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Abstract: In comparison with traditional clinical diagnosis methods, field–effect transistor (FET)–
based biosensors have the advantages of fast response, easy miniaturization and integration for
high–throughput screening, which demonstrates their great technical potential in the biomarker
detection platform. This mini review mainly summarizes recent advances in FET biosensors. Firstly,
the review gives an overview of the design strategies of biosensors for sensitive assay, including
the structures of devices, functionalization methods and semiconductor materials used. Having
established this background, the review then focuses on the following aspects: immunoassay based
on a single biosensor for disease diagnosis; the efficient integration of FET biosensors into a large–area
array, where multiplexing provides valuable insights for high–throughput testing options; and the
integration of FET biosensors into microfluidics, which contributes to the rapid development of
lab–on–chip (LOC) sensing platforms and the integration of biosensors with other types of sensors
for multifunctional applications. Finally, we summarize the long–term prospects for the commercial-
ization of FET sensing systems.

Keywords: field effect transistor; biosensors; microfluidics; multiplexing; integration

1. Introduction

In the case of highly contagious and hidden viruses which spread recklessly around
the world at an alarming rate, detecting and controlling an epidemic as early as possible can
effectively reduce the harm caused to society by public health events to a large extent [1].
Therefore, early non–invasive diagnosis and the immediate detection of biomarkers has
become a research hotspot. How to realize simple, rapid, sensitive and low–cost detection
of biological target analytes such as viruses and various proteins has also become a major
problem in the field of biosensors.

A biosensor is a device that is sensitive to biological substances and which can convert
concentration signals into readable signals of light, electricity, and magnetism. It generally
consists of biologically sensitive probes performing the identification of elements (enzymes,
antibodies, antigens, nucleic acids and other biologically active substances), appropriate
physical and chemical transducers (oxygen electrodes, field effect transistors etc.), and
an analysis system composed of a signal amplification device [2]. Common biosensors
include optical biosensors, thermal biosensors, resistive biosensors, and semiconductor
biosensors. Particularly, FET biosensors have shown great technical potential in biomarker
detection platforms due to their simple operation, high sensitivity, fast response speed,
real–time signal amplification, easy miniaturization, and integration for high–throughput
screening, which has caused them to become a promising candidate for various biosensing
applications [3–6]. The main principle of FET biosensors for biological detection is that the
bio–sensitive probe should specifically bind with the target analyte and generate charged
ions, which will further induce the change of carriers in the channel material [7]. With the
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change of various electrical output parameters, such as mobility (µ), threshold voltage (Vth),
on/off ratio (Ion/Ioff) and source–drain currents (Ids), the signals can also be effectively
transmitted into electrical signals and amplified even in complex biological systems, thereby
realizing the quantitative detection of biological substances [8]. Many FET biosensors have
been successfully used for the sensitive detection of proteins, glucose, DNA, and cells,
illustrating the rapid development of this exciting research field [9].

For FET biosensors, the realization of high efficiency signal transduction not only
depends on optimizing the geometry of devices and the functionalization methods of de-
vices, but also heavily relies on the development of semiconductor materials. Furthermore,
detection for single analytes alone is far from sufficient to reach the required accuracy for
early disease detection. Consequently, biosensor multiplexing has been developed to detect
one analyte in multiple parallel channels or to detect multiple analytes simultaneously to
improve accuracy and repeatability, and this multiplexing has been the key to the applica-
tion of advanced FET biosensors in the practical medical field. FETs are small in size and
compatible with traditional semiconductor microfabrication processes, so they could be in-
tegrated into microfluidic platforms. Integrating the microfluidics and immunoassays into
lab–on–chip (LOC) devices can help detect biomarkers in a shorter analyzing time, with
less reagent volume and lower power consumption automatically, which can contribute to
developing handheld, miniaturized, medical diagnostic testing platforms. Therefore, we
will discuss recent progress regarding the aspects mentioned above in this mini review and
summarize the long–term prospects for the commercialization of FET sensing systems.

2. Biosensor Designing
2.1. Device Structures

FETs are mainly composed of three electrodes (gate, source and drain), an insulating
layer and a semiconductor layer [10]. The device is “energized” only when the gate voltage
reaches the “threshold voltage” (Vth). When it is above Vth, carriers flow along the channel
between the source and drain. Therefore, the device state of “on” or “off” is related to the
relative magnitude of the gate bias voltage (Vg) applied to the FET and Vth. According
to the relative position of the electrode and the semiconductor layer, there are four basic
structures of FET, as shown in Figure 1.
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Figure 1. Schematic representation of four configurations of FETs. (a) Bottom–gate top contact
(BGTC). (b) Bottom–gate bottom contact (BGBC). (c) Top–gate top contact (TGTC). (d) Top–gate
bottom contact (TGBC).

In these device structures, when a metal and semiconductor are in contact, due to the
difference in work function, free electrons will transfer from the metal to the semiconductor,
or vice versa, forming a space charge region. Then, energy band edges in the semiconductor
are shifted continuously because of an electric field generated by the charge transfer, which
is called metal/semiconductor–contact–induced band bending. When an extra electric field
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is applied to the metal, an electric field is built between the metal and the semiconductor,
and because of insufficient shielding by the charge carriers of low concentration, the electric
field is penetrated into the near surface region of the semiconductor, causing field–effect–
induced band bending [11]. In addition, charge transport within a device is also strongly
influenced when charged molecules are adsorbed on a semiconductor surface. Specifically,
when a molecule approaches the semiconductor surface, the potential energy gradient of
electrons and holes in the near–surface region of the semiconductor is modified by adsorbed
molecules, forming Helmholtz layers on the semiconductor surface and causing conduction
and valence bands to bend. Therefore, due to the band bending effect, the efficiency of
charge transfer from the semiconductor to the adsorbed molecule will be affected [12].

In recent years, in order to expand the application of FETs, researchers have replaced
the traditional insulating layer materials with electrolytes, such as polymers or ionic liquids,
and allowed contact with the gate electrodes to fabricate electrolyte–gated transistors (EGTs).
Considering that electrochemical switching and field–effect modulation in semiconductor
channels may often coexist, we will only discuss electrolyte–gate field–effect transistors
(EGFETs) operating fully in field–effect mode here. Different from traditional FETs, the
channel current of EGFETs is regulated by the gate electrode through the electrolyte solution,
so that EGFETs show higher gate capacitance and lower operation voltage (less than 1V). In
the EGFETs, depending on the position of the gate electrode relative to the semiconductor
channel, there are several common geometric structures, as shown in Figure 2.
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In the first structure (Figure 2a), the manually placed probe gate electrode is located
above the semiconductor channel. For example, Horowitz’s group used Au as the gate
electrode and a simple water droplet as an insulating layer for the first time and fabricated
a water–gate organic field–effect transistor (WGOFET) [13]. As water is the natural envi-
ronment for livings, it is extremely suitable for detecting biological molecules. Following
this, Kergoat et al. used WGOFETs for DNA testing. According to the formula calculation,
the Debye length in PBS was 0.76 nm and a significant amount of negative charge of DNA
was located outside of the Debye length, but it could be increased to 206 nm in deionized
water at room temperature, which solved the problem of shielding DNA negative charge
in high ion concentration solutions [14].

Because the position of a manually placed probe is arbitrary in the structure of
WGOFETs, it is not easy to integrate such probe gate electrode structures into microfluidic
channels. Consequently, side–gate architecture (Figure 2b) was proposed, in which the
gate is on the same plane as the semiconductor channel. The main advantages of this
structure were that the gate electrode position was highly controllable, the fabrication of
devices was simplified greatly, and the source, drain, and gate electrodes could be simul-
taneously deposited by using a single pattern process. Kim et al. used liquid coplanar
gate graphene FETs to detect and distinguish single strand (SS) and double strand (DS)
DNA molecules [15].Compared with the traditional bottom–gate graphene field–effect
transistors (GFETs), liquid coplanar–gate graphene FETs showed higher DNA detection
sensitivity [16].
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Considering that most of the research on biosensors is based on “bottom gate” or
“solution gate” and the sensing region is placed on the semiconductor which is sensitive to
factors such as water and oxygen, some researchers proposed the “extended gate” structure
(Figure 2c) so as to protect semiconductors, which separated the sensing area from the tran-
sistor itself. Minamiki et al. achieved the label–free detection of phosphoproteins (α–casein)
using ZnII–DPA functionalized extended–gate electrodes; the detection of phosphoproteins
can be applied in the fields of medicine and bioanalytical chemistry [17]. Zhang also
reported an extended–gate organic FET sensing platform for exploiting the difference in
weak steric interaction between cationic phenylcarbamoylated–CD and essential amino
acids, which can be amplified strongly via organic field–effect transistors (OFETs), and it
exhibited good chiral resolution for six essential amino acids [18]. This study provided a
new direction for the molecular chirality study of natural amino acids.

2.2. Device Functionalization Methods

In addition to the rational design of the structure of devices, adopting suitable device
functionalization methods was also important to achieve high sensitivity and selective
detection of biological target analytes. The functionalization methods can be divided
into two categories: physical functionalization methods and chemical functionalization
methods [19].

2.2.1. Physical Functionalization Methods

The physical functionalization of semiconductors is to connect semiconductors and
biological acceptors (which refers to any chemicals that have a recognition unit or reaction
site with the target analyte) only through simple weak interaction such as van der Waals
force and electrostatics interaction etc., instead of covalent bonds. One strategy is to blend
them directly [20]. As shown in Figure 3a, Sun et al. chose glutaraldehyde (GA) as the
dopant and achieved lower Vth and higher µ when adding 10% GA crosslinker to poly{2,2′–
[(2,5–bis(2–octyldodecyl)–3,6–dioxo–2,3,5,6–tetrahydropyrrolo[3,4–c] pyr–role–1,4–diyl)]
dithiophene–5,5′–diyl–alt–thieno[3,2–b] thiophen–2,5–diyl} (PDBT–Co–TT) solution. The
main reasons for the obvious improvement in device performance were: (i) the gelation
behavior of PDBT–co–TT polymer was effectively suppressed by the GA crosslinker, thus
forming a better charge transport film; (ii) GA cross–linking agent acted as dopant and
its strongly polar–CHO group facilitated the accumulation and transportation of charges,
which contributed to improving the performance [21].
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Figure 3. Schematic diagram of physical functionalization methods. (a) Flow chart of PDBT–co–
TT/GA blend films. Reproduced with permission from [21]. Copyright 2021, American Chemical
Society. (b) Process of deposition of a functional layer containing carboxyl groups on DDFTTF
semiconductor surface by polymerization of MA monomer. Reproduced with permission from [22].
Copyright 2010, John Wiley and Sons.

Because blending often adversely affects the performance of FETs, researchers have
tried to directly deposit the acceptor on the semiconductor to form a bilayer structure
to physically functionalize the semiconductor, and the most commonly used method is
Plasma Enhanced Chemical Vapor Deposition (PECVD). For example, Bao’s group used this
method to deposit maleic anhydride (MA) monomer in a plasma chamber onto the surface
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of 5,5′ –bis–(7–dodecyl–9H–fluoren–2–yl)–2,2′ –bithiophene (DDFTTF) semiconductor for
DNA detection. MA was polymerized on the surface to form a 5 nm–thick ultrathin film
containing carboxyl groups to allow for the covalent attachment of the peptide nucleic
acid (PNA) strands (Figure 3b) [22,23]. As displayed in Figure 4a, Torsi’s research group
used ethylene and acrylic acid vapor as a precursor and used glow discharge in a plasma
reactor to induce polymerization on the surface of P3HT [24]. Because the formed carboxyl
functional layer was a hydrophilic layer, in order to reduce the possible influence of ions on
the doping of semiconductors in the electrolyte solution, the researchers further modified
the surface with immobilizing phospholipid (PL) molecules, where the deposited PL molec-
ular layers were amphiphilic molecules with a non–polar nature, and the diffusion of ions
through the membrane was minimized, ultimately limiting ion doping and maintaining
good field–effect performance (Figure 4b) [25].

Mulla et al. used the spin–coating method to functionalize the PBTTT surface. A
thin layer of polyacrylic acid (PAA) was spin–coated directly onto the PBTTT surface and
then carboxyl functional group was generated by the UV–assisted cross–linking process to
bind with biotinylated phospholipid (B–PL) containing membranes (Figure 4c) [26]. Sun
et al. developed a novel material, 2,6–bis(4–formylphenyl)–anthracene (BFPA), to modify
the poly{3,6–dithiophen–2–yl–2,5–di(2–octyldodecyl) pyrrolo [3,4–c] pyrrole–1,4–dione–
alt–thienylenevinylene–2,5–yl} (PDVT–8) layer, as shown in Figure 4d, and achieved the
ultrasensitive and reliable detection of AFP biomarkers in human serum with a sensitivity
of up to femtomolar level. In this device, the BFPA layer played the dual roles of protection
and functionalization [27]. In addition, depositing gold nanoparticles (AuNPs) on the
semiconductor surface as a functional layer was also a common method. As an example,
Figure 4e shows the block copolymer (BCP)–templated AuNP techniques used by Bao’s
group, in which hydrogen tetrachloroaurate (HAuCl4) precursor was added to the poly(b4–
vinylpryidine) (PS–b–P4VP) micelles and was then spin–coated on UV ozone–activated
DDFTTF semiconductors; a large area of highly ordered AuNPs were deposited after the
PS–b–P4VP was removed [28]. The AuNPs were subsequently functionalized to provide
modular attachment points for DNA aptamer [29,30].
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permission from [24]. Copyright 2013, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Pro-
cedure of the PECVD method to introduce carboxyl functional layer onto the OSC surface and
immobilization of phospholipid (PL) molecule for biological modification. Reproduced with per-
mission from [25]. Copyright 2013, John Wiley and Sons. (c) Schematic diagram of introducing the
carboxyl functional layer onto PBTTT surface, including the spin coating of PAA layer on PBTTT
surface and subsequent UV–assisted cross–linking process. Reproduced with permission from [26].
Copyright 2015, Royal Society of Chemistry (d) Schematic diagram of BFPA layer prepared by spin–
coating method as both protective layer and functional layer. Reproduced with permission from [27].
Copyright 2021, American Chemical Society. (e) Schematic of using deposited gold nanoparticles
(AuNPs) on DDFTTF semiconductor surfaces as functional layers to provide binding sites for DNA
aptamer. Reproduced with permission from [30]. Copyright 2013, American Chemical Society.

2.2.2. Chemical Functionalization Methods

One of the chemical functionalization methods is to introduce functional groups
directly to semiconductors that have outstanding charge transport properties so that bi-
ological receptors can be immobilized onto them. Horowitz’s group synthesized a new
biotinylated polymer semiconductor consisting of biotin groups to detect avidin and strepta-
vidin (Figure 5a) [31]. However, due to the introduction of functional groups, the molecular
packing was changed and weakened π–π interaction among the molecules, which affected
the transport path of charges and led to a sharp deterioration in device performance [32].
There were also some researchers using techniques such as ultraviolet (UV)ozone treatment
and O2 plasma treatment to generate a small number of defects on the semiconductor
surface to serve as binding sites for biological receptors. For example, Zhu’s group used
the method of plasma–assisted–interface–grafting to introduce molecular antennas on the
surface of semiconductors (Figure 5b). Minimized molecular gaps and reduced bound-
ary interactions enhanced the interaction between the semiconductor active layer and
adenosine triphosphate (ATP) in solution, reaching a low detection limit of 0.1 nM [33].

The O2 plasma–generated oxygen–containing groups can be used to covalently tether
the self–assembly membranes (SAMs), which can help to immobilize bio–sensitive probes
in an efficient way [34,35]. As shown in Figure 5c, Lee et al. used O2 plasma to treat
mechanically exfoliated tungsten diselenide (WSe2) flakes and then amino groups were
introduced by using triaminopropyltriethoxysilane (APTES) as a silane coupling agent to
immobilize bioreceptors.Compared with WSe2 without O2 plasma treatment, more surface
defects were generated on the treated surface to serve as an additional binding site to hold
APTES molecules. As a result of the additional binding sites of the biological receptor,
sensitivity was further enhanced [36].

The other method involved using an Au gate as a sensor area, so that the SAMs
layer was formed on the gold surface through the Au–S chemical bond. The bio–sensitive
probes were fixed on the Au gate through the SAM layer for biological testing. Mulla
et al. treated the gate region with 3–mercaptopropionic acid (3–MPA) solution to form
a SAM layer, which realized the sensitive and quantitative detection of neutral enan-
tiomers (Figure 5d) [37]. Biscarini’s research team used cysteine to functionalize the Au
gate and then Cys–protein G was adsorbed through chemical bonding onto the Au sur-
face (Figure 5e). Because G protein could combine with the FC region of the antibody
specifically, the biosensor had a theoretical detection limit as low as 100 fM for anti–drug
antibodies (ADA) detection [38]. Macchia et al. also utilized mixed alkyl mercaptan with
carboxyl groups to link onto a gold surface to form Chem–SAM and then anti–human–
Immunoglobulin–G (anti–IgG) was covalently connected with carboxyl groups to form the
Bio–SAM on the gate at the same time (Figure 5f). In this way, single molecule detection
of IgG was realized with a millimeter–sized transistor. The suggested sensing mechanism
involved a work function change, which was assumed to propagate through the network
of hydrogen bonds in the gating field [39,40].
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Copyright 2018 American Chemical Society. (d) Schematic representation of the SAMS layer on
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from [38]. Copyright 2021, The Royal Society of Chemistry. (f) Schematic diagram of the device
structure using both Chem–SAM and Bio–SAM to modify the gate (left). Schematic of hydrogen bond
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In the case of functional steps and sensing detection, the long–term stability and high
reproducibility of devices are very important for obtaining accurate and reliable detection
results. For example, when FET sensors are immersed in a physiological environment, the
surface of the silica insulation layer may be hydrolyzed by cationic electrolytes and thus
destroyed, further reducing the reproducibility of the sensor response. Therefore, surface
passivation is very important to achieve high stability and reproducibility in detecting
target molecules [41,42].
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The interfaces of OFETs, including OSC/electrode interface, OSC/insulation interface
and OSC/air interface, largely determine the performance of devices. Due to defects such
as traps and grain boundaries at these interfaces, charge would be trapped, which affects
the charge transport, inevitably leading to deviation from the desired behavior of devices.
In addition, the loose arrangement of organic molecules also makes it easier for water and
oxygen in the air to be absorbed at the OSC/air interface. Charge injection and transfer will
also be affected by these active impurities adsorbed at the interface, thus affecting the final
performance of the devices [43]. In view of these interface problems, different solutions
have been explored to improve device performance. For example, the formation of an
organic monolayer on the surface of silicon–based sensors through a Si–C bond to achieve
surface passivation and chemical functionalization has been discussed in a recent review by
Justin Gooding [44]. Li et al. prepared high–stability devices through interface engineering
and strain balance strategy [45]. Osaka et al. developed a simple surface coating technique
and successfully achieved the long–term stability of FET biosensors in water environments
by coating reduced GO to the surface of a silicon dioxide insulation layer, which effectively
prevented cations in the electrolyte from invading the gate insulator of FETs [46].

In addition, another aspect is seldom accounted for by researchers working on FET
sensing: the sensing surface will have a point of zero charge (PZC), where no excess
charge is present at the electrode surface. A recent work by Darwish [47] has perfectly
demonstrated that the kinetics of surface reactions depend on the surface PZC, and the
adsorption and recognition of molecules on the surface can be controlled by applying
potential, which will have a significant impact on the design and operation of the FET
sensing interface. Furthermore, this may become a new issue for researchers to consider
when functionalizing FET sensors in the future.

2.3. Semiconductor Materials forActive Layers
2.3.1. Two–Dimensional Materials (2D)

Since graphene was first introduced in 2004 [48], researchers have developed a wide
variety of 2D materials. The thickness of 2D semiconductor materials is usually less than
5 nm and the carrier flow on the surface of the material is limited; this is conducive to
achieving efficient signal acquisition and conversion because the 2D materials are directly
exposed to the external environment. Because of these advantages, 2D materials have
flourished in the field of FETs. Additionally, the large surface–volume ratio of the materials
provides abundant modification sites for specific receptors, which is very important for
FET–based biosensors [49].

• Two–dimensional layered materials;

Biosensors based on GFET have attracted much attention due to their high electron
mobility, π–π stacking interactions with biomolecules and good stability. For example,
Gao et al. fixed a DNA probe on the surface of the non–functionalized graphene only by
using π–π interactions to achieve rapid and label–free miRNA detection within 20 min
with detection limits of as low as 10 fM (Figure 6a) [50]. In order to enhance the interaction
between graphene and biomolecules, some researchers have used 1–Pyrenebutanoic acid
succinimidyl ester (PBASE) as a linker to treat graphene surface (Figure 6b) [51]. The
pyrene group on one side of PBASE was bound to graphene through π–π interaction and
the succinimide group on the other side was covalently bound to the DNA molecule. The
edges and defect sites of graphene have high activity and the surface of oxidized graphene
contains a large number of active epoxy groups and carboxyl groups [52], both can be used
for functionalization. Therefore, Roberts et al. used 1–Ethyl–3–(3–dimethylaminopropyl)
carbodiimide/N–hydroxysuccinimidesulfonate sodium salt (EDC/NHS) solution to func-
tionalize graphene with carboxyl groups and monitored the resistance changes caused by
antigen–antibody interaction in real time for the detection of Japanese encephalitis virus
and avian influenza disease [53].

However, the lack of band gap in graphene results in a high leakage current of GFET
biosensors, which reduces the sensors’ dynamic range. The transition metal dichalcogenide
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(TMD) material with X–M–X structure is composed of two atomic layers (X) and a transition
metal layer (M) in between the two atomic layers (X) [54,55]. TMDs such as molybdenum
disulfide (MoS2) and WSe2 exhibit a moderate band gap, which significantly reduces the
leakage current in the FETs and improves detection sensitivity. Park et al. fabricated
MoS2 FET biosensors and made rigorous theoretical simulations, and the detection limit
of prostate specific antigen (PSA) was as low as 100 fg mL−1 with standard errors below
9% [56]. WSe2 FET biosensors were expected to show a good detection ability due to their
high carrier mobility because high carrier mobility would affect several other performance
indicators, such as current density and switching delay, in turn [57]. Hossain et al. devel-
oped a highly sensitive WSe2 FET biosensor for PSA detection with a very low detection
limit of 10 fg ml−1 [58]. Due to the absorption of H2O and CO, the stability and detection
capability of the original device would decrease and would probably lead to wrong signals.
Zhang et al. used DNA tetrahedra and biotin–streptavidin (B–SA) to functionalize an MoS2
FETs device, which provided a more stable anchoring system for antibody–antigen (Ab–Ag)
binding, so it had an ultra–high sensitivity for PSA with a detection limit of 1 fg mL−1

(Figure 6c) [59].

• Two–dimensional organic materials

Two–dimensional organic materials such as 2D covalent organic framework (2D COFs)
and metal organic frameworks (MOF) have the advantages of periodic planar network
topology, good stability, good biocompatibility, ease of functionalization and they bear
abundant modification sites, which enable them to anchor a large number of specific
receptors favorable to be used in biosensors [60–64]. For instance, Wang et al. prepared Ni
–Metal–Organic Framework (MOF)–based FETs using in situ grown Ni3(HITP)2 membrane
as a channel material (Figure 6d). Tightly stacked MOF films with controllable thickness
were prepared by adjusting the reaction time. Due to the tightly stacked sheet structure
and bare surface, the material was conducive to carrier transmission and post modification.
Following this, Ni–MOF was developed as a liquid–gated device with bipolar performance
and excellent response to gluconic acid in the range of 10−6 to 10−3 g mL−1, validating the
potential of MOF–based FETs as biosensors [65].
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2.3.2. Polymer and Small Organic Molecule Materials

In comparison with inorganic semiconductor materials, organic semiconductor (OSC)
materials have the following three advantages: (1) desired properties and functions can be
obtained by simple chemical modification; (2) OSCs can be dissolved in common solvents to
prepare devices by solution process methods such as spin coating and drop casting instead
of the traditional vacuum deposition method, and it greatly simplifies the process of device
preparation and decreases the cost; (3) there are many kinds of OSCs with good flexibility
for integrating circuits and flexible displays. According to the molecular weight of the OSC
materials, they can be divided into small molecule materials and polymer materials. The
chemical structures of some typical OSC materials are shown in Figure 7.
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Typical small molecule materials include pentacene, α–sexithiophene (α6T), 2,7–
dialkyl[1]benzothieno[3,2–b][1] benzothiophene (CnBTBT), dinaphtho [2,3–b:20,30–f]thieno
[3,2–b]thiophene (DNTT), and so on. For example, Song et al. prepared an extended
gate OFET with pentacene as a semiconductor layer for the detection of glial fibrinous
acidic protein [66]. Li et al. synthesized naphthodithieno [3, 2–b] –thiophene derivatives
NDTT–8 and NDTT–10. They showed excellent water stability compared to pentacene and
poly{3,6–dithiophen–2–yl–2,5–di(2–decyltetradecyl)–pyrrolo[3,4–c] pyr–role–1,4–dione–alt–
thienylenevinylene–2,5–yl} (PDVT–10) polymers. After 90 days in water, the µ of the carrier
remained above 50% (Figure 8a) [67]. However, because the performance of most small
molecule OFETs degraded rapidly once they were exposed to moisture, they were not
suitable for the detection of biomolecules in liquid environments [68]. In order to further
improve the stability of devices, polymer semiconductor materials were applied. Typical
polymer materials include poly[2,5–(2–octyldodecyl)–3,6–diketopyrrolopyrrole–alt–5,5–
(2,5–di(thien–2–yl)thieno[3,2–b]thiophene)](DPP–DTT), poly(3–hexylthiophene) (P3HT),
poly[2,5–bis(3–tetradecylthiophen–2–yl)thieno[3,2–b]thiophene](PBTTT), poly[[1,2,3,6,7,8–
hexahydro–2,7–bis(2–octyldodecyl)–1,3,6,8–dioxobenzo[lmn][3,8]phenanthroline–4,9–diyl]
[2,2′–bithiophene]–5,5′–diyl] [P(NDI2OD–T2)], diketopyrrolopyrrole–based π–conjugatedc-
opolymer (PDPP5T) and so on. As shown in Figure 8b, Leong’s group fabricated high–
performance WGOFETs using PQD–HD–4T–DD polymer and the average µ was 9.76×10−3

cm2 V−1 s−1, Ion/Ioff was 4.41×104 [69]. Doumbia et al. synthesized two D–A polymers,
(poly[2,5–(2–Octyldodecyl)–3, 6–Diketopyrrolopyrrole–alt–5,5–(2,5–di(thien–2–yl) thieno)
[3,2–b] thiophene)] (PDPPDTT) and indacenodithiophene–co–benzothiadiazole (PIDTBT)
for WGOFETs. The Ion/Ioff were 3 × 103 (PDPPDTT) and 2 × 104 (PIDTBT), respectively.
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The µ of PDPPDTT was 0.18 cm2 V−1 s−1 and PIDTBT was 0.16 cm2 V−1 s−1 (Figure 8c) [70].
Sun et al. synthesized π–conjugated polymer material PDBT–co–TT for WGOFETs with
an average mobility of 0.22 cm2 V−1 s−1 and a switching ratio of 5.13 × 103 (Figure 8d),
which exceeded most of those reported WGOFETs to date [71]. Compared to P–type poly-
mers, N–type polymers were affected heavily by air/water and had low performance,
so they were not widely used in biosensors. Caironi et al. presented the first example
of an N–type electrolyte–gated organic transistor based on an inkjet printing polymer,
p(NDI–C4–TEGMe–T2) (Figure 8e).The device showed excellent working stability of more
than 18 h and a switching ratio of more than 104 [72]. In terms of the material, they should
have a suitable energy level and a good match with the work function of the source and
drain to facilitate the effective injection and output of charge carriers, resulting in different
detection performance (Table 1).

Biosensors 2023, 13, x FOR PEER REVIEW 12 of 23 
 

nthroline−4,9−diyl][2,2′−bithiophene]−5,5′−diyl] [P(NDI2OD−T2)], diketo-
pyrrolopyrrole−based π−conjugatedcopolymer (PDPP5T) and so on. As shown in Figure 
8b, Leong’s group fabricated high−performance WGOFETs using PQD−HD−4T−DD 
polymer and the average μ was 9.76×10−3 cm2 V−1 s−1, Ion/Ioff was 4.41×104[69]. Doumbia et 
al. synthesized two D−A polymers, (poly[2,5−(2−Octyldodecyl)−3, 
6−Diketopyrrolopyrrole−alt−5,5−(2,5−di(thien−2−yl) thieno) [3,2−b] thiophene)] 
(PDPPDTT) and indacenodithiophene−co−benzothiadiazole (PIDTBT) for WGOFETs. 
The Ion/Ioff were 3 × 103 (PDPPDTT) and 2 × 104 (PIDTBT), respectively. The μ of PDPPDTT 
was 0.18 cm2 V−1 s−1 and PIDTBT was 0.16 cm2 V−1 s−1 (Figure 8c) [70]. Sun et al. synthe-
sized π−conjugated polymer material PDBT−co−TT for WGOFETs with an average mo-
bility of 0.22 cm2 V−1 s−1and a switching ratio of 5.13 × 103 (Figure 8d), which exceeded 
most of those reported WGOFETs to date [71]. Compared to P−type polymers, N−type 
polymers were affected heavily by air/water and had low performance, so they were not 
widely used in biosensors. Caironi et al. presented the first example of an N−type elec-
trolyte−gated organic transistor based on an inkjet printing polymer, 
p(NDI−C4−TEGMe−T2) (Figure 8e).The device showed excellent working stability of 
more than 18 h and a switching ratio of more than 104 [72]. In terms of the material, they 
should have a suitable energy level and a good match with the work function of the 
source and drain to facilitate the effective injection and output of charge carriers, result-
ing in different detection performance (Table 1). 

 
Figure 8. Performance of semiconductors used in FET Biosensors. (a) Stability testof NDTT−8 and 
NDTT−10 in water environment. Reproduced with permission from [67]. Copyright 2019, The 
Royal Society of Chemistry. (b) Characteristic I−V curves of PQD−HD−4T−DD polymer in water 
environments. Reproduced with permission from [69]. Copyright 2020, The Royal Society of 
Chemistry. (c) Representation of characteristic curves of PDPPDTT and PIDTBT transistors. Re-
produced with permission from [70]. Copyright 2021, Wiley−VCH GmbH. (d) Saturation mobility 
and on/off ratio of PDBT−co−TT polymer transistors. Reproduced with permission from [71]. 

Figure 8. Performance of semiconductors used in FET Biosensors. (a) Stability testof NDTT–8 and
NDTT–10 in water environment. Reproduced with permission from [67]. Copyright 2019, The Royal
Society of Chemistry. (b) Characteristic I–V curves of PQD–HD–4T–DD polymer in water environ-
ments. Reproduced with permission from [69]. Copyright 2020, The Royal Society of Chemistry.
(c) Representation of characteristic curves of PDPPDTT and PIDTBT transistors. Reproduced with
permission from [70]. Copyright 2021, Wiley–VCH GmbH. (d) Saturation mobility and on/off ratio of
PDBT–co–TT polymer transistors. Reproduced with permission from [71]. Copyright 2020, Elsevier
B.V. I. (e) Characteristic I–V curves of N–type polymers, p(NDI–C4–TEGMe–T2). Reproduced with
permission from [72]. Copyright 2022, Wiley–VCH GmbH.
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Table 1. Semiconductor materials used for FET biosensors.

Characteristic Semiconductor Mobility
(cm2V−1s−1) Ion/off Analyte Detection Limit Times (min) Sensitivity Ref

1© High surface–volume ratio,
high theoretical carrier

velocity (~106 m/s) and
mobility;

2© Zero band gap, large
leakage current,

reducing the dynamic range
of the sensor, sensitive to

external conditions, such as
electric field and foreign

doping impurities.

Graphene

SARS–CoV–2 antibody 10−18 M <2 4% 1
DNA 1 nM minutes N/A 15

miRNA 10−15 M 20 5.99 mV/decade 50
RNA 0.1 aM minutes 14.8 51

3.79 (hole) 3100 Hg2+ 16 pM/L minutes N/A 52
3.78 (electron) JEV/AIV 1 fM/10 fM minutes N/A 53

N/A

SARS–CoV–2 antigen 2.42 × 102

copies/mL
>1 N/A 76

>10,000 *
(Room

temperature)

SARS–CoV–2 Nucleic
acid 0.03 copy/µL ~1 N/A 77

SARS–CoV–2
protein ~8 fg/mL minutes 12.8mV/decade 79

K+

Na+

Ca+
~100 µM N/A

−54.7 ± 2.90
−56.8 ± 5.87
−30.1 ± 1.90
mV/decade

83

DNA 1 nM N/A 30.1mV/decade 86
Nucleic acid 1.7 fM ~2.5 N/A 90

IFN–γ 880 fM minutes N/A 97

1© Adjustable intrinsic band
gap, high carrier mobility,

large switching ratio,
low leakage current;
2©Sensitive toexternal

conditions;

WSe2 133 ~105 PSA 10 fg/mL minutes 2.6 58
WSe2 N/A N/A Glucose 10 mM N/A 2.87 × 105 A/A 36
MoS2 N/A ~106 PSA 100 fg/mL minutes N/A 56
MoS2 N/A N/A PSA 1 fg/mL ~4 0.05% 59
MoS2 19.4 ~102 NMP22/CK8 0.027/0.019 aM N/A N/A 81
MoS2 83.5 ~106 PSA 1 pg/mL 2~3 N/A 92
MoS2 9.18 ~107 Glucose N/A N/A N/A 93
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Table 1. Cont.

Characteristic Semiconductor Mobility
(cm2V−1s−1) Ion/off Analyte Detection Limit Times (min) Sensitivity Ref

1© Easy modification,
adjustable energy band, high

flexibility,
easy solution processing,

good hydrophobicity;
2© Polymerization generally

takes place at high
temperature and consumes

energy,
low carrier mobility.

P3HT–COOH 0.5 ± 0.12 ~103 DNA N/A minutes N/A 14
DDFTTF ~0.35 2 × 03 DNA N/A minutes N/A 22

P3HT 0.006 N/A D–Phe 10−13 mol/L N/A N/A 18
P3HT 10−3 204 ± 91 SA 10 nM 45s N/A 25

PBTTT N/A N/A α–casein 0.22 ppm N/A N/A 17
PBTTT N/A N/A BSA 6 × 10−13 M <15 N/A 35
PBTTT ~0.02 102−103 SA 10−11 M minutes N/A 26

PBTTT–C14 (1.1 ± 0.2) × 10−1 N/A pOBP
protein 50 pM N/A N/A 37

PDVT–8 0.18 ~105 AFP 4.5 fM 40 2.7% 27
DDFTTF 0.25 2 × 103 Hg2+ 100 µM N/A N/A 29

P3HT–biotin ~10−4 ~80 Streptavidin N/A minutes 2% 31
PDPP3T 0.3~0.6 ~103 ATP 0.1 nM minutes N/A 33

PDBT–co–TT 0.22 5.13 × 103 AFP 0.15 ng/mL 45 N/A 71

PDBT–co–TT 2.07 ~106 AFP/
CEA

0.176 pM/
65 fM minutes N/A 21

PDBT–co–TT ~0.1 ~103 AFP/CEA/
PSA 4.75 aM N/A N/A 82

1© Clear structure,
easy to purify,

2© Poor film formation,
not conducive to large area

preparation.
Sensitive to external

conditions;

α 6T 4 × 10−2 102−103 Penicillin 5 µM minutes 50 µV/µM 34

Pentacene 0.116 ~106 BSA N/A N/A N/A 23
Pentacene 0.69 ± 0.07 26.0 ± 5.7 GFPA 1.0 ng/mL minutes N/A 66
Pentacene N/A N/A TNF α 3 pM N/A N/A 91

TIPS–pentacene N/A N/A ADAs 10−13 M minutes 1011 M−1 38

Notes: 1© represents advantages and 2© represents disadvantages of different materials. The asterisk (*) represents the theoretical value.
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3. Application
3.1. Immunoassay Based on Single Biosensor

At present, serology and viral nucleic acid testing are two main diagnostic methods
for COVID–19 [73–75], but they cannot meet the requirements of diagnostic accuracy and
detection speed at the same time. It is becoming more and more important to develop
biosensing devices with high sensitivity, fast detection speed and less volume, which is
where researchers have concentrated a lot of effort.

Seo et al. reported on a FET biosensor for detecting SARS–CoV–2 virus in clinical
samples, in which the SARS–CoV–2 spike antibody was coupled with a graphene sheet
and used as sensing area (Figure 9a). It was able to detect SARS–CoV–2 spike protein
in the clinical transport medium of 100 fg/mL [76]. Wei’s group also developed a GFET
biosensor modified with spike S1 protein (Figure 9b). Through the specific binding of
SARS–CoV–2 antibody and S1, the conductance in graphene channels changed, and the
ultra–low detection limit of SARS–CoV–2 antibody reached 2.6 aM [1]. The research group
also tried to use DNA probes as recognition elements; however, conventional flexible
SS DNA probes would aggregate and entangle at the sensing interface of conductive
channels, leading to the inactivation of SS DNA probes, thus researchers used GFET and
Y–shaped DNA dual probes (Y–dual probes) to detect SARS–CoV–2 nucleic acid. Due to the
synergistic effect of probe sites targeting the ORF1ab and N gene regions, the biosensor had
a high recognition rate for SARS–CoV–2 nucleic acid and reached a detection limit of three
copies in 100 µL solution [77]. At present, most research on biological target analytes is
focused on proteins including antigens, enzymes, etc., which are generally detected directly
without an amplification process, leading to less accuracy than polymerase chain reaction
(PCR). As shown in Figure 9c, Wei et al. demonstrated a multi–antibody FET sensor and
successfully detected SARS–CoV–2 in artificial saliva with a detection limit of 3.5 × 10−17

g/mL and a detection limit of 0.173copies µL−1 in nasopharyngeal swabs [78]. In Figure 9d,
Gao et al. fabricated biosensors using a van der Waals heterostructure of graphene and
graphene oxide (GO) [79]. Compared with the GFET biosensor, the sensitivity for SARS–
CoV–2 protein detection of the biosensors with GO/Gr heterostructure was increased
threefold. This was mainly due to the fact that GO formed a uniform protective layer,
which could prevent external ions from directly contacting the surface of graphene. At the
same time, due to the formation of heterojunctions, the efficiency of electron exchange was
improved through interface coupling and the charge mobility of the device was further
improved. The advantage of 2D–layered materials is that they can be further integrated
with other materials to form a special heterojunction at the atomic scale, which opens up
new opportunities for constructing new biosensor components.
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from [76]. Copyright 2020, American Chemical Society. (b) Schematic of a GFET biosensor modi-
fied with spike S1 protein for detecting SARS–CoV–2 spike antibody. Reproduced with permission
from [1]. Copyright 2021, American Chemical Society. (c) Schematic of the multi–antibodies FET sen-
sors for detecting SARS–CoV–2. Reproduced with permission from [78]. Copyright 2021, American
Chemical Society. (d) Schematic of GO/Gr heterostructure biosensors for SARS–CoV–2 detection.
Reproduced with permission from [79]. Copyright 2021, Elsevier B.V.

3.2. Integrated into Array for Multiplexing

The variability of devices due to uneven features during the process of material
synthesis and device fabrication techniques is a critical concern in detecting single analytes,
which may lead to certain errors. Li et al. constructed 120 silicon nanowires (SiNW)
channels as the sensing area for sensitive detection of PIK3CA E542K ctDNA in parallel and
the prepared SiNW FET sensors had good specificity and repeatability with an ultra–low
detection limit of 10 aM [80]. The composition of real clinical samples is very complex
and detecting a single analyte is far from meeting the need for early diagnosis of specific
diseases. Therefore, the development of an efficient approach to simultaneously detect
multiple markers and realize high–throughput screening is extremely necessary. With
the rapid development of device miniaturization and integration, FET sensor arrays with
multi–channel sensing units can be constructed to detect a variety of biomarkers so as to
improve detection sensitivity and accuracy and to promote clinical application. As shown
in Figure 10a, Yang et al. fabricated a FET biosensor composed of four sensing windows
based on MoS2 nanosheets, in which each module can be used to detect a single biomarker
without interfering with the other. At the same time, each sensing window contained
multiple parallel sensing units so as to achieve multi–channel detection. Bladder cancer
biomarkers, nuclear matrix protein 22 (NMP22) and cytokeratin 8 (CK8), were detected
simultaneously with detection limits of 0.027 and 0.019 aM, respectively, suggesting that
properly designed multi–channel sensor arrays can be routinely used for detection with
high sensitivity and accuracy [81]. Sun et al. integrated the prepared DMP [5]–COOH
molecules as signal amplifiers with OFET devices and the sensing array was divided into
different detection areas, which realized synchronous and immediate detection of three
tumor markers with ultra–high sensitivity at aM level (Figure 10b) [82].Furthermore, as
shown in Figure 10c, a graphene–based sensor array platform that consisted of more than
200 (16 × 16) integrated sensing units was constructed by Xue et al. The sensor chip
was designed as three separate regions to enable the detection of potassium, sodium and
calcium ions in complex solutions, such as artificial urine and artificial eccrine perspiration.
The way to functionalize the graphene surface was by depositing three different ion–
selective membranes (ISMs) using a 3D printing machine. Then, they further utilized the
stochastic Forest algorithm model to demonstrate ion type classification, concentration
prediction and disease diagnosis, thereby enhancing the reliability of the data. This also
demonstrated the importance and effectiveness of combining experimental testing with
machine model learning [83].In addition, the FET sensors could also be used in biomimetic
human sensory systems. Kwon et al. reported on an artificial multiplex super bioelectronic
nose (MSB–nose) using highly homogeneous graphene micropatterns (GMs) with two
different human olfactory receptors attached to GMs as bio–probes [84]. It mimicked the
human olfactory sensory system and had high performance in odor discrimination from
mixtures. In addition, Ahn et al. developed GFET–based dual biological electronic tongues
(DBTs) for the simultaneous detection of umami and sweet tastes, thus opening up new
ways of mimicking human complex biomimetic systems and demonstrating the great
potential of FET–based biosensors [85].
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Figure 10. Integration of FET biosensors into array for multiplexing. (a) Schematic of FET sensor
arrays based on MoS2 nanosheets for simultaneous detection of multiple bladder cancer biomarkers.
Reproduced with permission from [81]. Copyright 2020, Science China Press and Springer–Verlag
GmbH Germany, part of Springer Nature.(b) Simultaneous determination of three biomarkers using
a FET sensor array. Reproduced with permission from [82]. Copyright 2022, American Chemical
Society. (c) Diagram of 16 × 16 sensor unit (left). Color map of Dirac points for three kinds of
ion–sensing unit (right). Reproduced with permission from [83]. Copyright 2022, the author(s).

3.3. Integrated with Microfluidicsfor LAB–on–CHIP

Lab-on-chip (LOC) is a kind of device that integrates laboratory functions on a chip
whose size is from a square millimeter to a few square centimeters. LOC has facilitated the
development of handheld, miniaturized medical diagnostic test platforms. Integrating FET
biosensors with microfluidic devices is an attractive direction in LOC [86].

Dai et al. realized the simultaneous detection of penicillin G and urea by designing
urease–encoded and penicillinase–encoded polyethylene glycol hydrogels. The hydrogels
were used as the biometric identification module to directly contact the graphene channel,
in which they can be freely assembled and disassembled, which made the programmable
sensing function of FET sensor chip systems possible [87]. Kim et al. combined the
antibiotics conjugated graphene micropattern FET (ABX–GMFETs) with a microfluidic
chip to detect dual bacterial Gram–positive bacteria (GPB) and Gram–negative bacteria
(GNB) [88]. As shown in Figure 11a, Zhou et al. prepared an extended–gate FET biosensor
chip modified with a supported lipid bilayer (SLB) and angiotensin–converting enzyme
II (ACE2) receptor, where SARS–CoV–2 binding with ACE2 receptors infected host cells
and SLB was used to provide the cell–simulated environment. The aim was to study
the interaction between SARS–CoV–2 and cell membrane so as to facilitate the screening
of effective anti–coronavirus drugs. The detection results showed that the presence of
two different drugs had an effect on the interaction between coronavirus and the ACE2
receptor, with weak inhibition by hexapeptide and strong inhibition by HD5 peptide. The
integrated system could translate the interaction between biological target analytes and
receptors into real–time charge signal, so as to realize effective screening of therapeutic
drugs [89]. Hajian et al. prepared CRISPR–Chip by modifying graphene surface with
CRISPR–Cas9 complex. The chip could conveniently, rapidly, and selectively detect target
sequences of CRISPR–Cas9′s gene and had the potential to extend the boundaries of digital
genomics [90].
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of biosensor chip modified by SLB (top) and the inhibitory response of two different drugs to the
interaction between coronavirus and ACE2 receptor (bottom). Reproduced with permission from [89].
Copyright 2022, American Chemical Society. (b) Schematic of a lab–on–chip multi–gates organic
transistor based on 3Dprinting and modified multi–gates in the red dotted box. Reproduced with
permission from [91]. Copyright 2020, American Chemical Society.

In addition to the rapid detection of biomolecules, LOC can take advantage of a
smaller sample volume and can conduct several sample tests simultaneously to assess
the occurrence of non–specific interactions and minimize the chance of false positives. As
shown in Figure 11b, Parkula et al. integrated multi–gates EGOFETs and a single reservoir
microfluidic system in a 3D–printed sample box and detected binding events occurring
at the gate–electrolyte interface in a 6.5 µL microfluidic channel with pM accuracy. To
be specific, the proinflammatory cytokine tumor alpha (TNFα) samples were detected by
three gates simultaneously, and the fourth electrode was used as a reference electrode to
assess whether the detection response had to be attributed to the sensing event itself, which
reduced the influence of non–specific adsorption [91]. It was a major step forward in the
robustness and cost–effectiveness of detection, as it was able to increase the statistics of
biomarker detection in the smallest sample volume and meet the trend of personalized
medicine, which are guaranteed in biosensor applications at point of care (PoC).

3.4. Integrated with other Sensors for Multifunctional Applications

The integration of different sensors on the same chip allows multiple functions to be
performed in a small volume. High integration means more functionalities in a smaller
size with a lighter weight, which can meet the requirements of the next generation smart
system. As shown in Figure 12a, Yoo et al. reported a flexible biochip within which a MoS2
FET biosensor, readout circuit, and light–emitting diode (LED) were integrated. When
1 µg·mL−1 PSA was fixed on the MoS2 surface, the corresponding off current increased and
the output voltage amplified, which led to the lighting up of the LED indicator. Following
this, when 100 pg·mL−1 PSA was bound to the immobilized antibody, the off current
decreased, the output voltage dropped to 1.87 V, and the LED turned off, realizing the
real–time and POC diagnosis of prostate cancer markers [92]. Stretchable and bendable
devices integrated with multifunctional biosensors or devices implanted in the human
body are able to sense physiological signals and environmental conditions in real time
without affecting normal body movement. Guo et al. demonstrated a multifunctional smart
contact lens sensor system based on ultrathin MoS2 transistors including a photodetector
to receive optical information, a glucose sensor to directly monitor glucose levels in tears,
and a temperature sensor to diagnose underlying corneal diseases (Figure 12b) [93].



Biosensors 2023, 13, 426 18 of 23

Biosensors 2023, 13, x FOR PEER REVIEW 18 of 23 
 

3.4. Integrated with other Sensors for Multifunctional Applications 
The integration of different sensors on the same chip allows multiple functions to be 

performed in a small volume. High integration means more functionalities in a smaller 
size with a lighter weight, which can meet the requirements of the next generation smart 
system. As shown in Figure 12a, Yoo et al. reported a flexible biochip within which a 
MoS2 FET biosensor, readout circuit, and light−emitting diode (LED) were integrated. 
When 1 μg·mL−1 PSA was fixed on the MoS2 surface, the corresponding off current in-
creased and the output voltage amplified, which led to the lighting up of the LED indi-
cator. Following this, when 100 pg·mL−1 PSA was bound to the immobilized antibody, the 
off current decreased, the output voltage dropped to 1.87 V, and the LED turned off, re-
alizing the real−time and POC diagnosis of prostate cancer markers [92]. Stretchable and 
bendable devices integrated with multifunctional biosensors or devices implanted in the 
human body are able to sense physiological signals and environmental conditions in real 
time without affecting normal body movement. Guo et al. demonstrated a multifunc-
tional smart contact lens sensor system based on ultrathin MoS2 transistors including a 
photodetector to receive optical information, a glucose sensor to directly monitor glucose 
levels in tears, and a temperature sensor to diagnose underlying corneal diseases (Figure 
12b) [93]. 

 
Figure 12. Schematic of multifunctional sensing systems. (a) The devices with system−level inte-
gration of flexible MoS2 FET biosensors, read−out circuits and LEDs. Photograph of an epidermal 
skin−type MoS2 biosensor system (left). Optical images of the LED indicator biochip for PSA de-
tection (right). Reproduced with permission from [92]. Copyright 2017, Tsinghua University Press 
and Springer−Verlag Berlin Heidelberg. (b) Optical image of the serpentine mesh sensor system, 
including a photodetector, a temperature sensor and a glucose sensor, and schematic illustration of 
the different layers of smart contact lens structure attached to an eyeball. Reproduced with per-
mission from [93]. Copyright 2021, Elsevier Inc. 

4. Summary and Prospect 
FET biosensors have made exciting progress in terms of device structure, material 

synthesis, device manufacturing, microfluidic industry−compatible technologies and 
multifunctional integrated applications. FET devices can detect a large variety of bio-
molecules/entities, from proteins to viruses, to bacteria, and cells in the body even at very 
low concentrations, thus opening up possible applications for almost any pathology and 
showing fresh vitality in wearable electronic devices and other fields [94,95]. 

Despite the fact that FET−based biosensors have the advantages of high sensitivity 
and fast detection speed, there are some aspects that still need to be improved and de-
veloped in the FET−based biosensors system. (1) Biomolecular immobilization technol-
ogy: On the one hand, suitable methods to achieve stable and reliable immobilization of 

Figure 12. Schematic of multifunctional sensing systems. (a) The devices with system–level inte-
gration of flexible MoS2 FET biosensors, read–out circuits and LEDs. Photograph of an epidermal
skin–type MoS2 biosensor system (left). Optical images of the LED indicator biochip for PSA detec-
tion (right). Reproduced with permission from [92]. Copyright 2017, Tsinghua University Press and
Springer–Verlag Berlin Heidelberg. (b) Optical image of the serpentine mesh sensor system, including
a photodetector, a temperature sensor and a glucose sensor, and schematic illustration of the different
layers of smart contact lens structure attached to an eyeball. Reproduced with permission from [93].
Copyright 2021, Elsevier Inc.

4. Summary and Prospect

FET biosensors have made exciting progress in terms of device structure, material syn-
thesis, device manufacturing, microfluidic industry–compatible technologies and multifunc-
tional integrated applications. FET devices can detect a large variety of biomolecules/entities,
from proteins to viruses, to bacteria, and cells in the body even at very low concentrations,
thus opening up possible applications for almost any pathology and showing fresh vitality
in wearable electronic devices and other fields [94,95].

Despite the fact that FET–based biosensors have the advantages of high sensitivity and
fast detection speed, there are some aspects that still need to be improved and developed
in the FET–based biosensors system. (1) Biomolecular immobilization technology: On the
one hand, suitable methods to achieve stable and reliable immobilization of biomolecules
on the sensor surface are still in high demand. On the other hand, methods to improve the
density, the uniformity and orderly arrangement of the immobilized biomolecules on the
sensing surface need to be developed to improve the sensing performance. (2) Selectivity
and sensitivity: In addition to the target biomolecules, some non–target analytes also
could be attached to the biosensor interface and will generate interference signals to the
biosensors. Therefore, it is essential to develop methods to prevent the attachment of
non–specific adsorbates, such as passivation of the excess functional groups by proper
reagents. Designing masks and optimizing channel size can also play a role in improving
sensitivity. (3) Reusability: Currently, most sensors are single use only, but the preparation
of biosensors with a regenerative ability has a wider prospect in real–time applications. For
example, Zhao et al. used Nafion solution to prepare a reproducible FET biosensor and
realized the reusability of a single device [96]. (4) Microfluidic techniques for POC diagnosis
have been shown to be effective in reducing sample size, testing cost, and time. Current
leakage and power consumption problems must be considered in preparing microarrays,
and integrating FET biosensors with microfluidic devices requires proper design of the FET
structures, such as selecting dielectric layers with high k values to detect analytesat a low
operating voltage(<1 V), etc. (5) Existing FET biosensors are mainly focused on in vitro
detection of biological species, whereas bioelectronic devices are developing towards
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implantable, wearable and non–invasive measurement. Therefore, it is imperative to
develop excellent biocompatible and flexible FET biosensors.

In addition, the transformation of this emerging technology from the laboratory to
commercial production still requires the joint efforts of researchers and industrial circles.
Developing and constructing FET biosensors of a small size, with low cost and commercial
availability still presents great challenges, including: (1) Cost factor: researchers need to
consider inexpensive methods and materials for mass production of standardized sensors.
(2) Poor reliability: in addition to the cost factor, poor reliability is also a factor that cannot
be ignored. In the process of commercialization, the inevitable quality problems in the large–
scale manufacturing of devices must be taken into account. (3) Real–time communication
capability: realizing real–time and remote data collection and processing for each individual
through the Internet and to realize health monitoring and environmental testing, the
balance of sensor performance and other parameters must be taken into account [97,98].
Furthermore, FET–based biosensors serve as an outstanding tool to bridge the worlds of
electronics and biology, and further development of new sensing applications remains to
be explored.
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