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Abstract: Amyloids are proteins with characteristic beta-sheet secondary structures that display fib-
rillary ultrastructural configurations. They can result in pathologic lesions when deposited in human
organs. Various types of amyloid protein can be routinely identified in human tissue specimens by
special stains, immunolabeling, and electron microscopy, and, for certain forms of amyloidosis, mass
spectrometry is required. In this study, we applied Raman spectroscopy to identify immunoglobulin
light chain and amyloid A amyloidosis in human renal tissue biopsies and compared the results with
a normal kidney biopsy as a control case. Raman spectra of amyloid fibrils within unstained, frozen,
human kidney tissue demonstrated changes in conformation of protein secondary structures. By
using t-distributed stochastic neighbor embedding (t-SNE) and density-based spatial clustering of
applications with noise (DBSCAN), Raman spectroscopic data were accurately classified with respect
to each amyloid type and deposition site. To the best of our knowledge, this is the first time Raman
spectroscopy has been used for amyloid characterization of ex vivo human kidney tissue samples.
Our approach, using Raman spectroscopy with machine learning algorithms, shows the potential for
the identification of amyloid in pathologic lesions.

Keywords: Raman spectroscopy; machine learning; renal amyloidosis; human kidney tissue; amy-
loid subtyping

1. Introduction

Amyloidosis is an uncommon systemic disease caused by irregular protein aggregation
and misfolding that leads to the formation of insoluble amyloid deposits [1–4]. Different
types of amyloid derive from various amyloid precursor proteins and can infiltrate various
organs [1,5]. Although these protein deposits and their sequences vary, amyloid fibrils share
a common structure, namely steric zippers, arranged in a periodic fibrillar lattice of β-sheets;
this structure can be observed across various modalities, including NMR spectroscopy,
cryo-electron microscopy (cryo-EM), and atomic force microscopy (AFM) [6–8].

Recently, Raman spectroscopy has been utilized to study amyloid fibril formation
and structural conformations [9–13]. By vibrationally fingerprinting biological samples at
a molecular level, Raman spectroscopy identifies various molecules, including proteins
and lipids, with high sensitivity and in a nondestructive and label-free manner [14–20]. In
addition, its relatively simple setup and the lack of a requirement for a priori knowledge
of sample composition make Raman spectroscopy a potential tool to study amyloidosis.
Previous studies have shown that Raman spectroscopy is sensitive to differences in struc-
tural conformations of different amyloid types [11,12,21–23]. In particular, amide I and
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III bands identified β-sheet structures in both amyloid fibrils isolated from patients and
synthesized amyloid peptides [9,10,22,24]. However, although these findings established
the applicability of Raman spectroscopy to study amyloidosis, synthesized amyloid and
isolated amyloid fibrils are overly simplified and disconnected from protocols of clinical
detection and diagnosis.

To address this limitation, several researchers have investigated amyloid deposits in
tissue with Raman spectroscopy. Animal models have been used to identify biomarkers
representative of the amyloid signature within a mixture of biomolecules, coupled with
spectral unmixing analysis [25–27]. In addition, others have applied Raman spectroscopy
to tissue biopsies of patients that reported changes in the protein signature associated with
amyloid [24,28–33]. Although these studies demonstrate Raman spectroscopy’s capability
to distinguish subtle spectral changes due to amyloid deposits in tissue samples, they were
mainly focused on brain tissues to investigate amyloid involvement with disorders such as
Alzheimer’s disease and Parkinson’s disease. However, no previous Raman spectroscopic
investigations of renal amyloid deposits exist, despite the fact that the kidney is one of the
most commonly involved organs in amyloidoses [5,34].

Here, we employ Raman spectroscopy to examine amyloid deposits for the first time,
to the best of our knowledge, in unstained fresh-frozen human kidney tissues. Specifically,
we investigated immunoglobulin light chain (AL) and serum amyloid A (AA), which are
precursor proteins that give rise to AL amyloidosis and AA amyloidosis, respectively [3,35].
These amyloid diseases represent the two major amyloid diseases with kidney involve-
ment [5,36,37]. We investigated the Raman spectra of AL, AA, and non-amyloidogenic
(NA) tissues collected from six patients through analyses of the protein band area and
second derivative. Then, using t-distributed stochastic neighbor embedding (t-SNE) and
density-based spatial clustering of applications with noise (DBSCAN), we characterized
endogenous molecular compositions and structures indicative of amyloid deposits and
demonstrated heterogeneity between different amyloid types. In this study, we describe
in detail our methodological approach, combining Raman spectroscopy with machine
learning techniques to identify and characterize the two major types of amyloidosis in
human renal tissue.

2. Materials and Methods
2.1. Sample Preparation

Remnant, de-identified tissues from kidney biopsies performed for diagnostic pur-
poses (IRB approval: IRB00090103) were used for this study, as illustrated in Figure 1. The
biopsied tissues of AA, AL, and NA amyloidosis from 6 patients were prepared as a frozen
tissue block. Fresh frozen blocks were sectioned by a cryostat, and thin-sliced kidney tissue
sections were placed on quartz and glass microscope slides for Raman measurements and
histological evaluation, respectively. Tissue sections for Raman measurements remained
unstained and were prepared on quartz slides to avoid spectral interference with the bio-
chemical fingerprints of the tissue sample. Consecutive slices from each tissue block were
used to detect and identify amyloid fibrils through histological evaluation (Figure 2).
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steps. Biopsied tissues were frozen and sectioned for evaluation. (B) Raman spectroscopic data ac-

quisition and analysis. Fresh frozen tissue sections were prepared on quartz slides to minimize spec-

tral interference, and employed for Raman measurements, which were subjected to machine learn-

ing analysis. (C) Histopathologic validation. Consecutive tissue sections used in (B) were utilized 

for the gold standard, immunohistochemistry evaluation. (Created with BioRender.com (accessed 

on 23 February 2023)). 

Figure 1. The overall workflow for amyloid identification and subtyping. (A) Tissue preparation
steps. Biopsied tissues were frozen and sectioned for evaluation. (B) Raman spectroscopic data
acquisition and analysis. Fresh frozen tissue sections were prepared on quartz slides to minimize
spectral interference, and employed for Raman measurements, which were subjected to machine
learning analysis. (C) Histopathologic validation. Consecutive tissue sections used in (B) were
utilized for the gold standard, immunohistochemistry evaluation. (Created with BioRender.com
(accessed on 23 February 2023)).
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Figure 2. Renal amyloidosis. (A) Glomerular and arteriolar deposits of amyloid identified as Congo
red-positive material (magnification 400×). (B) Glomerular amyloid Congo red-positive deposits
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showing birefringence under polarized light (magnification 400×). (C) AA amyloidosis: the im-
munohistochemical stain for amyloid A is strongly positive in the glomerulus and in the arterioles
(magnification 400×). (D) AL amyloidosis: by immunofluorescence, a glomerulus containing Congo
red-positive material (not shown) shows a positive stain for the kappa light chain (magnification
400×). (E) The immunofluorescence stain for lambda light chain is negative in the same glomerulus
(magnification 400×). (F) The immunohistochemical stain for amyloid A is negative in the glomeruli
containing deposits of AL amyloid.

2.2. Raman Spectroscopy

A Raman spectroscopy system (Horiba Jobin Yvon-XploRA PLUS) collected Raman
spectra of ex vivo kidney tissue samples (Figure 1b). A 532 nm laser was projected onto
room-temperature kidney sections, and the resulting Raman scattering between 700 and
3500 cm−1 was recorded through a CCD camera. Measurements were taken at various
pathological sites, including glomeruli and other structures within the cortical region.

The collected Raman spectra were processed using MATLAB 2018b (MathWorks,
Inc., Natick, MA, USA) with baseline and background correction [38], spectral smoothing
through a Savitzky-Golay filter [39], and normalization based on water content
(3100–3400 cm−1). For multivariate and machine learning analysis, the biological finger-
print region (800–1800 cm−1) was selected, which contains molecular information including
proteins, lipids, and other tissue constituents.

2.3. Data Analysis

The collected Raman spectroscopic signals were examined to identify spectral features
unique to a particular amyloid type.

Second derivative analysis, which has been used to estimate the contribution of protein
secondary structure [29,40], was applied to identify spectral features arising from amyloid
fibrils within tissues. Second derivative spectra were obtained by the Savitzky-Golay
filter [39], followed by robust locally weighted smoothing.

To further characterize spectral features associated with AL and AA amyloidosis
beyond those apparent upon visual inspection, we employed t-Distributed Stochastic
Neighbor Embedding (t-SNE), a multivariate analysis technique, and density-based spa-
tial clustering of applications with noise (DBSCAN), an unsupervised machine learning
approach. These allowed the unveiling and decomposing of subtle and complex tissue
information with greater sensitivity by addressing spectral interference due to background
and fluorescence. Both approaches considered Raman spectra collected from both glomeru-
lar and non-glomerular regions in AL, AA, and NA tissues. All analyses were performed
and visualized using MATLAB and Orange [41].

Briefly, t-SNE is a dimensionality reduction technique that evaluates complicated
Raman spectra. By extracting both linear and non-linear features from Raman spectra, it
reduces tissue spectra containing information about various biological molecules, from a
higher to a lower dimension [42]. We used a perplexity of 15 and an exaggeration of 2 as
parameters.

DBSCAN is an unsupervised machine learning approach for data clustering. This
machine learning technique is robust to outliers, which makes it a suitable approach for
analyzing a large collection of Raman spectra. Core point neighbors and neighborhood
distance (Euclidian distance) were determined based on an analysis design from a previous
study [43].

3. Results and Discussion

To characterize amyloid deposits, we utilized Raman spectroscopy to collect molecular
fingerprints of ex vivo amyloid-infiltrated human kidney tissue samples from patients
affected by AL or AA amyloidosis. Raman spectra were measured both within glomeruli
with amyloid deposits, which were identified by pathologists, and non-glomerular regions
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of tissue sections. Raman spectra of normal tissue samples (NA) were also collected as
control cases for comparison. Adjacent sections of each type underwent histopathologic
evaluation. Figure 1 illustrates the workflow of this study.

3.1. Amide I and Amide III Bands Reveal Protein Secondary Structures Associated with
Amyloidosis

To investigate features of amyloid fibrils, Raman spectra of glomeruli within kid-
ney tissues were obtained (Figure 3). Particularly, we observed peaks within amide I
(1600–1700 cm−1) and amide III (1200–1300 cm−1) bands of protein, which are closely re-
lated to peptide backbone conformations, the main determinant of protein stability [11,21].
At amide I region, we observed a peak at 1658 cm−1 with AA slightly shifted to a higher
(1664 cm−1) frequency while AL slightly shifted to a lower (1653 cm−1) frequency, com-
pared to the control case. In amide III spectral region, marked changes in peaks at 1239
and 1278 cm−1 were observed, as peaks in AA became more distinguished whereas those
in AL appeared more obscure than the NA tissue signal. Such differences are associated
with secondary protein structures, particularly β-sheet and α-helix structures, which con-
stitute amyloid fibrils [10,21,29]. The AL spectrum exhibits peaks at 1306 and 1334 cm−1,
attributed to sidechain vibrations [11]. In addition, we observed subtle peaks in a higher
wavenumber region, associated with changes in lipids. Peaks around 1552 and 1582 cm−1

represent aromatic amino acids, such as tryptophan and phenylalanine [21]. The intensities
in the observed bands, 1582 cm−1 of AL tissue, and 1658 cm−1 of AA tissue, vary due
to the non-uniform distribution of the amyloid deposits, as marked by the heterogeneity
of amyloid-positive samples. In addition, the polymorphism of fibrils may augment the
heterogeneity [5]. To assess the changes in protein structures arising from amyloid fibrils,
Raman band areas of amide I, amide III, and phenylalanine were evaluated (Figure 3b–d).
The amide I band area of AL (Figure 3b) appeared evidently higher than the others, whereas
the amide III band area of AA (Figure 3c) showed a clear distinction from the others. In
addition, an increase in phenylalanine band area is observed in the AL spectra (Figure 3d),
with a statistically significant difference from the band area under the AA or NA tissue
spectra. Such an observation indicated that both AA and AL fibrils consist of protein
secondary structures with varying contributions of C-N stretching, N-H bending, and C=O
stretching vibrations [21].

To further investigate the influence of amyloid fibrils depending on the associated
tissue site, we expanded the examination of the Raman spectra of glomeruli, marked in
Figure 4a, as well as outside of the glomerulus region. Figure 4b shows distinct spectral pro-
files for each amyloid type at both glomerular and non-glomerular sites. The corresponding
second derivative analysis is shown in Figure 4c. We performed second derivative analysis
to objectively identify sharp changes in spectra and locate their vibrational bands, enabling
us to further distinguish characteristic spectral features [9,11,44]. Second derivative analysis
of amide I, II, and III bands revealed spectral components and peak shifts unnoticed in
Raman tissue spectra. Analysis of AA glomerular regions exhibited a split in the 1213 cm−1

band, with prominent peaks around 1265, 1305, and 1584 cm−1, associated with the mixture
of β-sheet and α-helix structures. The contributions of protein secondary structures in AL
fibrils were different from those in AA fibrils, with peaks observed around higher Raman
bands, at 1625, 1641, and 1655 cm−1, mainly attributed to C=O stretching vibration. These
observations are consistent with previous reports that indicate both AA amyloidosis and
AL amyloidosis exhibit protein secondary structures, as the misfolded AA and AL proteins,
respectively, aggregate, form amyloid fibrils, and adopt a β-sheet conformation [45]. Sec-
ond derivative analyses reveal that Raman spectroscopy can molecularly distinguish this
common structural feature (β-sheet) across AA and AL amyloidosis, as shown by their
distinct Raman bands.
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Figure 3. Raman spectroscopy of frozen kidney tissue featuring amyloid deposits. (A) Raman spectra
of glomeruli within AA, AL, and NA tissues. Each spectrum represents an averaged and normalized
spectrum with 1 standard deviation shaded. They are normalized on the spectral region assigned to
water (3100–3400 cm−1), assuming an equivalent water content for all samples. Raman band area
analyses of (B) amide I (1600–1700 cm−1), (C) amide III (1200–1300 cm−1), and (D) phenylalanine
(1582 ± 3 cm−1) of AA, AL, and NA glomeruli. Statistical significance: *** p < 0.0001.
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Figure 4. (A) Microscopic image of frozen kidney tissue identified with the glomerulus. Scale bar
= 100 µm. (B) Averaged and normalized Raman spectra collected within and without glomeruli
of AA, AL, and NA tissues with 1 standard deviation shaded. (C) Second derivative analysis of
phenylalanine (1000–1500 cm−1), amide III (1200–1350 cm−1), and amide II-I (1550–1700 cm−1). Each
spectrum in (B,C) is color-coded based on the type and deposition site and plotted in order, from top
to bottom: AA-within glomeruli, AA-without glomeruli, AL-within glomeruli, AL-without glomeruli,
and NA.

3.2. Machine Learning-Based Raman Spectral Analysis Can Classify Renal Amyloidosis with
Respect to Deposition Sites and Types

To distinguish subtle intrinsic spectral differences between amyloid types that were
not detected by visual inspection of the tissue spectra, we utilized a multivariate dimen-
sion reduction and data exploration technique, t-SNE. Figure 5 shows the t-SNE distri-
bution results of the processed Raman tissue spectra of the biological fingerprint region,
ranging between 800 and 1800 cm−1. We subjected a collection of Raman spectra to non-
linear dimensionality reduction and projected them onto a lower dimension, specifically,
2-dimensional space (t-SNE components 1 and 2). The t-SNE map reveals that spectra
collected from each amyloid type are clearly separated, as are spectra from glomerular
and non-glomerular regions (even those collected from the same tissue sections). Each
cluster of identified type is relatively tight without overlap between clusters, indicating that
dimensionality reduction of Raman spectra using t-SNE can clearly discriminate between
glomeruli constituting amyloid fibrils and normal glomerulus regions, and between AL
and AA fibrils. We observed intra-group separation, especially in glomerular AA data-
points; however, the distance between the sub-groups is relatively small compared to the
inter-group distances. As inter-group separation is significantly higher than intra-group
separation, strong similarity among Raman spectra of the same types and regionality are
observed from the t-SNE map. We attribute such clear separation between clusters, not
only among different types but also between glomerular and non-glomerular regions, to
the function of the glomerulus in the kidney. The glomerulus, a ball-shaped structure
identified in Figure 4a, is responsible for filtering waste products and excess fluids from
the blood [46]. As amyloidogenic proteins—serum amyloid A (AA) or immunoglobin light
chain (AL)—form insoluble fibrils, they fail to pass through the filter; thus, most of these
fibrils are deposited and accumulated in the glomeruli. Therefore, the amyloid protein
deposits are predominantly found in the glomeruli [34,36]. This concentration of amyloid
deposits in the glomeruli of AA and AL tissues is reflected in the Raman fingerprinting of
the tissue, leading to clear separation in the t-SNE map.
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Figure 5. t-SNE map for the distribution of Raman spectra. Spectra were identified with their amyloid
types (AA, AL, or NA) and location (within or without glomeruli). Each point represents a Raman
spectrum that is positioned based on the similarity probability of the spectra in the dataset. Each
group is well separated from other groups, indicating that the Raman spectra of the same group are
similar and distinct from those of other groups.

Furthermore, DBSCAN results (Figure 6) obtained using the processed Raman tissue
spectra between 800 and 1800 cm−1, show clustering results with distinctive separation
among the types and glomeruli. DBSCAN analysis resulted in a total of 12 clusters, of
which 5 major clusters represent 96.4% of the entire collection (8360 out of 8672 spectra)
with parameters (number of neighbors as 2 within the radius of 1.09). The left panel of
Figure 6 summarizes the arrangement of each cluster with respect to amyloid type and
deposition site. 96.9% of glomerular AA (Cluster 3), 98.4% of non-glomerular AA (Cluster
6), 96% of glomerular AL (Cluster 1), and 97.2% of non-glomerular AL (Cluster 2) are
identified as separate clusters. For the NA tissue, 95.6% of spectra are grouped as an
individual cluster (Cluster 8). The remaining spectra are either unidentified or assigned to
separate minor clusters. It is worth noting that these minor clusters do not have spectra
pertaining to different amyloid types or deposition sites, demonstrating the robustness
of the clustering analysis. The average spectra with one standard deviation shaded for
the five major cluster groups are presented on the right panel of Figure 6. The spectral
profiles demonstrate strong similarities to those of the actual spectra in Figure 4b, indicating
that machine learning-based classification indeed enables us to characterize the types of
amyloid fibrils and their deposition sites within the tissue.
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Figure 6. DBSCAN clustering results and representative Raman spectra of each cluster. (Left) Out of
a total of 12 clusters, 5 dominant clusters were identified. AA glomerular and non-glomerular spectra
are primarily grouped as Clusters 3 and 6, respectively. AL glomerular and non-glomerular spectra
are primarily grouped as Clusters 1 and 2, respectively. NA tissue is primarily grouped as Cluster 8.
The rest of the seven minor clusters are grouped accordingly. Unassigned spectra are marked as gray.
(Right) Average spectra of the 5 dominant clusters with 1 standard deviation shaded.

In a previous study, we successfully utilized Raman spectroscopy to characterize
crystal deposits in kidney biopsies [16], leading us to expand its application to the study
of renal amyloid deposits. Spectroscopic techniques, including Raman spectroscopy, have
demonstrated promise in detecting and identifying molecular changes in various kidney
conditions [47,48]. With the aid of statistical and machine learning algorithms for analysis,
these approaches can produce robust results [19,20,49]. Despite the limited sample size in
this pilot study, Raman spectroscopy combined with appropriate analysis techniques was
able to distinguish between different types of amyloids.

4. Conclusions

In this study, we characterized the Raman spectra of renal amyloid deposits within
human tissues affected by systemic AL and AA amyloidosis. This label-free spectroscopic
approach made it possible to obtain a biochemical fingerprint of unfixed, unstained spec-
imens, providing intrinsic information on the content and structural profiles of ex vivo
amyloid fibrils. Notably, Raman spectroscopy coupled with machine learning approaches
exhibits multiple applications: one as a diagnostic tool that detects the presence of amyloid
deposits and the other as a characterizing tool that can accurately distinguish AL and AA,
two of the most common amyloid types in human kidney tissue. The collected Raman spec-
tra of both glomerular and non-glomerular regions of all three tissue types, combined with
t-SNE analysis, were able to identify subtle differences between samples and distinguish
between AL, AA, and NA profiles, and even glomerular and non-glomerular regionality.
Machine learning analysis equipped with DBSCAN distinguished AL and AA profiles
based on their Raman spectra, suggesting the possibility of Raman spectroscopy as a tool
for characterizing and subtyping amyloid.

Our label-free, machine learning-assisted spectroscopic analysis presents a new avenue
for identifying amyloid within human tissue and promises an objective and reproducible
diagnostic tool for systemic amyloidosis with renal involvement. While this study focused
on fingerprinting features of AL and AA fibrils in frozen kidney sections, our methods
could be extended to other systemic or hereditary amyloidoses in various organs.
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