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Abstract: Fiber-optic biosensors based on localized surface plasmon resonance (LSPR) have the
advantages of great biocompatibility, label-free, strong stability, and real-time monitoring of various
analytes. LSPR fiber-optic biosensors have attracted extensive research attention in the fields of
environmental science, clinical medicine, disease diagnosis, and food safety. The latest development
of LSPR fiber-optic biosensors in recent years has focused on the detection of clinical disease markers
and the detection of various toxic substances in the environment and the progress of new sensitization
mechanisms in LSPR fiber-optic sensors. Therefore, this paper reviews the LSPR fiber-optic sensors
from the aspects of working principle, structure, and application fields in biosensors. According
to the structure, the sensor can be divided into three categories: traditional ordinary optical fiber,
special shape optical fiber, and specialty optical fiber. The advantages and disadvantages of existing
and future LSPR fiber-optic biosensors are discussed in detail. Additionally, the prospect of future
development of fiber-optic biosensors based on LSPR is addressed.

Keywords: LSPR; biosensor; label-free; optical fiber sensor

1. Introduction

Biosensors of optic-fiber have been investigated and extensively applied in DNA quanti-
tative detection [1,2], enzyme measurement [3], food quality detection [4], cancer biomarker
detection [5], and pathogen [6] and toxic substances detection [7] in the environment.

There are some detection principles of fiber-optic biosensors, such as localized surface
plasmon resonance (LSPR) [8], interference [9,10], whispering gallery mode (WGM) [11],
surface plasmon resonance (SPR) [12,13], etc. Among them, biosensors based on LSPR
are particularly attractive. LSPR occurs when the frequency of the incident light matches
the collective oscillation frequency of the metal-free electrons [14]. The LSPR fiber-optic
biosensor utilizes the inherent LSPR effect of metal nanoparticles to amplify the influence
of the refractive index (RI) change of the surrounding environment on the resonance
mode, thereby improving the sensitivity of the fiber-optic biosensor. Variations in the size
and shape of metal nanoparticles (NPs) lead to exhibiting different properties making
LSPR fiber-optic biosensing highly flexible [15]. In addition, it is also easy and cheap to
immobilize noble metal nanoparticles on optical fibers. Moreover, the penetration depth of
the evanescent field in the environment is only 100–200 nm [16], which makes the sensor
only sensitive to changes in the environment near the surface of the optical fiber and greatly
suppresses the influence of background noise in the environment. Furthermore, noble
metal nanoparticles such as gold [17] and silver [18] have a certain biological affinity, so the
sensor performance can be improved through the combined action of some biomolecules.
In 2018, Luo et al. [19] used Staphylococcal protein A on the surface of gold nanoparticles
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to enhance the specific binding ability of anti-NDV monoclonal antibodies to NDV. It is
precisely because of these characteristics of LSPR fiber-optic biosensors that LSPR fiber-optic
biosensors have important research significance and application value in medical diagnosis,
drug development, cancer detection, and other fields. Therefore, the combination of LSPR
technology and fiber-optic sensing technology is an inevitable trend in the development of
biosensing technology.

With continuous improvement and development in the field of materials and advanced
optical fiber manufacturing technology, some unique probes that utilize the LSPR effect
have sprung up. This paper reviews the latest progress of LSPR fiber-optic biosensors,
especially the innovative progress in structure and its application in practical scenarios
in the past two years, as well as the new sensitization methods in recent years. Figure 1
shows the main content of this review. The advantages and disadvantages of LSPR fiber-
optic biosensors in recent years are summarized, and their further development directions
are prospected.
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Figure 1. Schematic diagram of the main content of this review.

2. Sensing Principle and Combination
2.1. Ways of Optical Fiber Generate LSPR

There are two types of measurement structures of LSPR fiber-optic sensors, one is the
transmission structure [20], and the other is the reflection structure [21]. The transmissive
structure is mainly connected to the light source at one end of the sensor and the signal-
receiving device at the other end. The fiber-optic sensing area in the middle excites the
metal nanoparticles through the evanescent field generated by the optical fiber to generate
LSPR to achieve sensing performance. The transmissive structure is shown in Figure 2a.
The reflective structure uses one end of the sensor to transmit the light source signal and
also receive the sensing signal through the fiber-optic coupler. The other end of the sensor
is coated with metal nanoparticles to generate LSPR for sensing. The reflective structure is
shown in Figure 2b.
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When the incident light enters the optical fiber, the evanescent field excites the gold
nanoparticles producing the LSPR phenomenon. The LSPR peak, denoted by ωmax, is
as follows:

ωmax =
wp

(2εm + 1)1/2 (1)

λ = 2πc/w and εm = n2, Formula (1) can be changed to:

λmax = λp

√
2n2

m + 1 (2)

where λmax is the LSPR peak wavelength and λp is the wavelength corresponding to the
plasmon frequency of the bulk metal. From Formula (2), it can be known that there is a linear
relationship between the LSPR peak wavelength and the RI of the surrounding medium.
When biomolecules bind to metal nanoparticles and the interaction between biomolecules
and biomolecules is adsorbed on metal nanoparticles, the resonant absorption peak changes
with the surrounding RI changes due to changes in the RI of the local environment [22].

Both structures need to utilize the evanescent field generated by the fiber to excite
the LSPR effect of metal nanoparticles for sensing. There are three ways to generate the
evanescent field of an optical fiber. One is to use the evanescent field generated by the fiber
itself. This kind of fiber has a thin cladding or no cladding structure in the sensing area,
so the evanescent field generated by the fiber can be conducted to the metal nanoparticles
to excite LSPR to realize sensing, such as hollow core fiber (HCF), microstructured optical
fiber (MOF), or the fiber end face, etc. The outer surface of a common HCF is coated with
metal nanoparticles to excite LSPR, as shown in Figure 2c, and the LSPR sensing structure
on the fiber end face is shown in Figure 2d. The second type is to make certain structural
changes to the fiber so that the evanescent field can penetrate to the surface of the fiber,
such as multi-core fiber (MCF) or photosensitive fiber (PSF) treated with chemical reagents,
reducing the thickness of the cladding, changing the shape of the fiber probe. Common
special-shape fibers include tapered fiber, U-type fiber, Ω-type fiber, D-type fiber, and S-type
fiber. The third type is to use the core mismatch structure. The core mismatch is to use the
difference in the core diameter of different optical fibers so that part of the light in the fiber
with a large core diameter enters the cladding of the fiber with a small core diameter for
transmission. The evanescent field is generated at the interface between the fiber cladding
with a small core diameter and the environment, and the metal nanoparticles on the fiber
surface are excited to generate LSPR to realize sensing. The common SMF-MMF-SMF
structure is shown in Figure 2e.
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2.2. Ways of Biomass Binding to Gold Nanoparticles

At present, there are many kinds of biomass detected by fiber-optic biosensors, such
as protein [23], hormones [24], and DNA [25]. The recognition method of the target detec-
tion substance is usually specific recognition, specific bacteria recognition, and physical
adsorption of mesopore size, as shown in Table 1.

Table 1. The recognition method of the target detection substance.

Method Advantage Disadvantage Ref

specific recognition

Antigen-antibody
binding

High specificity sensitivity, good
stability, low interference from
the natural environment, etc.

Combining with the fiber
surface complicated [25]

Aptamer Strong selectivity, high affinity Aptamers target only
one target [26]

Molecular imprinting

Stable against harsh
environments, materials used

can be reused,
predeterminability, high

recognition, and practicability

Templates are not readily
available and expensive [27]

Microbial detection method Rapid sensitivity test Narrow detection range [28]

Physical adsorption of
Mesoporous nanospheres High repeatability and stability

The complicated
preparation process, no

selectivity
[29]

Polyelectrolyte method Easy to operate, No complex functionalization process
Difficult requirements on

the charge of the measured
substance, no selectivity

[30]

2.3. Combination of Gold Nanoparticles to Optical Fiber
2.3.1. Chemical Bond Method

LSPR is an optical property of noble metal nanoparticles, but AgNPs [31] and CuNPs [32]
are easily oxidized by air. AuNPs have been widely used in experiments due to their good
structural stability, so in this review, the binding method of gold nanoparticles and optical fibers
is mainly explained. At present, the most common binding method is to fix gold nanoparticles
to the surface of the optical fiber by chemical bonding, which is low-cost and simple to operate.
The most commonly used methods are the silane method and the electrostatic self-assembly
method [33] (also known as the polyelectrolyte (PE) assembly [34] method).

At present, gold nanoparticles are immobilized on fiber-optic biosensors mainly by the
silane method [35]. Silane methods include aminosilanization [36] and mercaptosilane mod-
ified method [37]. The principle of aminosilanization is positive and negative binding. The
most common aminosilanization is to use a solution such as (3-Aminopropyl)triethoxysilane
(APTES) [38] or (3-Aminopropyl)trimethoxysilane (APTMS) [39] for amination. The ami-
nated fibers are positively charged, and the gold nanoparticles are negatively charged [35].
Using the electrostatic force between the two, that is, the combination of ionic bonds, the
gold nanoparticles are fixed on the fiber, as shown in Figure 3a. Mercaptosilane modified
method mainly uses (3-mercaptopropyl)trimethoxysilane [40] (MPTMS) to modify optical
fiber. AuNPs are attached to the SH group [41] of MPTMS, which helps in the formation of a
thiol-terminated self-assembled monolayer (SAM) of MPTMS over optical fiber, that is, Au-S
covalent bonding [42]. MPTMS has methoxy groups (Si-OCH3), which can be hydrolyzed
to silanol (Si-OH) groups. The Si-OCH3 interacts with the partially methoxy-hydrolyzed
silanol [43] to form a self-assembled film with thiols end groups on the surface of the fiber,
as shown in Figure 3b.

The silane method requires a long immersion in the solution for each step in the
functionalization process, which increases the experimental time to a certain extent, thus
limiting the application of LSPR sensors.
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The electrostatic self-assembly method has a fast electrostatic adsorption speed and
significantly shortens the deposition time [44], which solves the shortcomings of the silane
method. The electrostatic self-assembly method mainly uses colloids with different charges
to realize the rapid connection between optical fibers and gold nanoparticles. The fiber,
after hydroxylation, is negatively charged. The gold nanoparticles prepared by the chemical
reduction method also have negative charges, so it is necessary to coat the surface of the
fiber with the cationic polyelectrolyte to make the surface of the fiber with a positive charge.
Commonly used cationic polyelectrolytes are poly(allylamine hydrochloride) (PAH) and
poly(diallyldimethylammonium chloride) (PDDA). Common anionic polyelectrolytes are
poly(styrene sulfonate) (PSS) and poly(acrylic acid, sodium salt) (PAA). Moreover, the
structure of the polyelectrolyte, which can avoid the aggregation of nanoparticles to a
certain extent [45], is of great help in improving the performance of the sensor.
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The silane method and the electrostatic self-assembly method described above are
both methods of particle self-assembly. Although this method is simple to operate, it
will cause phenomena such as aggregation [46], which will reduce the sensitivity of the
sensor. Therefore, in recent years some new methods have been proposed to improve
the traditional self-assembly method. The first very innovative method is the secondary
growth method of gold nanoparticles proposed by Hyeong-Min Kim [47] in 2019. The
traditional aminosilanization method was used to grow gold nanoparticles on the fiber.
Then the citrate secondary immersion method was used to increase the volume of the
gold nanoparticles, which solved the limitation of the volume of gold nanoparticles by
traditional methods and improved the stability of nanoparticles. The functionalization is
shown in Figure 4a.

In 2021, a new method using spherical gold nanoparticles [46] and gold nanorods [48]
to prepare self-assembly templates by block copolymer (BCP) and surfactant modification
further improved the electrostatic self-assembly method. The cationic surfactant CTAB was
used in the AuNR growth solution. The new method to remove the CTAB by three cycles of
PSS treatment was highly efficient, as was the subsequent displacement of PSS by sodium
citrate. To better reflect the advantages of this new method, another two sensors were
fabricated simultaneously using two conventional self-assembly methods. By comparison,
it is found that the sensor prepared by the block copolymer method is far superior to the
traditional method in terms of particle distribution on the sensor surface, sensor sensitivity,
and specific detection performance. The results are shown in Figure 4b.
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The LSPR fiber-optic sensor based on chemical bonding has poor reproducibility due to
the lack of a fixed position of the nanoparticle distribution and the uncertainty of the number
of nanoparticles in each coating process. Because of the weak chemical bond adhesion, the
bonding between the nanoparticles and the optical fiber is not strong. So it is easy for some
nanoparticles to fall off the surface of the fiber during the functionalization process [47],
resulting in a decrease in the repeatability and durability of the sensor. Moreover, during
the measurement process, the nanoparticles will aggregate on the surface of the fiber [49]
due to the surface tension of the sensor surface.

2.3.2. Non-Chemical Bond Method

To maintain the stability of the sensor for a long time, traditional physical methods
are used to prepare sensors with neatly arranged nanoparticles and a constant number
of nanoparticles, such as focused ion beam (FIB) milling [50], electron beam-induced
deposition [51] (EBID), and electron beam lithography (EBL) [52]. Besides, new methods
such as microelectromechanical systems [53] (MEMS) technology are also proposed to
prepare sensors with neatly arranged nanoparticles and a constant number of nanoparticles.

The FIB milling method mainly applies focused ion beam milling to fabricate nanos-
tructures on the end face of the optical fiber deposited with a 40–100 nm thick gold layer.
Anuj Dhawan’s team [54] first used the FIB milling method to prepare square and elliptical
nanopillar arrays at the end face of F-MLD multimode fiber and conducted FDTD analysis
on plasma nanostructures, as shown in Figure 5a,b. The experimental results demonstrate
that the gold nanodot array on the fiber tip can be used for sensing probes for chemical and
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biological analytes while providing a new solution to make LSPR fiber-optic biosensors.
However, the FIB milling method on the fiber surface first proposed took a long time
and was expensive. In 2019, the Hyeong-Min Kim team improved [55] the FIB milling
method on the end face of MMF, ensuring that the overall process time is minimized while
maintaining the quality of the nanopattern.
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EBID method is a vapor-phase direct-writing technique with sub-10 nm resolution that
can be applied to micro- and nano-scale object manipulation [56]. EBID method does not re-
quire pre-deposition of resist on the substrate. Chemical precursors are physically adsorbed
onto the substrate from the gas phase, and incident electrons stimulate their decomposition
into volatile species, which are pumped away, leaving a non-volatile deposit behind. Using
a tightly focused electron beam, nanoscale-shaped three-dimensional structures can be
created [57]. In general, the preparation of nanoparticle patterns on optical fibers is usually
realized by the combination of the EBID method and FIB milling method, which is called
focused electron beam-induced deposition [58] (FEBID). In the FEBID method, the electron
beam provides a smaller spot for better focusing and resolution, which is beneficial to the
FIB milling method while avoiding FIB-induced gallium contamination in and near the
deposited material [59].

Electron beam lithography (EBL) is a method of producing stamps for nanoimprint
lithography. The targeted nanohole array pattern is transferred onto the fiber-optic mask
by directing the electron beam to scan as it scans the resist-coated substrate. This way is
more tightly than light and produces finer patterns, with a resolution below 10 nanometers.
Professor Cusano’s team [60] used the EBL method to fabricate a metal-dielectric nanos-
tructure grating on the end face of a single-mode fiber to achieve real-time dose monitoring,
laying the foundation for future radiation monitoring in high-energy physics experiments.

A new method using a microtip array-based LSPR sensor was proposed in 2018 [53].
This method first prepared the tip by etching on the fiber end face, then deposited gold film
and silicon material, and finally coated the bottom of the tip with a thin photoresist film,
leaving only a small amount of bare gold nanoarrays at the tip to excite LSPR for sensing,
as shown in Figure 5c. The RI sensitivities of the sensors with exposed gold lengths of 0.9
and 1.4 um were 8.96 RIU−1 and 9.94 RIU−1, respectively, which indicates that the new
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approach can make the sensor sensitive to changes in the surrounding medium without
significantly reducing the contact area.

To sum up, the chemical bonding method and the non-chemical bonding method
have their advantages and disadvantages. The chemical bonding method has a simple
preparation process and low cost. However, because it is difficult to control the binding
process of nanoparticles during the preparation process, gold nanoparticle shedding and
nanoparticle aggregation are prone to occur. These phenomena will affect the performance
of the sensor. The non-chemical bonding method has a controllable preparation process,
so it has a compact structure, a small volume, a controllable number of nano-patterns,
and a stable structure. However, the non-chemical bonding method requires the use
of some advanced microfabrication techniques, which increases the manufacturing cost.
The diversification of the combination of gold nanoparticles and optical fibers and the
continuous development of manufacturing technology has created infinite possibilities for
the fabrication of LSPR fiber-optic biosensors with various structures.

3. Structure Classification and Application of LSPR Fiber-Optic Biosensors

Due to the various ways gold nanoparticles bind to the optical fibers and the develop-
ment of optical fiber fabrication technologies, a variety of LSPR fiber-optic sensors have
been proposed. This section will be classified according to the shape of the fiber probe
and the type of fiber, divided into three categories: ordinary fiber, special shape fiber, and
specialty fiber.

3.1. LSPR Biosensors Based on Ordinary Optical Fibers

Ordinary optical fibers mainly refer to traditional SMF and MMF, which are widely
used due to their mature manufacturing processes. Traditional optical fibers are usually
made of silica and consist of a solid core surrounded by the cladding material with a
slightly lower RI than the core [61]. If the angle of incidence is less than the critical angle,
the incident light can be confined in the core region of the conventional optical fiber to
achieve light propagation [62]. However, due to the large thickness of the cladding when
it is not treated, the evanescent field cannot penetrate the cladding to excite the metal
nanoparticles on the surface of the fiber to generate LSPR. Therefore, this type of sensor
mainly realizes sensing by using the methods of core mismatch, reducing the thickness of
the cladding, or using the fiber end face.

In a uric acid detection study, the SMF-MMF-SMF-MMF-SMF structure was combined
with CuO-NPs and AgNPs and modified with uricase [63]. The particle size of the syn-
thesized AgNPs in this study was 7.5 ± 0.5 nm, with a fixed point for the enzyme. The
AuNPs were well distributed on the fiber, and the schematic diagram of the fiber structure
is shown in Figure 6a. When the sensor is immersed in a solution containing uric acid,
uricase in the solution interacts specifically with uric acid. The sensitivity of the sensor
to measure uric acid is 6.15 nm/mM, and the detection limit is 69.26 µM. Therefore, the
analysis of the performance of the proposed sensor shows that the LSPR-based fiber-optic
biosensor can realize uric acid detection in a simple, fast, and low-cost manner.

The fiber end face method only coated the AuNPs at the end of the fiber. The mech-
anism of this method is that when the light is transmitted to the end of the fiber, it is
reflected, and the evanescent field is generated to excite the LSPR phenomenon for sensing.
Mollye Sanders et al. [64] prepared an LSPR fiber-optic biosensor for the specific detection
of prostate proteins: the gold nanodisk array fabricated by the metal stripping process
was fixed on the end face of the fiber, and free prostate-specific antigen was used to detect
prostate proteins. The optical fiber end face and the enlarged view are shown in Figure 6b.
The RI sensitivity of this sensor was measured at 226 nm/RIU, comparable to common gold
nanoparticle array-based LSPR sensors. Compared with the other two structures of LSPR
sensors, the sensor can be used in a narrower space and has a wider application range.
However, due to the reflection loss of the LSPR fiber reflective structure, the combination of
nanoparticles and high-Q optical cavities is prevented. Professor Cusano’s team proposed
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a new technique to improve plasmonic probe and fiber-optic sensing structures with large
radiation losses [65]. In this approach, the inclusion of the plasmonic probe within the
fiber resonator converts the wavelength shift of the LSPR into a change in the intracavity
loss. Plasmon-induced losses are automatically compensated by a feedback loop acting
on the intracavity optical gain element and locking the cavity in its impedance-matching
condition. It has laid a solid foundation for the application of localized surface plasmon
resonance optical fiber sensing in the direction of the optical fiber laboratory.
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Copyright 2023, Elsevier.

The performance of biosensors largely depends on the number of binding sites for
biomolecules. For LSPR fiber-optic biosensors, the more gold nanoparticles, the more
binding sites can be provided. Therefore, how to coat more gold nanoparticles in a limited
sensing area is the key to improving sensor performance. Usually, the increase method of
gold nanoparticles is to increase the sensing area or improve the immobilization efficiency
of gold nanoparticles. Increasing the sensing area generally increases the length of the
optical fiber, but the longer the optical fiber length, the greater the energy loss in the
evanescent field and the worse the sensing effect. Kim et al. [66] proposed a new idea
to increase the number of gold nanoparticles from the perspective of three-dimensional
space, as shown in Figure 6c. The sensor first uses ZnO nanowires at the end face of the
multimode fiber to change the two-dimensional plane into a three-dimensional structure
and then fixes gold nanoparticles on the surface of the nanowires to increase the number
of gold nanoparticles. Compared with the traditional two-dimensional structure, this
structure not only enlarges the sensing area but also greatly improves the RI sensitivity and
prostate antigen-specific sensitivity performance. RI sensitivity and specificity detection
limits were improved by 171% and 404%, respectively. In another study, Lu et al. [48]
fabricated an innovative new self-assembled template method to fabricate LSPR biosensors.
A novel self-assembled template was prepared by surfactant modification and layer-by-
layer electrostatic self-assembly for human IgG detection, as shown in Figure 6d. The
results showed that compared with the traditional preparation method, the sensitivity of
the new method was increased by 1.5 times.

However, the small size of the nanoparticle sensing structure often leads to the inability
of some large biomolecules to attach to the gold nanoparticles, resulting in a decrease in
the sensitivity of measuring biomass. To solve this problem, the dimer structure was
proposed to achieve biomass-specific detection and improve the performance of the sensor
in 2021 [67]. The fabrication process of the monomer- and dimer-based fiber-optic LSPR
sensors is shown in Figure 7. The sensor employed a dimeric longitudinal band-induced
structure arranged at nanometer pitches to effectively increase the interaction of light
with nanostructures [68]. Experimental results show that the longitudinal band shows
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an approximately 9.1-fold increase in sensitivity, and the dimer-based FO LSPR sensor
also demonstrates an approximately 2.6-fold improvement in detection limit. In addition,
molybdenum disulfide, graphene oxide, and other two-dimensional materials are used
to improve the performance of LSPR biosensors because they can provide rich functional
groups, have a large number of binding sites, high fixed density, good biocompatibility,
and stability [69,70].
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In recent years, LSPR fiber-optic sensors based on traditional single-mode and multi-
mode fibers have achieved a lot of results in combination with new methods. Traditional
optical fiber-based LSPR sensors have great potential in the field of biomass monitoring,
but there are still urgent problems to be solved. First, the evanescent field is an important
source to excite the LSPR effect, and the penetration depth of the evanescent field is only
about 100–200 nm. Due to the limited geometry of traditional fibers, it is difficult for the
evanescent field generated between the core and the cladding to penetrate the thickness of
the cladding to excite LSPR for sensing. Second, the use of low-index/high-index materials
in the core/cladding of the fiber is not possible [71] due to the light-guiding mechanism of
total internal reflection. These two limiting factors limit the further improvement of the
performance of LSPR-based fiber-optic biosensors.

3.2. LSPR Biosensors Based on Special Shape Fibers

The special shape of the optical fiber and the structure of the specialty fiber make
the LSPR fiber-optic biosensor well overcome these two limitations. These two kinds of
fiber-optic sensors further improve the performance of the sensor and are well used in
biomedical or clinical research. Therefore, improving the performance of LSPR fiber-optic
biosensors by changing the shape and structure of the optical fiber has received extensive
attention. LSPR fiber-optic sensors with special shapes are usually made of fibers into
optical fibers with special shapes by tapering, heat treatment, and other methods to improve
the performance of the sensor. According to different shapes, LSPR biosensors with special
shapes can be roughly divided into several common shapes: tapered, U-type, Ω-type,
S-type, and D-type. Figure 8 shows the classification of special shape LSPR biosensors and
examples of typical structures under different classifications.

3.2.1. LSPR Fiber-Optic Biosensor Based on Tapered Fiber

Similar to other types of LSPR sensors, tapering is the most basic strategy for changing
the geometry of the sensor. Sensitivity, an important indicator of sensor performance,
was reported to increase by a factor of 1.93 after tapering [72]. When the fiber is tapered,
the reflected light in the tapered fiber core is reflected at an angle close to the critical
angle, the penetration depth increases, and therefore the evanescent field in the cladding
region increases. Within a certain range, as the diameter of the tapered fiber decreases, the
evanescent field generated on the fiber surface is enhanced [73] so that the nanoparticles
on the tapered fiber surface can be excited to generate LSPR.
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In recent years, the structure of the tapered fiber has been continuously optimized,
and the taper-in-taper fiber structure [74] and the periodically tapered structure [75] have
appeared. In 2021, Zhi et al. [74] used the three-electrode semi-vacuum taper method to
make the taper-in-taper fiber structure for the first time. The sensor used gold nanoparticles
coated on the surface of the cone region to stimulate the LSPR effect and applied it to the
detection of alanine aminotransferase. The structure is shown in Figure 9a; this structure
further increases the taper processing operation based on the traditional tapered fiber
structure to increase the penetration depth and strength of the evanescent field. The new
structure also further improves the strength of the evanescent field and generates higher-
power electron waves. The experimental results show that the sensor has a sensitivity of
4.1 pm/(U/L) and a detection limit of 10.61 U/L in the linear range of 10 to 1000 U/L,
which has the potential to diagnose a liver injury.

Moreover, Zhu et al. [75] fabricated fiber structures with four/five/eight periodic
tapers, as shown in Figure 9b. By comparing the sensitivity, ascorbic acid linear range, and
detection limit of four/five/eight periodic tapered fiber sensors, the relationship between
the number of tapered fibers and the sensing performance was explored. The experimental
results show that the tapered fiber structure with five periods is superior to the four and
eight-periodic tapered fiber sensors regardless of the linear range, the linear fitting degree,
and the sensor sensitivity. It is an excellent choice for the effective detection of ascorbic acid
in practical applications.
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The structure of the tapered fiber is simple to operate, easy to manufacture, and has
low manufacturing costs. Truncation to form a reflective probe structure has the advantage
of being able to measure narrow, hazardous areas. However, after the tapered fiber is
taper-drawn, it becomes more fragile and easier to break than the original fiber structure,
which needs to be further overcome.

3.2.2. LSPR Fiber-Optic Biosensor Based on U-Type Fiber

The bending sensing area of the U-type fiber sensor improves the sensitivity by chang-
ing the angle of the light perpendicular to the core-cladding interface. The RI sensitivity
of U-type fiber is affected by the outer bending diameter of the U-type fiber probe. The
sensitivity of the sensor increases as the bending radius of the probe decreases [76]. The
sensitivity reaches a maximum when the diameter is reduced to a certain value and then
decreases with the further reduction of the bending radius. Therefore, the sensitivity of the
U-type fiber sensor can be improved by exploring its optimal bend radius.

Combining the U-type fiber with other biological methods can not only achieve ultra-
high sensitivity detection and biomass sensing performance but also use the interaction
between biomass and heavy metal ions to detect heavy metal ions in the environment. In
this regard, Kapil Sadani and colleagues [77] synthesized a chitosan-coated gold nanopar-
ticle incorporated into a fiber-optic biosensor for qualitative and quantitative analysis of
mercury ions in biological and environmental samples, as shown in Figure 10. The results
showed that the total standard error of all samples was less than 15%, and the coefficient
of variation was less than 12%, suitable for multiple purposes. This is the first mercury
ion sensor suitable for diverse applications. In another study, PallaviHalkare et al. [78]
proposed a method to detect Hg2+ and Cd2+ in water using Escherichia coli B40. Metal
ions interact with thiols and other surface groups present on bacterial cells, resulting in a
change in the refractive index around the AuNP-coated sensor probe, and Hg2+ and Cd2+

are specifically quantified in the linear range from 0.5 ppb to 2000 ppb, LOD is 0.5 ppb.
The U-type fiber-optic sensor is simple to prepare and can improve the sensing per-

formance of the LSPR fiber-optic biosensor. Besides, the structure of the U-type sensor
probe can also penetrate some narrow gaps. However, the fiber is easily broken during
the bending process, so it is difficult to reduce the diameter of the U-type fiber probe to a
certain diameter and cannot be further reduced.
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3.2.3. LSPR Fiber-Optic Biosensor Based on Ω-Type Fiber

Ω-type fiber can also improve the sensitivity of the sensor. The improvement in the
performance of Ω-type fiber-optic biosensors is because the optical fiber will attenuate light
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in the bending part due to the interaction with the surrounding environment, resulting in
bending loss [79]. The Ω-type fiber has a smaller radius of curvature and longer bending
region length than the U-type fiber [80], so the RI sensitivity is higher.

Ω-based LSPR fiber-optic biosensors are highly sensitive, cost-effective, label-free, and
miniaturized. Therefore, Ω-type LSPR fiber-optic biosensors are often used in cell screening
and biological cell detection. Fluorescence experiments were used to demonstrate the
experimental principle of cell binding, and the specific binding process could be clearly seen
by binding the stained cells to the aptamers on the optical fiber for 2 h. In 2018, Luo et al. [81]
proposed for the first time a new type of Ω-type LSPR fiber-optic biosensor combined
with fluorescence experiments to achieve specific detection of Salmonella typhimurium.
Figure 11a depicts a biosensor based on an Ω-shaped optical fiber for the detection of
S. typhimurium (an important indicator for food safety inspection). The detection of S.
typhimurium captured on the surface of a functionalized electrode with antibodies was
measured by measuring the change in intensity. The amount is proportional to the antigen
in the solution. The fabricated microfluidic sensor can detect the LOD of 128 CFU/Ml, and
the linear range is 5 × 102 to 1 × 108 CFU/mL. In this experiment, the sensor was also
used in the actual detection of chicken samples infected with Salmonella typhimurium;
the experimental results showed that the recovery rate and relative standard deviation of
the sensor varied from 85% to 123% and 6.5% to 8.3%, respectively. This indicates that the
novel Ω-shaped LSPR biosensor based on the aptamer has good detection performance in
food analysis and environmental monitoring.
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In addition, Luo et al. [80] also used the same type of Ω-shaped fiber-optic biosensor
to study the specificity of MCF-7 cancer cells. Here, the performance of U-shaped and
Ω-shaped fiber-optic biosensors was analyzed using simulation (Figure 11b). Analyzing
the coverage of AuNPs enabled the binding of more AuNPs, thereby increasing the number
of MCF-7 cancer cells captured. Compared with other U-shaped fiber-optic cell sensors, the
Ω-shaped fiber-based LSPR sensor achieves fast and ultrasensitive detection of cancer cells.

Recently, some new sensitization methods have also been used to improve the sensi-
tivity of the Ω-type sensors. In 2022, gold nanoparticles of two sizes [82] were proposed
to achieve specific detection of Salmonella typhimurium by the sandwich method. The
small-sized gold nanoparticles of about 15 nm can be quickly modified to the surface of the
fiber, which saves preparation time. Large-sized gold nanoparticles of around 47 nm were
combined with Salmonella typhimurium to form a mixture, which was used for antibody
detection while generating strong signal enhancement, as shown in Figure 11c. This sand-
wich method has the unique property of time-dependent sensitivity enhancement, showing
an excellent linear relationship with bacterial concentration at different detection times. The
detection time is short, and the detection line is high, but it can achieve rapid measurement.
Extending the detection time can achieve ultra-sensitive detection. The detection limit of
100 min becomes 1/14 of the detection limit calculated in 10 min. Therefore, the rapidity
and sensitivity requirements of detection can be met only by extending the analysis time.

Lu and colleagues [83] integrated cellular sensors with plasmonic photothermal pro-
cessing for specific detection of MCF-7 cancer cells. The sensor solves the problems of low
nanoparticle coverage and non-reusable sensors of LSPR fiber sensors by alternately ar-
ranging spherical nanoparticles and gold nanorods to form hybrid nanolayers. In addition,
due to the high-efficiency, localized, and geometry-dependent heat distribution properties
of the Ω-shaped fibers modified by hybrid nanolayers, the maximum temperature of the
sensor under the action of laser light can reach 80 ◦C, which can specifically kill the particles
captured on the surface of the sensor or has potential for surrounding cancer cells with
minimal damage to the non-target cells. Figure 11d shows a hybrid nanolayer modified
Ω-shaped fiber biosensor using different kinds of nanoparticles.

Compared with U-type optical fiber, the Ω-type fiber-optic biosensor can further
improve the performance and sensitivity due to the increase of bending parts. However,
the Ω-type fiber-optic sensor has more bending parts than the U-type sensor, so it is easier
to break during the bending process, the structure is fragile, and the stability is poor. This
is a problem that needs to be further solved in the current Ω-type fiber-optic biosensors.

3.2.4. LSPR Fiber-Optic Biosensor Based on S-Type Fiber

Compared with U-type fiber, S-type fiber has higher sensitivity due to its smaller
bending radius and longer bending length. According to the experimental conclusion of
Shraddha K, the RI sensitivity of S-type fiber is about 1.5 times that of U-type fiber [84].

In addition to being used to measure some chemical quantities, such as explosive
traces, the S-type structure has also been applied to the measurement of biomolecules.
In 2016, S. Chauhan et al. [85] proposed an S-type MMF optical biosensor to achieve the
specific detection of goat anti-human immunoglobulin. The overall structure is shown in
Figure 12. The transmission spectrum varies with concentration, with a detection limit of
1.7 nM for the sigmoid structure. The S-type biosensor has the advantages of small size
and easy fabrication and can be widely used in disease screening and clinical diagnosis.
Moreover, this highly sensitive S-type fiber probe can also further improve the sensitivity
by using suitable noble metal nanoparticles to excite the LSPR effect on the probe surface.

Although the sensitivity of the S-type sensor probe is greatly improved compared
with that of the U-type structure, due to its fragile structure in the preparation process,
the S-type structure will be destroyed if the liquid flow speed is too fast. Therefore, at
present, the experiment of realizing LSPR fiber-optic biosensors with S-type optical fiber is
still less explored, and there is still much room for exploration. In the future, S-type LSPR
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fiber-optic sensors can improve the performance of optical fiber to increase the robustness
of the structure.
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3.2.5. LSPR Fiber-Optic Biosensor Based on D-Type Fiber

The four kinds of optical fibers outlined above usually bend the optical fiber into
different shapes without changing the structure of the optical fiber. The D-type optical
fibers are mainly prepared by removing part of the cladding or removing the cladding and
part of the core structure [86]. D-type fiber-optic sensors are easy to fabricate, and large
evanescent waves can be obtained by removing part of the fiber, facilitating interaction
with analytes. Additionally, the D-type fiber provides a flat detection plane and has
good structural stability during the detection process [87], which is often used to realize
biosensing [88]. Due to the removal of part of the cladding, D-type fiber exposes a more
evanescent field to the environment [89]. The structure of D-type fiber is more conducive
to the excitation of LSPR to realize sensing, so it is also used more in connection with new
sensing structures.

So far, three different methods for sensitizing D-fiber sensors have been reported: com-
bination with D-fiber tapering (Figure 13a), nanowires (Figure 13b), and three-dimensional
hybrid structures (Figure 13c). The first sensitization method is the easiest and requires
the simplest setup. In 2015, a new method [90] for enhancing sensitivity by combining
D-type optical fiber tapered processing with molecularly imprinted polymers was reported
to realize the detection of 2,4,6-trinitrotoluene. Using this tapered D-type optical fiber
sensor, the sensitivity of the target 2,4,6-trinitrotoluene is 8.3 × 105 nm/M. In addition to
using the tapered processing method, the sensor also chooses a combination of special
nanoparticles in the shape of a five-pointed star. This type of sensitization method has a
major disadvantage. The D-type optical fiber is prepared by destroying the structure of the
optical fiber to a certain extent. After the tapering treatment, the sensor intensity will be
further reduced. The second method of sensitization is through incorporation with gold
nanowires [91]. Compared with gold nanoparticles, gold nanowires are larger and can
provide more binding sites. Compared with normal LSPR fiber-optic sensors, the sensitivity
can be increased by more than 10 times. However, it is a pity that this method only exists
in simulation, and there is no experimental verification. The third mechanism is the use of
three-dimensional hybrid structures to achieve sensitization. The mechanism of this ap-
proach is to employ the enhancement of resonant coupling through multilayer structures to
achieve sensitization. A 3D hybrid structure [92] of multilayer graphene/gold nanoparticle
stacks was recently reported using homogeneous plasmonic hybridization to achieve a
stronger hot spot effect at the tip and facilitate the coupling of plasmonic excitations. By
using the optimal number of stacked layers, the sensor successfully detected the glucose
concentration with a sensitivity of 1317.61 nm/RIU. Although the fabrication of the multi-
layer graphene and gold nanoparticle sensor in this work is very complex, it demonstrates
the potential of the 3D hybrid structure as a biomimetic sensor for multiplexing.
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Table 2 summarizes the performance, advantages, and disadvantages of specially
shaped fiber-optic sensors in recent years. This section summarizes special shape fiber-optic
sensors based on LSPR. These special structures show significant advantages in improving
the sensitivity and detection of trace reagents. With the development of materials and
advanced microfabrication techniques, it is not difficult to foresee the great potential of
LSPR fiber-optic sensors with special shapes in label-free optical biosensing. The research
on these sensors also lays a solid foundation for practical application.

Table 2. The recognition method of the target detection substance of different shapes sensor.

Shape Target Sensor Performance Advantage Disadvantage Ref

Tapered

Glucose One tapered, sensitivity: 1.06 nm/mM

Ultrahigh sensitivity,
superfine diameter.

Fragile structure,
Complex optical fiber

manufacturing method

[69]
Alanine aminotransferase Taper-in-taper, Sensitivity: 4.1 pm/(U/L) [74]

Ascorbic acid

Ascorbic acid

Ascorbic acid

Four tapered, Sensitivity: 1.1 nm/mM
Five tapered, Sensitivity: 8.3 nm/mM
Eight tapered, Sensitivity: 0.5 nm/mM

[75]

[75]

[75]

U-type Cancer cell detection LOD: 30 cells/mL
Small size, stable
structure, Simple

preparation process

Only transmissive
structure [93]

Ω-type
MCF-7 cancer cells LOD: 12 cells/ml Small size, 2.5 times

higher sensitivity
than U-type

Only transmissive
structure

[80]
Salmonella typhimurium LOD: 7.4 CFU/mL [82]

MCF-7 cancer cells LOD: 2.6 cells/ml [83]

S-type
2,4,6-

Trinitrotoluene;
2,4-Dinitrotoluene;

LOD: 10 parts per billion (ppb) 1.5 times higher
sensitivity than U-type Fragile structure [85]

D-type
Goat human IgG

2,4,6-trinitrotoluene
Water-glycerin solutions

LOD: 0.6 µg/mL
Sensitivity : 8.3 × 105 nm/M

RI sensitivity: 84 nm/RIU

Flexible structure and
larger sensing platform

Grinding and polishing
surface rough

[88]
[90]

[94]
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3.3. LSPR Biosensors Based on Specialty Optical Fibers

With the increase of types of specialty fibers and the development of microfabrication
technology, LSPR fiber-optic sensors using various specialty fibers and microfabrication
technologies have been developed. In this section, we only discuss specially designed
or microfabricated fibers, including hollow core fiber (HCF), multi-core fiber (MCF), mi-
crostructured optical fiber (MOF), plastic optical fiber (POF), and photosensitive fiber (PSF).
LSPR fiber-optic biosensors based on specialty fibers have some advantages that others
do not. For example, HCF can coat the interior of the channel with gold nanoparticles for
biosensing [45]. In this way, closed measurement without encapsulating can be achieved to
reduce the interference of the external environment and simplify experimental steps. These
LSPR fiber-optic biosensors using specialty fibers can be well used in the field of biosensing
due to their good biocompatibility and other advantages.

3.3.1. LSPR Fiber-Optic Biosensor Based on HCF

HCF is a specialty fiber without a solid core structure. The special structure of the
HCF determines that the internal air channel can be used as the flow channel of the liquid,
thereby reducing the interference of the liquid by the external environment. The light
can be transmitted in the tube wall of HCF, thereby generating an evanescent field at the
interface between the tube wall and the environment. Compared with the evanescent
field generated at the interface between the core and the cladding, the evanescent field
of the HCF is more effective because it directly interacts with the metal nanoparticles on
the surface. Due to the simple structure, the ability to achieve optofluidic control, and the
ease of preparation, LSPR fiber biosensors based on hollow-core fibers have become one
of the most important optical biomass detection methods. Besides conventional detectors
(e.g., halogen lamps and spectrometers), CMOS-based fiber-optic sensors are also used
for LSPR sensing. Due to the flexibility and operability of CMOS-based LSPR fiber-optic
biosensors, optimal performance detection, as well as real-time data acquisition, data
storage, and data processing, can be achieved. For example, by connecting two CMOS [95]
on the tube wall and one end face of the hollow-core fiber, two CMOS image sensors are
used to monitor the transmitted light from the output fiber and the scattered light from
the side wall of the capillary, respectively, as shown in Figure 14a. When the protein to be
tested flows from one end to the other, the concentration of the adsorbed analyte in the
solution is determined by the light intensity captured by the CMOS.
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In addition to coating the inner side of the hollow fiber with gold nanoparticles to
excite LSPR, the outer side of the hollow fiber can also be combined with gold nanoparti-
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cles. As shown in Figure 14b, the light from the light source and the light emitted to the
spectrometer can pass through the fiber and reflect at the end face of the fiber to excite
the gold nanoparticles on the outer surface of the hollow fiber to generate LSPR. Specific
detection of human IgG was achieved with a limit of detection (LOD) of 3 nM [96] using
this fiber-optic biosensor based on the excitation of LSPR outside of a hollow-core fiber.

HCF-based biosensors have a series of advantages. For example, biosensors based
on HCF with microfluidic channels offer a solution for the integration of multicomponent
liquids. However, the simple use of HCF as a microfluidic channel requires the use of
devices such as image sensors to monitor scattered light. In this way, the scattered light
exposed to the environment is easily disturbed by the environment. If a simple observation
device is used, the fabrication process of the sensor is extremely complicated, which is
a major obstacle to the application of such sensors. Furthermore, the uniform coating of
gold nanoparticles onto hollow-core optical fibers should be a major concern for improving
sensor performance and stability.

3.3.2. LSPR Fiber-Optic Biosensor Based on MCF

MCF is composed of fiber cladding and multiple fiber cores. This structure has many
advantages, such as high sensitivity, compact structure, and low loss. Generally speaking,
the core of MCF is smaller than that of ordinary fiber. When light is transmitted from SMF to
MCF, multiple modes are excited. The excited mode is extremely sensitive to changes in the
surrounding environment of the MCF cladding, resulting in an ultrasensitive sensor [97].
Generally speaking, to increase the strength of the evanescent field, it is necessary to
perform hydrofluoric acid etching on the MCF [98] to increase the core area to realize
mode coupling or to use the taper processing method to increase the field strength of the
evanescent field.

In 2020, Ragini Singh et al. [99] first prepared an LSPR miniature fiber-optic biosensor
using MCF to detect cancer cells. Figure 15a shows the MCF-based LSPR cytosensor test
setup. Figure 15b shows the cross-section of the original MCF, and Figure 15c shows
the cross-sectional view after hydrofluoric acid etching. The structure also employed
graphene oxide and copper oxide flowers to increase surface area and biocompatibility. The
results show that the MCF-based cytosensors for HepG2, Hepa1 6, A549, MCF-7, LO2, and
normal canine fibroblasts have detection limits of 3, 2, 2, 2, 4, and 10 cells/Ml, respectively.
Furthermore, the expression of glucose transporter efficiently detected cancer cells and
successfully differentiated them from normal cells. Santosh Kumar et al. [94] used the same
MCF structure to detect Shigella. The results show that the detection limit is 1.56 CFU/mL.
These experimental results demonstrate that MCF-based sensors can be used for detection
in multiple biological fields.
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In addition to using corrosion to increase sensor performance, it is also possible to
improve sensor performance by tapering the MCF. In 2021, Zhu et al. [100] prepared sensing
structures of MMF-tapered MCF-MMF and MMF-etched MCF-MMF to realize the specific
detection of acetylcholine. The results show that the RI sensitivity and the detection limit
of acetylcholine of the tapered MCF are 0.062 nm/uM and 14.28 uM, respectively, which
are better than 0.012 nm/uM and 71.3 uM etched by hydrofluoric acid. A new method is
proposed to improve the structural properties of MCF.

MCF-based LSPR biosensors usually have the advantages of strong stability, high
sensitivity to environmental parameters, and resistance to electromagnetic interference,
so they have been widely used in many fields of biology. At the same time, HCF sensors
solve the problem of the fragility of micro-nano fibers and also provides a solution for the
realization of living cell sensing.

3.3.3. LSPR Fiber-Optic Biosensor Based on MOF

Microstructured fiber (MOF) is also known as photonic crystal fiber (PCF). Different
from traditional step-type fibers, MOFs are usually composed of a single medium and
a microstructured cladding composed of air holes closely arranged in two-dimensional
directions. MOF breaks through the limitations of traditional optical fibers with its unique
structure and light transmission method. This kind of fiber provides a new development
opportunity for the development of fiber-optic technology and application fields. The air
holes of the MOF can be used as microfluidic channels to pass liquids and are, therefore,
very suitable for biosensing. In addition, the MOF is made of a single material, so the
flexible structural design endows the MOF with superior properties that traditional fibers
cannot match, such as no-cut-off single-mode properties, high birefringence properties,
refillable properties, and dispersion controllability characteristics [101], etc.

The use of MOF for sensor design can be mainly divided into two types: surface
sensing and internal sensing of MOF. Surface sensing on MOF, as the name suggests, is
to realize the measurement of the substance to be tested by functionalizing the surface
of the MOF. Internal sensing is mainly realized by coating nanoparticles in the air holes
of MOF to excite LSPR to realize sensing. The main advantage of internal sensing is that
the position and number of analyte channels can be selected in multiple air holes of MOF
to improve the sensing performance [102]. However, there are many types of MOF, and
the diameter of air holes ranges from a few microns to hundreds of microns. Andrea
Csaki et al. [103] proposed a technology that combined microfluidics and self-assembled
monolayer technology to achieve the deposition of nanoparticle layers with a longitudinal
uniform particle density of several meters in the interior of the MOF. The RI sensitivity of
the fiber-optic sensor is 78 nm/RIU, and this method lays a solid foundation for the sensing
of MOF in fiber-optic biology. The radius of the fan-shaped air hole of the MOF used in this
structure is about 20 um or more, and the solution can be smoothly passed under pressure
to realize the coating of gold nanoparticles. The cross-sectional view of the fiber is shown
in Figure 16a. However, it is very difficult to deposit a metal film inside the pores with a
diameter of several micrometers of the MOF.

Currently, the commonly used sensing method uses both the SPR principle and LSPR
principle to realize the external biomass sensing of MOF. In 2018, Wang et al. [104] proposed
a fiber-optic biosensor based on MMF-PCF-MMF for human IgG detection. The schematic
diagram of the sensing probe is shown in Figure 16b. Here, the LSPR generated by gold
nanoparticles is used to achieve sensitization, and the RI sensitivity is 3915 nm/RIU, which
is six times higher than that of the sensor without modified gold nanoparticles. In addition,
the sensor modified by the mixture of gold nanoparticles and protein A has a detection
limit of 6.3 times lower than that of the sensor without gold nanoparticle modification.
This method proves that the LSPR excited by gold nanoparticles plays an important role in
improving the sensitivity of the sensor and reducing the detection limit. A dual-sensing
channel fiber-optic biosensor [105] was proposed to achieve the specific detection of human
IgG while eliminating measurement errors caused by non-specific binding and temperature
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cross-sensitivity. The sensing channel is shown in Figure 16c. The above results show that
the electric field coupling sensor between SPR and LSPR based on MOF fiber has many
advantages, such as simple structure, high sensitivity, production feasibility, and extremely
sensitive results. This kind of sensor has a wide range of applications in biochemical and
biological analyte detection.
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The unique structure of the MOF structure makes it have some characteristics that
traditional optical fibers do not have. For example, the pore structure of MOFs provides
natural channels for material filling. The RI properties of the filling material can directly
affect the light-guiding properties of light. By studying the photoconductive properties
of the filled MOF, a large amount of information about the interaction between the filled
medium and light can be obtained. In terms of biosensing, high-sensitivity detection
of biomolecules can be achieved. In addition, because the air holes of the MOF can be
selectively filled, multiple materials can be filled in the same MOF fiber to realize multi-
parameter detection.

3.3.4. LSPR Fiber-Optic Biosensor Based on POF

As a special optical fiber with good mechanical properties, POF has the characteristics
of low manufacturing cost, good toughness, lightweight, easy processing, large diameter,
and low splicing loss [106], so it has received extensive attention in this field. Compared
with silica fibers that need to be bent at high temperatures, POFs only need to be bent at
low temperatures, so POFs are easier to make optical fibers with specific shapes for sensing,
which is an important condition for mass production.

Bijoy Sankar Boruah [107] first used a U-shaped POF LSPR fiber sensor to detect
Pb2+ in water. The developed sensor coated with oxalic acid-functionalized AuNPs can
selectively bind Pb2+ ions, and the interaction mechanism is shown in Figure 17a. The
mechanism of Pb2+ detection is that the free carboxyl group of oxalic acid can interact with
Pb2+. Since oxalic acid has two carboxyl groups, one carboxyl group is fixed on the optical
fiber through functionalization, and the other carboxyl group is free in the environment to
interact with Pb2+. When the fiber-optic probe is immersed in the test solution, the intensity
does not change on a large scale for about 20 min and then gradually stabilizes within 5 min.
Figure 17b shows that the variation of the intensity is linear with the Pb2+ concentration,
the linear range is determined to be 1–20 ppb, and the limit of detection (LoD) is 2.1 ppb,
which is much lower than the WHO guideline value of 10 ppb. The results also prove that
the sensor can be well applied in actual production and life. Due to the advantages of high
sensitivity and fast response, the U-shaped plastic optical fiber probe has been well used in
environmental monitoring, food safety, and other fields.
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Besides the detection of pesticide residues and heavy metal ions, POF sensors also
achieve rapid detection of most antigens and antibodies. There is an interesting report on
a POF biosensor for the detection of E. coli using bacteriophage T4 [108]. Although the
functionalization steps of the sensor in this work are very complicated, it demonstrates
the potential of the POF-based LSPR sensor to develop highly sensitive DNA biosensors,
providing a potential label-free biosensor detection method for clinical research. Figure 17c
shows the functionalization step of the T4 phage attached to the POF surface to capture
E. coli. Moreover, Gowri et al. [109] prepared a fiber-optic biosensor using the sandwich
DNA hybridization method. As shown in Figure 17d, using this biosensing scheme, the
detection limit of 0.2 pM for oligonucleotides was achieved, indicating its potential to
develop high-sensitivity DNA biosensors, providing a potential marker-free biosensor
detection method for clinical research.

POF-based LSPR biosensors have the advantages of strong stability, fast response, and
small size. This kind of sensor simplifies the fabrication steps of the fiber-optic sensing
probe to a certain extent, making it better applied to biomedicine.

3.3.5. LSPR Fiber-Optic Biosensor Based on PSF

PSF is a specialty fiber that is sensitive to light. PSFs include highly doped Ge photo-
sensitive fibers, Ge/B co-doped photosensitive fibers, and special doped photosensitive
fibers (tantalum-doped photosensitive fibers, cerium-doped photosensitive fiber, tin-doped
photosensitive fiber, erbium-doped photosensitive fiber). In this section, we refer to PSF as
the Ge-doped photosensitive fiber.

PSF-based biosensors enable rapid detection of most antigens and antibodies. Santosh
Kumar et al. [110] proposed a novel high-sensitivity biosensor based on PSF for the detec-
tion of ascorbic acid. As shown in Figure 18, the new sensor utilized the biocompatibility
of GO to improve its performance. Furthermore, the core of the PSF was expanded in the
HF etching, which enhanced the strength of the evanescent field and was more conducive
to the detection of ascorbic acid. The experimental results show that the sensor has a wide
linear detection range of 1 uM–1 mM, a sensitivity of 3.5%/mM, and a detection limit of
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15.12 uM, which is lower than the physiological ascorbic acid level of 40–120 µM in healthy
human serum.
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Besides ascorbic acid detection, PSF can also effectively detect other biomolecules,
which has broad application prospects. In 2022, Wang et al. [111] proposed an MMF-PSF-
MMF structure for the high-sensitivity detection of cardiac troponin. The LSPR fiber-optic
biosensor was immobilized with graphene oxide, gold nanoparticles, and molybdenum
disulfide nanoparticles simultaneously. In the experiment, HF was used to corrode PSF to
increase the intensity of the evanescent field, and then graphene oxide, gold nanoparticles,
and molybdenum disulfide were sequentially plated on the surface of PSF to effectively
collect cardiac troponin. The results show that the biosensor has a linear response of
3.4 pm/(ng/mL) in the concentration range of 0–1000 ng/mL, R2 = 0.928, and the detection
limit is 96.2638 ng/mL. The methods provided in this experiment have great benefits in
clinical diagnostics, biomedical engineering, and nanotechnology.

Traditional optical fibers have very limited sensitivity to light. Because the RI differ-
ence between the core and the cladding is not large, the loss of light is large, which limits
the sensitivity. PSF-based biosensors can increase the RI difference between the core and
the cladding by increasing the RI of the core, resulting in less optical loss. This makes it
shine in the field of biochemistry.

Table 3 summarizes the performance, advantages, and disadvantages of specialty
fibers based on the LSPR effect in recent years. In conclusion, LSPR fiber-optic biosensors
with different structures have their advantages and disadvantages. These specialty fiber-
optic sensors have great potential in optofluidic detection as well as multi-channel detection.

Table 3. The recognition method of the target detection substance of different specialty fiber optic sensor.

Type Target Sensor Performance Advantage Disadvantage Ref

HCF

Cholesterol LOD: 25.5 nM
Providing liquid flow channels,

saving solution Complex detection process

[112]
Human IgG LOD: 3 nM [96]
Transferrin

Immunoglobulin G
Range: 0.01–0.15 mg/L
Range: 0.01–0.15 mg/L

[95]
[95]

MCF

Shigella bacterial
HepG2, Hepa1 6, A549, MCF-7, LO2, NCF cell

Acetylcholine
Creatinine

LOD: 1.56 CFU/mL
LOD: 3, 2, 2, 2, 4, 10 cells/mL

Sensitivity: 0.062 nm/uM LOD: 14.28 uM
Sensitivity: 0.0025 nm/µM

LOD: 128.4 µM

High sensitivity to small RI
changes, low connection loss,

simultaneous measurements on
each core

Complex introducing and
detecting light from the

individual cores

[98]

[99]
[100]
[97]

MOF Refractive Index Solution RI sensitivity:78 nm/RIU
Providing liquid flow channels,

saving solution, temperature not
cross interference

The complex optical fiber
manufacturing method [103]

POF
Pb2+

DNA
E. coli

Sensitivity: 0.19 nm/µM
LOD: 1 pg/mL

Qualitative detection

Low manufacturing cost, good
toughness, lightweight, easy

processing,

High attenuation, poor heat
resistance;

[107]
[109]
[108]

PSF
Ascorbic acid

Cardiac Troponin I

LOD: 15.12 µM
Sensitivity: 3.4 pm/(ng/mL), LOD: 96.2638 ng/mL High sensitivity and low loss The complex optical fiber

manufacturing method

[110]

[111]
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4. Outlook

With the high requirements for sensor sensitivity and detection limit, LSPR fiber-optic
biosensors have been widely studied and applied. Although progress has been made, there
are still some pressing issues to be resolved. Figure 19 shows the outlook of LSPR fiber
optic biosensors.
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(1) Multi-channel detection. In practical applications, sensors are often interfered
with by the environment. Simultaneous detection of multiple channels to eliminate cross-
interference is a good solution. In some works, a dual-channel fiber-optic sensor is proposed
to eliminate the cross-interference of environmental factors such as temperature [105].
Multi-channel detection using LSPR-based fiber-optic sensors has great potential for high-
sensitivity multi-parameter detection. In addition, realizing the detection of multiple
substances in multiple microfluidic channels of the same MOF is an important improvement
direction for realizing multi-channel detection.

(2) Integration. At present, LSPR fiber-optic biosensors are generally used to measure
only one or two substances, and few LSPR fiber-optic biosensors are integrated on a chip
to achieve the measurement of multiple biomass. It is worth mentioning that Professor
Cusano’s team has made great contributions in the lab on a chip based on LSPR fiber-
optic sensors. They made a detailed analysis and summary of this aspect [113,114]. This
shows that the application of LSPR-based fiber-optic sensors in the lab on a chip makes
LSPR-based LSPR biosensors very suitable for multiplex detection. Besides, Hyeong-Min
Kim et al. [49] proposed a sensor that can flow multiple channels into the same sensing
area. This setup has great potential for multiple biomass detection. In the future, through
the development and use of advanced manufacturing technology, the precise control of
LSPR can be realized, and various parameters of the probe can be freely modified to realize
integrated detection.

(3) Simplify the way of functionalization. Liu et al. [115] used the flash of the smart-
phone as a light source and a complementary metal-oxide-semiconductor camera as a
detector to monitor the transmission intensity changes at the end face of a fiber-optic sensor.
This setup achieves RI measurement in real time. At present, although the detection limit,
detection accuracy, and sensitivity of LSPR fiber-optic biosensors have greatly improved in
biosensing, the functionalization steps of current fiber-optic biosensors are complicated,
and most of the experimental reagents have biological toxicity. So, the present functional-
ization way can be only operated in the laboratory and cannot be used in real life, and the
current limitations are relatively large. In the future, with the continuous development of
materials science and nanotechnology, there will be more reagents with simple operations
and no toxic effects. These new reagents can be functionalized and routinely measured.
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5. Conclusions

This paper reviews the research progress of LSPR fiber-optic biosensors. Based on the
classification of sensor structures, various biosensors with different structures are reviewed
in detail. The main ones include ordinary optical fibers, special shapes, and specialty fibers.
The special shapes include tapered, U-type, Ω-type, S-type, and D-type. Specialty fibers
include HCF, MCF, MOF, POF, and PSF. Moreover, the advantages, disadvantages, and
performance of each type of sensor are analyzed and summarized. Finally, by summa-
rizing the existing deficiencies and future needs of LSPR fiber-optic biosensors, its future
development trends are predicted. At present, this research field is growing rapidly. With
the further development of fiber-optic sensing technology and functionalized technology,
improving the sensitivity and detection limit of sensors has become the main goal of this
field. In the near future, LSPR fiber-optic biosensors will go out of the laboratory and be
applied in the fields of biomedicine, environmental monitoring, food safety detection, and
clinical analysis.
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