aggregation of AuNPs in PBS (pH 7.0), as
no obvious UV-vis AuNPs’ surface plasmon resonance peak (520 nm) shift was observed.
First, the overall charge of the molecular tag OTAApt@AuNPs was characterized by a
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Malvern Nano ZS90 Zetasizer. As shown in Figure 3A, the Zeta potential of Apt@AuNPs
is −36.6 ± 1.1 mV. While the molecular tag of FAM on the OTA aptamer changes the
overall Zeta potential of FAM-OTAApt@AuNPs to −42.1 ± 1.4 mV, suggesting an increase
of negative charging. However, the overall Zeta potential of ROX-OTAApt@AuNPs, and
TAMRA-OTAApt@AuNPs were −31.2 ± 1.6 mV, and −26.7 ± 3.5 mV, respectively. The
reduced absolute negative charge revealed by the Zeta potential characterization results
suggest that molecular tags can change the overall charge of the Apt@AuNPs, potentially
impacting the catalyzation of the AuNPs. Next, the effect of the charges of the molecular
tag on AuNP-catalyzed silver reduction and deposition was quantified. As shown in
Figure 3B, the highest silver disposition resulted from the least negative conjugate (TAMRA-
OTAApt@AuNPs), and the weakest silver deposition was from the conjugate with the most
significant negative value (FAM-OTAApt@AuNPs). The relationship between the surface
charge of the aptamer@AuNP conjugates and the level of AuNP-catalyzed silver deposition,
as demonstrated in Figures 2 and 3A,B, suggests that a charged molecular tag can enhance
silver deposition by attracting and retaining the silver deposition element (silver lactate)
around the AuNPs to facilitate the catalysis. The charged tag-enhanced Ag deposition
is essential to construct sensitive aptasensors with long oligomer aptamers. Therefore,
TAMRA was selected to construct an OTA aptasensor.
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3.3. Optimization of Analytical Parameters

To achieve sensitive and fast OTA detection, parameters involved in the detection
process were optimized to increase sensitivity and maximize the efficiency of the aptasen-
sor. First, the concentration of TAMRA-OTAApt-SH in preparing TAMRA-OTAApt@AuNPs
conjugates was optimized. It can be seen from Figure 4A that as the concentration of
TAMRA-OTAApt-SH increased from 1 to 1000 nM, the absorbance ratio of A408/A520 re-
sponse gradually increased. Therefore, 1000 nM TAMRA-OTAApt-SH was used to construct
the OTAApt@AuNP-based aptasensor. Next, MCH was used to block the unoccupied sites
on the TAMRA-Aptamer@AuNP surface. It was reported that MCH could prevent AuNP
aggregation [37], thus ensuring the stability of AuNP solutions. As shown in Figure 4B,
TAMRA-Apt@AuNP passivated by 1 µM MCH delivered the highest absorbance ratio of
A408/A520, suggesting an improved Ag deposition. Finally, the Ag deposition time was
optimized. As shown in Figure 4C, the absorbance ratio of A408/A520 gradually increased
as the deposition time increased from 15 min to 60 min. Further extension of the deposition
time did not result in signal enhancement. Thus, the Ag deposition time was set as 60 min.
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3.4. Analytical Performance of TAMRA-OTAApt@AuNP-Based OTA Aptasensor

With the optimized parameters, the TAMRA-OTAAPT@AuNP-conjugates were pre-
pared for OTA testing. The TAMRA-OTAAPT@AuNP was mixed with different concen-
trations of OTA and incubated for 30 min at 37 ◦C. As shown in Figure 5A, the UV-vis
absorption gradually decreased as the concentration of OTA increased. The calibration
curve of absorbance intensity (A408/A520) vs. OTA concentrations is shown in Figure 5B.
The absorbance ratio of A408/A520 was proportional to the logarithm of OTA concentration
and within a concentration range of 1 × 102 to 1 × 106 pg mL−1. Therefore, we obtained
a linear equation expressed as A408/A520 = 1.739 − 0.04456 log COTA with the correlation
coefficient R2 = 0.995. According to reported colorimetric aptasensors [38,39], the limit of
detection (LOD) of 28.18 pg mL−1 was calculated as 3 times the standard deviation (s.d.) of
the blank sample signal (s.d. = 2.48 × 10−2) divided by the slope of the regression equation
(slope = −0.04456). On this basis, a colorimetric detection method for OTA has been suc-
cessfully constructed. The merits and novelty of this work lie in the charged molecular tag,
TAMRA, that enriches the local silver lactate concentration to facilitate AuNP-catalyzed
silver reduction to produce visual colorimetric changes. The analytical performance of
the TAMRA-OTAAPT@AuNP-based aptasensor was compared with previously reported
colorimetric OTA biosensing (Table 1). The proposed TAMRA-OTAAPT@AuNPs-based
aptasensor achieved a broader working range and comparable detection limit. In addition,
the solution reaction system combined with the AuNP-catalyzed silver enhancement elim-
inates the need to separate bound and unbound molecules in the reaction system, thus
significantly simplifying the overall reaction procedure.
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Table 1. Comparison of analytical performance of colorimetric OTA aptasensors.

Sensing Materials Working Range Limit of Detection
(ng/mL) Reference

Au/Fe3O4 10–105 1.15 [40]
AuNPs 8.06–251.88 8.06 [41]
AuNPs 32–1024 20 [42]

MnO2-based nanozyme 1.25–250 nM 0.069 nM [43]
Au/Fe3O4 0.5–100 30 pg/mL [35]

AuNPs 0.05–50 ng/mL 0.009 ng/L [44]
Au@Fe3O4 0.5–80 ng/mL 0.15 ng/mL [26]

AuNPs 1 × 102 to 1 × 106 pg mL−1 28.18 pg/mL This work

Specificity is of great importance for sensor applications. To investigate the specificity
of the developed aptasensor, AFB1, DON, and FB1 were analyzed as interfering substances
(Figure 6). The more robust silver enhancement-induced colorimetric change was observed
from FB1, AFB1, and DON samples. This is because the TAMRA-OTAApt immobilized on
the AuNPs stretched in the solution, while the TAMRA molecules attracted silver lactate
to increase the probability of AuNP-catalyzed Ag deposition. The OTA sample gave the
lowest absorbance (A408/A520) change (Figure 6; p < 0.01). The results demonstrate that the
colorimetric aptasensor has good specificity and selectivity for OTA detection.
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To investigate the applicability of the proposed method, trace amounts of OTA were
spiked into ground peanuts, corn, and soybean samples; the food extracts were prepared
and measured via the proposed colorimetric aptasensor. Table 2 shows that the detection of
spiked OTA (1, 5, and 10 ng mL−1) in peanuts, corn, and soybean had recovery rates ranging
from 99.53–104.67% with a coefficient of variation (CV) of 9.97–11.04%, 99.47–106.43%
with the CV of 6.34–14.45%, and 97.03–99.95% with the CV of 5.87–11.27%, respectively.
The successful detection trace of OTA in peanuts, corn, and soybean samples further
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demonstrated the potential of the proposed aptasensor in food sample analysis. However,
the impact of reaction pH on silver deposition induced by different molecule tags was not
systematically investigated. In addition, the limitation of the AuNP-based aptasensor is the
narrow working pH range, which should be considered in real sample testing.

Table 2. Detection of trace amount of OTA in food extractions.

Food Sample Spiked OTA
(ng mL−1)

Detected OTA
(ng mL−1)

Recovery
(%)

CV
(%)

Peanuts
1 1.05 ± 0.11 104.67 10.50
5 4.98 ± 0.50 99.53 9.97
10 10.44 ± 1.15 104.42 11.04

Corn
1 1.06 ± 0.11 106.33 10.68
5 5.32 ± 0.34 106.43 6.34

10 9.95 ± 1.34 99.47 13.45

Soybean
1 0.99 ± 0.11 99.83 11.27
5 4.85 ± 0.28 97.03 5.87
10 10.00 ± 0.95 99.95 9.54

4. Conclusions

In summary, we report a sensitive OTA aptasensor constructed from TAMRA-
OTAApt@AuNPs. The positive TAMRA tag improved the signal readout by attracting and
enriching the silver lactate around the AuNPs to increase the probability of AuNP-catalyzed
silver reduction and deposition. This strategy is essential for long aptamers with large base
pair numbers. The TAMRA-OTAApt@AuNP-based OTA aptasensor exhibited excellent
sensing performance towards OTA with a linear range of 1 × 102 to 1 × 106 pg mL−1

and a low detection limit 28.18 pg mL−1. In addition, spiked trace amounts of OTA were
successfully detected in peanuts, soybean, and corn, demonstrating the potential of this
technique for food sample analysis.
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