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Abstract: In this work, a coumarin derivative, SWJT-14, was synthesized as a fluorescence probe to
distinguish cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous solutions. The
detection limit of Cys, Hcy and GSH for the probe was 0.02 µM, 0.42 µM and 0.92 µM, respectively,
which was lower than biothiols in cells. The probe reacted with biothiols to generate different
products with different conjugated structures. Additionally, it could distinguish Cys, Hcy and GSH
using fluorescence and UV-Vis spectra. The detection mechanism was confirmed by MS. SWJT-14
was successfully used in cellular experiments and detected both endogenous and exogenous biothiols.

Keywords: biothiols; fluorescence; coumarin derivative

1. Introduction

The biothiols such as Cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) are
associated with many physiopathologies in living organisms. Cys helps maintain redox
homeostasis and regulates intracellular and intercellular signaling [1–5], Hcy is a direct
independent diagnostic factor for many diseases [6–10] and GSH plays an important role in
preventing or reducing the effects of harmful ROS in cardiovascular disease [11]. Biothiols
are involved in a variety of biometabolic processes in human beings, such as oxidative
stress, protein modification, signal transduction, cell apoptosis and cell differentiation.
Their abnormal levels are related to many chronic and degenerative diseases [12–17].

A variety of methods have been developed for the detection of biothiols [18–21],
most of which have the disadvantages of being inconvenient, time-consuming and non-
specific. Fluorescence detection technology based on fluorescence probes can take images
of analytes in situ and has the advantages of simple operation and low cost; thus, it de-
veloped rapidly. In order to target the identification of Cys, Hcy and GSH, the general
approach is to exploit the nucleophilic nature of biothiols. Therefore, some organic re-
actions have been used to design chemodosimeters as fluorescent probes, such as the
cyclization of aldehydes [22,23], Michael addition [24,25], conjugate addition cyclization
with acrylates [26,27], aromatic nucleophilic substitution–rearrangement reactions [28],
cleavage of sulphonamides and sulphonates [29,30], as well as metal complexation [31,32]
and dithiol breakage reactions [33,34]. However, most of the reported probes can only iden-
tify one biothiol or do not discriminate between the three biothiols. Thus, chemodosimeters
with multisite recognition have been developed as fluorescence probes to discriminate
biothiols [35–40] (Table S1, Supplementary Materials). Although these probes were good
differentiators for the three biothiols, differentiating them in the high water phase remained
a great challenge.

In connection with our continuing research on biothiols [41–43], herein we report
a coumarin derivative as a fluorescence probe to distinguish three biothiols in an aqueous so-
lution. Sodium 2-mercaptoethanesulfonate was introduced as a leaving group on coumarin,
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which can increase the aqueous solubility of the probe. It also synergistically provided
multiple reaction sites with double bonds. The reaction of the probe with three biothiols
could produce different products with different conjugated structures (Scheme 1), resulting
in different UV-Vis changes and fluorescence changes at different excitation wavelengths
for the purpose of the identification of the three biothiols. The reaction mechanism was
confirmed by mass spectrometry and TD-DFT calculations. Furthermore, the probe could
be used to image biothiols in HeLa cells.

Biosensors 2023, 13, x FOR PEER REVIEW 2 of 10 
 

differentiators for the three biothiols, differentiating them in the high water phase re-
mained a great challenge. 

In connection with our continuing research on biothiols [41–43], herein we report a 
coumarin derivative as a fluorescence probe to distinguish three biothiols in an aqueous 
solution. Sodium 2-mercaptoethanesulfonate was introduced as a leaving group on cou-
marin, which can increase the aqueous solubility of the probe. It also synergistically pro-
vided multiple reaction sites with double bonds. The reaction of the probe with three bi-
othiols could produce different products with different conjugated structures (Scheme 1), 
resulting in different UV-Vis changes and fluorescence changes at different excitation 
wavelengths for the purpose of the identification of the three biothiols. The reaction mech-
anism was confirmed by mass spectrometry and TD-DFT calculations. Furthermore, the 
probe could be used to image biothiols in HeLa cells. 

 
Scheme 1. Response of SWJT-14 to biothiols. 

2. Synthesis of Probe SWJT-14 
The synthetic route was shown in Scheme 2. Compounds 2–4 were obtained based 

on the published literature [36,44,45]. 

N OH N O O

OH

N O O

Cl

O

N O O

Cl

CN
O

O

N O O

S

CN
O

O

NaO3S

1 2 3

4SWJTU-14

MeOH

DMF

POCl3

NC
O

O

HS
SO3Na

Et3N

Et3N

Cl

Cl Cl

O O

O O

Cl

Cl Cl

78% 80%

59%

65%

 
Scheme 2. Syntheses of probe SWJT-14. 

A solution of sodium 2-mercaptoethanesulfonate (52 mg, 0.317 mmol) in 1 mL water 
was added to a solution of 4 (100 mg, 0.267 mmol) in 4 mL acetonitrile and stirred for 5 
min, then two drops of triethylamine were added to the mixture. After stirring at room 
temperature for 15 min, the solvents were removed by evaporation and the residue was 
purified by column chromatography (DCM:MeOH = 15:1) to obtain red solids (87 mg, 
yield: 65%). 1H NMR (D2O, 400 MHz) δ = 8.18 (s, 1H), 7.55 (d, J = 9.2 Hz, 1H), 6.53 (d, J = 
8.4 Hz, 1H), 6.17 (brs, 1H), 4.38 (q, J = 6.4 Hz, 2H), 3.35 (m, 4H), 3.25-3.15 (m, 2H), 3.10-3.02 
(m, 2H), 1.41 (t, J = 6.4 Hz, 3H), 1.13 (t, J = 7.2 Hz, 6H) ppm.13C NMR (DMSO-d6, 100 MHz) 

Scheme 1. Response of SWJT-14 to biothiols.

2. Synthesis of Probe SWJT-14

The synthetic route was shown in Scheme 2. Compounds 2–4 were obtained based on
the published literature [36,44,45].
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Scheme 2. Syntheses of probe SWJT-14.

A solution of sodium 2-mercaptoethanesulfonate (52 mg, 0.317 mmol) in 1 mL water
was added to a solution of 4 (100 mg, 0.267 mmol) in 4 mL acetonitrile and stirred for
5 min, then two drops of triethylamine were added to the mixture. After stirring at room
temperature for 15 min, the solvents were removed by evaporation and the residue was
purified by column chromatography (DCM:MeOH = 15:1) to obtain red solids (87 mg, yield:
65%). 1H NMR (D2O, 400 MHz) δ = 8.18 (s, 1H), 7.55 (d, J = 9.2 Hz, 1H), 6.53 (d, J = 8.4 Hz,
1H), 6.17 (brs, 1H), 4.38 (q, J = 6.4 Hz, 2H), 3.35 (m, 4H), 3.25–3.15 (m, 2H), 3.10–3.02 (m, 2H),
1.41 (t, J = 6.4 Hz, 3H), 1.13 (t, J = 7.2 Hz, 6H) ppm.13C NMR (DMSO-d6, 100 MHz) δ = 162.77,
158.23, 156.51, 155.91, 153.28, 149.80, 130.19, 115.00, 114.74, 111.01, 109.62, 106.23, 96.90,
62.76, 51.84, 44.97, 33.49, 14.49, 12.88 ppm. ESI-MS: m/z 479.06 [M − Na]− (Figures S1–S3,
Supplementary Materials).
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3. Results
3.1. The Spectral Responses of SWJT-14 for Biothiols in Aqueous Solution

The absorption and fluorescence spectra of SWJT-14 in different solvents were used
for the research (Table S2, Figures S4 and S5, Supplementary Materials). The absorption
of SWJT-14 in most solutions did not show recognition for biothiols. However, there
was a clear distinction between the probe and the three biothiols in HEPES, Tris and PBS
buffer solutions. In HEPES and Tris buffer solutions, the absorption peaks of the probe
and GSH were almost the same. However, in the PBS buffer solution, SWJT-14 exhibited
a maximum absorption peak at 504 nm. Upon the addition of Cys, Hcy or GSH to the
solution, the maximum absorption peak blue shifted to 380 nm, 460 nm and 490 nm,
respectively. For fluorescence spectra, when the excitation wavelength was 380 nm, the
fluorescence of the probe increased after the addition of three biothiols in HEPES, Tris
and PBS buffer solutions. Then, the pH effect on the probe was measured. As shown
in Figure S6 (Supplementary Materials), the SWJT-14 and SWJT-14 + biothiols system
had good fluorescence in aqueous solutions and exhibited good stability from pH 2.0 to
11.0. Considering the application in biological systems, the PBS solution with pH 7.40 was
selected for the subsequent experiment.

In order to study the SWJT-14 for three biothiols in detail, UV-Vis spectra (Figure S7,
Supplementary Materials) and color changes (Figure 1) in PBS buffer solution were used.
UV-Vis spectra of the probe + Cys system showed that the absorption peak at 504 nm
decreased, accompanied by a new peak at 380 nm, enhanced within 20 min (Figure S7a,
Supplementary Materials). For the probe + Hcy system, the absorption peak at 504 nm
decreased, accompanied by new peaks at 460 nm and 375 nm, enhanced within 40 min
(Figure S7b, Supplementary Materials). For the probe + GSH system, the absorption
peak at 504 nm shifted to 490 within 20 min (Figure S7c, Supplementary Materials).
As shown in Figure 1 (left), the color of the solution showed a distinct change from
pink (SWJT-14) to colorless (SWJT-14 + Cys), yellow (SWJT-14+ Hcy) and pale pink
(SWJT-14 + GSH). As shown in Figure 1 (right), the fluorescence color of the solution
changed from colorless (SWJT-14) to blue (SWJT-14 + Cys), green (SWJT-14+ Hcy) and
pale green (SWJT-14 + GSH). These results showed that SWJT-14 could recognize the
three biothiols in UV-Vis mode and by the naked eye.
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Figure 1. The photos of SWJT-14 with Cys, Hcy and GSH in visible light and UV light at 365 nm.

Then, the fluorescence of SWJT-14 for the three biothiols was studied in detail. The
emission peak of SWJT-14 itself at different excitation wavelengths showed almost no dif-
ference, and the photostability of the probe was good (Figure S8, Supplementary Materials).
SWJT-14 showed weak fluorescence at 584 nm, the quantum yield φ [46,47] was 0.32%
(λex = 490 nm), 0.26% (λex = 460 nm) and 0.06% (λex = 380 nm). As shown in Figure 2a,
compared with other analytes, upon the addition of Cys to the solution, the fluorescence
enhanced at 470 nm (λex = 380 nm, φ = 2.8%) and Hcy and GSH made weak emission
peaks at 467 nm and 481 nm, respectively. Notably, when the excitation wavelength was
changed to 460 nm, the SWJT-14 + Hcy system had a distinct emission wavelength at
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550 nm (φ = 2.3%) (Figure 2b). When the excitation wavelength was 490 nm, GSH exhibited
a maximum emission peak at 553 nm (φ = 1.67%) (Figure 2c). As shown in Figure 2d, the
presence of other analytes had no effect on the recognition of Cys by SWJT-14. Due to
different reaction rates, there was, to a certain extent, an effect on the recognition of Hcy or
GSH by SWJT-14 (Figure 2e,f). These results showed that SWJT-14 could detect the three
biothiols in fluorescence mode, and combined with UV and naked-eye recognition, the
three biothiols could be distinguished.

Biosensors 2023, 13, x FOR PEER REVIEW 4 of 10 
 

peaks at 467 nm and 481 nm, respectively. Notably, when the excitation wavelength was 
changed to 460 nm, the SWJT-14 + Hcy system had a distinct emission wavelength at 550 
nm (Ф = 2.3%) (Figure 2b). When the excitation wavelength was 490 nm, GSH exhibited a 
maximum emission peak at 553 nm (Ф = 1.67%) (Figure 2c). As shown in Figure 2d, the 
presence of other analytes had no effect on the recognition of Cys by SWJT-14. Due to 
different reaction rates, there was, to a certain extent, an effect on the recognition of Hcy 
or GSH by SWJT-14 (Figure 2e,f). These results showed that SWJT-14 could detect the 
three biothiols in fluorescence mode, and combined with UV and naked-eye recognition, 
the three biothiols could be distinguished. 

 

 
Figure 2. (a–c) Fluorescence responses and (d,e) competitive responses of SWJT-14 (10.0 
μM) with different analytes in PBS buffer solution (0.5% DMSO, pH 7.40). Analytes: Met, 
Leu, Pro, Thr, Try, Arg, Glu, Gly, Phe, Ser, Ala, H2S, Cys, Hcy, GSH, Lys, His and Et3N. 
(a,d) λem = 470 nm, λex = 380 nm (b,e) λem = 550 nm, λex = 460 nm and (c,f) λem = 553 nm, λex 
= 490 nm. (e,f) The black bars represent the fluorescence responses after the addition of 
the probe and other analytes. The red bars represent the fluorescent responses to the sub-
sequent addition of (d) Cys, (e) Hcy or (f) GSH to the above solution. 

To further investigate the change in fluorescence intensity with increasing concentra-
tions of biothiols, titration experiments were made. As shown in Figure S9 (Supplemen-
tary Materials), with the addition of biothiols to the solution, the fluorescence intensity of 
SWJT-14 was enhanced 311-fold for Cys at 470 nm (λex = 380 nm), 13.7-fold for Hcy at 550 
nm (λex = 460 nm) and 2-fold for GSH at 553 nm (λex = 490 nm). As shown in Figure S10 
(Supplementary Materials), SWJT-14 had a good linear relationship with biothiols at low 
concentrations, thus the detection limits were calculated to be 0.0287 μM for Cys, 0.422 
μM for Hcy and 0.924 μM for GSH [43]. The kinetic studies of SWJT-14 with the three 

Figure 2. (a–c) Fluorescence responses and (d,e) competitive responses of SWJT-14 (10.0 µM) with
different analytes in PBS buffer solution (0.5% DMSO, pH 7.40). Analytes: Met, Leu, Pro, Thr,
Try, Arg, Glu, Gly, Phe, Ser, Ala, H2S, Cys, Hcy, GSH, Lys, His and Et3N. (a,d) λem = 470 nm,
λex = 380 nm (b,e) λem = 550 nm, λex = 460 nm and (c,f) λem = 553 nm, λex = 490 nm. (e,f) The black
bars represent the fluorescence responses after the addition of the probe and other analytes. The red
bars represent the fluorescent responses to the subsequent addition of (d) Cys, (e) Hcy or (f) GSH to
the above solution.

To further investigate the change in fluorescence intensity with increasing con-
centrations of biothiols, titration experiments were made. As shown in Figure S9
(Supplementary Materials), with the addition of biothiols to the solution, the fluorescence
intensity of SWJT-14 was enhanced 311-fold for Cys at 470 nm (λex = 380 nm), 13.7-fold
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for Hcy at 550 nm (λex = 460 nm) and 2-fold for GSH at 553 nm (λex = 490 nm). As shown
in Figure S10 (Supplementary Materials), SWJT-14 had a good linear relationship with
biothiols at low concentrations, thus the detection limits were calculated to be 0.0287 µM for
Cys, 0.422 µM for Hcy and 0.924 µM for GSH [43]. The kinetic studies of SWJT-14 with the
three biothiols were performed at 37 ◦C using the corresponding excitation wavelengths.
As shown in Figure S11 (Supplementary Materials), the reaction process conformed to
the pseudo first-order kinetic equation. The slope of the linear fit was the rate constant,
which was calculated to be 10.98 min−1 for Cys, 0.326 min−1 for Hcy, and 0.442 min−1

for GSH [48].

3.2. Proposed Mechanism

According to the proposed mechanism [40,45], SWJT-14 would react with biothiols to
obtain the thiol derivatives, which were formed by replacing the mercaptosulfonic acid from
the probe with sulfhydryl groups of biothiols, which quickly underwent intramolecular
rearrangement to form a Schiff base (Figure 3). The exposed sulfhydryl groups further
underwent a Michael addition reaction and formed structurally similar polycyclic products
with Cys and Hcy. The difference in reaction rate was attributed to different potential
space resistances. For GSH, the product underwent thiol coumarin and formed Schiff bases
due to the large size and strong spatial site resistance of GSH. As shown in Figure S12
(Supplementary Materials), the peak of m/z 458.08 in MS was confirmed as a heptacyclic
coumarin derivative was obtained after the reaction of SWJT-14 with Cys. The peaks
of m/z 472.13 and m/z 533.26 were the corresponding products of Hcy and GSH with
SWJT-14, respectively (Figures S13 and S14, Supplementary Materials). These results
indicated that different products were obtained, which was the origin of different spectral
changes. The precise mechanism is still under study.
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To investigate the relationship between spectra changes and structure, Gaussian
calculations were performed. The optimized structures used the B3LYP/6-31G (d, p) basis
set [49]. As shown in Figure 4, the electron density of LUMO was mainly distributed over
coumarin and the adjacent ethyl cyanoacetate group. When the probe reacted with Cys or
Hcy to obtain 5 or 6, the decrease in electron density of the coumarin fraction indicated that
the conjugated system was reduced and therefore higher energy excitation wavelengths
were required. Compared with 5 or 6, the electron density of 7 was similar to that of the
probe, and therefore required a similar excitation wavelength to the probe. For 5, 6 and 7,
the larger energy gap indicated a blue shift in absorption wavelength, which was consistent
with the observed experimental results.

Biosensors 2023, 13, x FOR PEER REVIEW 6 of 10 
 

 
Figure 4. Energy levels and optimized structure of SWJT-14, 5, 6 and 7. 

3.3. Bioimaging in Living Cells 
To further investigate the imaging of the SWJT-14 inside living cells, HeLa cells were 

selected for the experiments. As shown in Figure 5(a1–a4), faint fluorescence in the blue, 
green and red channels was observed after 40 min of co-incubation of the SWJT-14 with 
HeLa cells. After adding 200.0 μM of NEM (N-Ethylmaleimide, thiol blocking reagent) to 
block endogenous biothiols, the fluorescence of SWJT-14 itself in the red channel was 
shown (Figure 5(b1–b4)). When Cys was added to the cells that were shielded from en-
dogenous biothiols, and incubated for 30 min, followed by incubation with SWJT-14 for 
40 min, weak fluorescence in the blue channel and almost no fluorescence in the red or 
green channels was observed (Figure 5(c1–c4)). Hcy (Figure 5(d1–d4)) or GSH (Figure 
5(e1–e4)) were added in the same way and showed fluorescence in the blue and green or 
green channels, while there was almost no fluorescence in the red channel. These results 
indicated that SWJT-14 could detect exogenous biothiols in living cells, which was con-
sistent with the fluorescence detection results. 

Figure 4. Energy levels and optimized structure of SWJT-14, 5, 6 and 7.

3.3. Bioimaging in Living Cells

To further investigate the imaging of the SWJT-14 inside living cells, HeLa cells were
selected for the experiments. As shown in Figure 5(a1–a4), faint fluorescence in the blue,
green and red channels was observed after 40 min of co-incubation of the SWJT-14 with
HeLa cells. After adding 200.0 µM of NEM (N-Ethylmaleimide, thiol blocking reagent) to
block endogenous biothiols, the fluorescence of SWJT-14 itself in the red channel was shown
(Figure 5(b1–b4)). When Cys was added to the cells that were shielded from endogenous
biothiols, and incubated for 30 min, followed by incubation with SWJT-14 for 40 min, weak
fluorescence in the blue channel and almost no fluorescence in the red or green channels
was observed (Figure 5(c1–c4)). Hcy (Figure 5(d1–d4)) or GSH (Figure 5(e1–e4)) were added
in the same way and showed fluorescence in the blue and green or green channels, while
there was almost no fluorescence in the red channel. These results indicated that SWJT-14
could detect exogenous biothiols in living cells, which was consistent with the fluorescence
detection results.
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for 40 min. (b1–b4) Cells were incubated with NEM (200.0 µM) for 30 min, followed by the addition
of SWJT-14 and continued incubation for 40 min. (c–e) Cells were incubated with NEM for 30 min,
followed by the addition of biothiol for 30 min and then the probe was added for 40 min. (c1–c4) Cys
(200.0 µM), (d1–d4) Hcy (200.0 µM), (e1–e4) GSH (200.0 µM). Scale bar: 20.0 µm. λex = 405 nm,
λem = 425–475 nm for blue channel; λex = 488 nm, λem = 500–550 nm for green channel; λex = 561 nm,
λem = 570–620 nm for red channel.

4. Conclusions

A coumarin derivative as a fluorescent probe was designed and synthesized. It can
react with biothiols in aqueous solutions to generate products with different conjugated
structures, resulting in different emission peaks at different excitation wavelengths, which
achieved the purpose of differential detection of Cys, Hcy and GSH. The fluorescence
imaging of SWJT-14 had also been demonstrated in living cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
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data and other materials. Table S1: Summary of representative probes for distinguishing of biothiols;
Figure S1: 1H NMR spectrum (400 MHz, D2O) of SWJT-14; Figure S2: 13C NMR spectrum (100 MHz,
DMSO-d6) of SWJT-14; Figure S3: LC-MS spectrum of probe SWJT-14; Table S2: Photophysical
properties of SWJT-14; Figure S4: Absorption spectra of SWJT-14 (10.0 µM) with biothiols in dif-
ferent solvents; Figure S5: Fluorescence of SWJT-14 (10.0 µM) with biothiols in different solvents
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