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Abstract: An immunosensor for the assay of toxic biological warfare agents is a biosensor suitable
for detecting hazardous substances such as aflatoxin, botulinum toxin, ricin, Shiga toxin, and oth-
ers. The application of immunosensors is used in outdoor assays, point-of-care tests, as a spare
method for more expensive devices, and even in the laboratory as a standard analytical method.
Some immunosensors, such as automated flow-through analyzers or lateral flow tests, have been
successfully commercialized as tools for toxins assay, but the research is ongoing. New devices are
being developed, and the use of advanced materials and assay techniques make immunosensors
highly competitive analytical devices in the field of toxic biological warfare agents assay. This review
summarizes facts about current applications and new trends of immunosensors regarding recent
papers in this area.
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1. Introduction

Testing hazardous toxic materials is an important task in current analytical chemistry.
Accurate and timely proof of hazardous materials in the environment or an organism
is necessary for choosing the correct countermeasures or therapy. Various instrumental
devices are available for the purpose, and accurate and sensitive assays of hazardous
toxic materials are possible. Mass spectrometry, chromatography, electrophoresis, and
immunochemical methods, such as enzyme-linked immunosorbent assay, can be standard
analytical chemistry for toxins [1–10]. Although standard methods are available and fully
applicable, they have disadvantages, such as the price of the device, cost per assay, and
demands on staff and other laboratory equipment. Alternative methods are being sought,
to serve in situations where standard methods are unsuitable. Simple devices usable in
the field, small mobile laboratories, or by a sole investigator in terrain, or devices for
point-of-care tests, could provide identification of toxins in sites where other methods are
not convenient.

Biosensors, chemosensors, aptasensors, and similar portable and low-cost analytical
devices are generally suitable for use outside of laboratories. The concept of biosensors and
biosensor-like devices brings an alternative to standard methods because the application of
new materials and measurement procedures makes them sensitive up to the level of these
standard methods [11,12]. They maintain the concept of simple portable devices that can
even be integrated as wearable electronics in the future.

Toxins with military relevance represent a group of harmful substances with serious
pathological impacts on the human organism. The test of such toxins with small portable
devices is highly desired. It can protect endangered persons, help choose proper therapy,
and diagnose the true causative agent of poisoning. Biosensors with bound antibodies,
immunosensors, are reviewed here. Recent discoveries are introduced, and the significance
of immunosensors is discussed.
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2. Toxins as a Part of Biological Warfare Agents

Nuclear, radiological, chemical, and biological weapons of mass destruction exist.
They are a threat when used by a state in war, by an organization, or by an individual
perpetrator in a terrorist attack [13,14]. All types of mass destruction weapons are regulated
by international treaties, and there is an effort to ban or at least restrict their possession.
The Treaty on the Non-Proliferation of Nuclear Weapons from 1968, effective as of 1970, is
the main international regulation for the first group of weapons of mass destruction.
Most countries declared for abandoning nuclear weapons, except for Great Power states.
Chemical and biological warfare agents are partially regulated worldwide per the so-called
Geneva protocols of 1925. The Protocol for the Prohibition of the Use in War of Asphyxiating,
Poisonous or other Gases, and of Bacteriological Methods of Warfare, however, was minimally
effective. It did not force the signatories to stop arming themselves with these weapons;
therefore, further treaties followed in the next decades. The Convention on the Prohibition of
the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons
and on their Destruction is the treaty regulating biological warfare. It was signed by most
countries in the world in 1972 and entered into force in 1975. Chemical warfare agents
have become fully banned internationally, the last of the mass destruction weapons. The
Convention on the Prohibition of the Development, Production, Stockpiling and Use of Chemical
Weapons and on their Destruction was signed in 1993 and entered into force in 1997.

Despite extensive regulation of mass destruction weapon manufacturing, stockpiling,
and use, their relevance and threat are still significant. The proliferation of such means of
combat or terror can occur under certain circumstances, and active countermeasures still
exist to protect against such threats [15–19].

Toxins are poisons of natural origin. They can be simple organic compounds and/or
highly structurally arranged macromolecules. Anatoxin-a, with a molecular mass of 165
Da, and botulinum toxin, with a molecular mass of 150 kDa, can be mentioned as two
toxic biological warfare agents of completely different sizes. Several toxins are considered
biological warfare agents, and often the toxin itself and the producing microorganism are
seen as a biological threat [20]. Functional subunits derived from the sizable toxins also
have the status of biological warfare agents.

Many toxic substances could be considered biological warfare agents; however, only a
limited number have this status in practice. For instance, The Australia Group (Australia
Group Secretariat, RG Casey Building, John McEwen Crescent, Barton Act 0221) coordi-
nating 42 countries, plus the European Union, has a list of human and animal pathogens
and toxins for export control. A total of 18 structurally close groups of toxins are on
the list. Abrin (a protein toxalbumin from the plant Abrus pulchellus) [21], aflatoxins (a
low molecular weight mycotoxins from molds Aspergillus species) [22], botulinum toxins
(all variants, protein toxins from the bacterium Clostridium botulinum) [23], cholera toxin
(a protein toxin from the bacterium Vibrio cholerae) [24], Clostridium perfringens toxins
(protein α, β1, β2, ε, ι toxins from bacterium Clostridium perfringens) [25], conotoxins (a
group of toxic peptides from marine cone snail, genus Conus) [26], diacetoxyscirpenol (a
low molecular weight mycotoxin from a group of trichothecenes and produced by the
Fusarium fungi) [27], HT-2 toxin (a trichothecene mycotoxin produced by various fungi
mainly of Fusarium species) [28], microcystins (cyanotoxins, a group of organic compounds
produced by cyanobacteria) [29], modeccin (a glycoprotein from plant Adenia digitata), ricin
(a carbohydrate binding protein from plant Ricinus communis) [30], saxitoxin (a cyanotoxin
from various cyanobacteria, organic compound) [31], Shiga toxins (including Shiga-like
toxins, verotoxins and verocytotoxins, a group of protein toxins from Shigella dysenteriae
and some serotypes of Escherichia coli) [32], Staphylococcus aureus enterotoxins (including
hemolysin α-toxin and toxic shock syndrome toxin, a group of protein toxins from bac-
terium Staphylococcus aureus), T-2 toxin (a trichothecene mycotoxin produced by various
fungi mainly of Fusarium species) [33], tetrodotoxin (a neurotoxin organic substance pro-
duced by bacteria like Pseudoalteromonas, Pseudomonas, and Vibrio, it can be transmitted
to other water organisms) [34], viscumin (viscumin albumin lectin 1, toxic lectins from
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mistletoe plant Viscum album) [35], and volkensin (a toxic glycoprotein from Adenia volkensii
plant) [36] are regulated substances according to the Australia Group. The mentioned
toxins are given in Table 1.

Table 1. Toxins with relevance as biological warfare agents.

Toxin Type of Chemical Substance Producing Organism References

abrin protein toxalbumin plant Abrus pulchellus [21]
aflatoxin low molecular weight mycotoxins molds Aspergillus [22]

botulinum toxins protein toxins bacterium Clostridium botulinum [23]
cholera toxin protein toxins bacterium Vibrio cholerae [24]

Clostridium perfringens toxins protein α, β1, β2, ε, ι toxins bacterium Clostridium perfringens [25]
conotoxins neurotoxic peptides marine cone snail, genus Conus [26]

diacetoxyscirpenol
a low molecular weight

mycotoxin from a group of
trichothecenes

produced by fungi Fusarium [27]

HT-2 toxin a trichothecene mycotoxin various fungi, mainly Fusarium species [28]

microcystins cyanotoxins, a group of organic
compounds various cyanobacteria [29]

modeccin a glycoprotein plant Adenia digitata
ricin a carbohydrate-binding protein plant Ricinus communis [30]

saxitoxin a cyanotoxin, organic compound various cyanobacteria [31]

Shiga toxins a group of protein toxins Shigella dysenteriae and some serotypes
of Escherichia coli [32]

T-2 toxin a trichothecene mycotoxin produced by various fungi, mainly
Fusarium species [33]

tetrodotoxin an organic neurotoxic substance
bacteria like Pseudoalteromonas,

Pseudomonas, and Vibrio, it can be
transmitted to other water organisms

[34]

viscumin toxic protein lectins mistletoe plant Viscum album [35]
volkensin a toxic glycoprotein Adenia volkensii plant [36]

The Center for Disease Control and Prevention (1600 Clifton Road, Atlanta, GA 30329-
4027 USA) distinguishes three basic types of biological warfare agents labeled A, B, and
C [37,38]. Group A contains the most dangerous biological warfare agents. Groups B
and C are less important as the agents are less dangerous. Serious pathogens, such as
Bacillus anthracis, Francisella tularensis, Yersinia pestis, and Variola major belong to group A.
Clostridium botulinum toxin (Botulinum toxin) also belongs to the upper-priority group A as
a representative of toxic substances.

3. Biosensors for the Toxic Biological Warfare Agents Assay

Biosensors are analytical devices that combine a physicochemical transducer and
a biorecognition element. While the physicochemical transducers work as a physical
sensor, the biorecognition element is responsible for specificity, but it can also initiate
chemical or physical processes detectable by the physico-chemical transducer. Biosensor
analytical devices have progressed from simple detectors containing crude enzymes, such as
glucose oxidase, to complex systems where purposely prepared biological origin molecules,
nanomaterials, and other advanced techniques are used [39–42]. Immunosensors are a
variant of a biosensor where an antibody plays the role of a biorecognition element, and
an antigen is an analyte [43–47]. Conception in which an immunosensor containing an
antibody is detected by an antigen is possible as well [48]. Toxins assay by an immunosensor
can work on a direct interaction between immobilized antibodies specific to the toxin and
the toxin itself presented in the sample. More complicated assay formats also exist, and
sandwich immunocomplexes, competitive immunoassays, formation of complexes with
nanoparticles, and other arrangements are known, as described in the chapter devoted to
the specific examples. A general principle of an immunosensor for toxin assay is shown in
Figure 1.
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Figure 1. General principle of an immunosensor for toxin assay.

Biological warfare agents, including toxins, can be analyzed by a wide number of
biosensors, as seen in the examples in the following text. The use of antibodies as a biorecog-
nition element is quite common for a biological warfare agent assay. An electrochemical
paper immunosensor for a B. anthracis assay is an example [49]. Antibodies react with a
target molecule, called an antigen, and specifically recognize a site on the antigen called a
paratope. The use of antibodies in various analyses has a long tradition, and specific anti-
bodies can be attained in the market. On the other hand, antibodies are sizable molecules,
and their production requires the use of animals (polyclonal antibodies) or biotechnology
(monoclonal and recombinant antibodies). This means that the production of antibodies is
not easily reproducible and can also require a high initial investment in material and work.

Aptamers are another recognition element representing an artificial molecule based
on polynucleotides, polydeoxynucleotides, or peptide-binding [50,51]. The use of aptamers
for analyses became quite common, and the term aptasensor can be found in the current
literature. Using an aptasensor for biological warfare agents is possible, and the application
of bacillus anthracis is an example [52,53]. Aptamers exert affinity to the target molecule as
antibodies do. Because aptamers are artificial biomolecules, they can be produced by typical
chemical technologies, and thus the product can be more attractive to some manufacturers.
On the other hand, aptamers can have problems with specificity and affinity concerning
the target structures, though their production technology is proven, and some aptamers
have good specifications.

Molecularly imprinted polymers are another affinity material manufactured via chem-
ical processes. Molecularly imprinted polymers can serve in the same way as a biorecog-
nition element and gain specificity to the sensor device [54–56]. Molecularly imprinted
polymers could be mass-produced by the chemical industry, and any structure can be
imprinted in theory. There are, however, some shortcomings that should be taken into
account. The specificity of the imprints can be limited. The affinity of the surface to the
target molecule is based on the shape and molecular interactions, which are not guaranteed
when a homogenous membrane is used, and testing small molecules with defined phys-
ical and chemical specifications is an easier task for sensors with molecularly imprinted
polymers. Experiences with molecularly imprinted polymers for the preparation of sensors
include the Helicobacter pylori virulence factor assay [57], specific extraction of aflatoxins by
molecularly imprinted polymers [58], and the human immunodeficiency virus drug assay
by Tenofovir [59]. The use of molecularly imprinted polymer will gain more applications
when new materials are developed as a platform for in situ membrane manufacturing.

Biological warfare agents can be analyzed by recognizing specific genes or sequences
of their genetic information and using genetic probes, specific sequences of genetic infor-
mation, etc. These devices proved their functionality in more applications, such as the
Ebola virus assay [60,61], F. tularensis [62], F. tularensis, Y. pestis, B. anthracis, variola virus,
Rift Valley fever virus Ebola virus, Sudan virus, and Marburg virus [63], variola major [64],
B. anthracis [65,66], and Shiga toxin-producing E. coli [67]. Identifying biological warfare
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agents by detecting their genetic sequences is typically a sensitive and selective approach.
These assays also have some disadvantages. First, genetic information is enclosed within
cells or viral particles, and only rarely can the genetic information be attained directly.
This may cause complications and will probably make it necessary to pretreat samples.
Another disadvantage is that toxins cannot be assayed directly by genetic tests. Only a
microorganism that produces the toxins can be analyzed.

Biosensors, including immunosensors, are a group of portable analytical devices.
Some highly complex biosensors are not suitable for use outside of laboratories, but most
of the newly developed biosensors are miniaturized instruments suitable for field tests.
The immunosensor for toxic biological warfare agents plays a role in fast identification in
order to choose proper countermeasures. The immunosensor should be a single step or
based on a limited number of steps, with a minimal requirement of sample pretreatment
and personnel operating the device. It is not expected that the immunosensor will replace
standard laboratory analytical methods, such as chromatography or mass spectrometry.
The standard methods should verify results from the immunosensor when the situation
allows. The role of an immunosensor in the toxic biological warfare agent assay can be
compared with point-of-care tests based on lateral flow immunochromatography that were
found to be useful during the Coronavirus 2019 pandmic, and that were taken as a less
expensive, accessible, but less accurate diagnostic alternative to the standard polymerase
chain reaction assays [68–73].

Biosensors also have shortcomings that should be considered when a new analytical
device containing a biosensor is constructed. Compared to the universal standard analytical
devices, biosensors are suitable for assaying a specific analyte or a group of defined analytes.
The specificity depends on the type of biorecognition element or manufactured molecule.
The recognition antibody has to be replaced in the case of an immunosensor for a toxic
biological warfare agents assay. This replacement is quite elaborate and cannot be done
by a user. Therefore, immunosensors are not universal devices but analytical tools for
specific tasks.

4. Commercial Immunosensors for Toxic Biological Warfare Agents

The research on immunosensors for toxic biological warfare agents is ongoing, and
many interesting applications have already been commercialized. The already commercial-
ized devices are outcomes of older research, and they have an actual use for safety purposes.
On the other hand, the actual research outcomes are not involved in their construction.
Both expensive automatically working analytical devices and cheap disposable detectors
can be mentioned as successful adaptations of an immunosensor for the assay of biological
warfare agents, including toxins.

The analyzer Raptor by Research International (Monroe, WA, USA) is an automatic,
portable fluorometric assay system for monitoring up to four toxins, viruses, bacteria,
spores, fungi, and other diverse targets, and it can be designated an immunosensor. It is a
battery-powered portable device of 28.0 × 17.3 × 20.5 cm and 6.45 kg and is suitable for
indoor and outdoor applications. It works on the principle of fluorescence immunoassay,
which takes place in four independent channels, meaning that up to four biological warfare
agents can be analyzed simultaneously. One assay takes 15 min to complete. All steps
are automated, and flow forced by a peristaltic pump is responsible for the delivery of
samples and the solutions of monoclonal antibodies with bound fluorophore labels to a
chamber where another antibody has already been immobilized. Optical fibers excite the
fluorophore, and an optical waveguide detects fluorescence when an immunocomplex
with the analyte is formed in the flow-through cell. The principle of the Raptor function is
depicted in Figure 2. The Raptor device can analyze a wide group of biological warfare
agents. The exact type of agent depends on the regencies used. Toxic biological warfare
agents can be proven with quite low detection limits: up to 0.1 ng/mL for staphylococcal
enterotoxin B, 5 ng/mL for ricin, and up to 1 ng/mL for botulinum toxin [74–80].
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Fluorescence measurement also uses another immunosensor for a biological warfare
agents assay: Biosensor 220R by MSA (Pittsburgh, PA, USA). This immunosensor works
automatically and uses magnetic microspheres with specific antibodies and a fluorescent
tag with specific antibodies [81]. A complex is formed when an analyte is presented in
a sample, the complex is held in a flow through a magnetic cell and washed, and its
fluorescence is measured. The manufacturer does not disclose detailed information about
the magnetic particles and antibodies. The whole device is suitable for indoor and outdoor
performance. It is battery-powered, 27 × 25 × 14 cm in size, and weighs 2.7 kg. The
manufacturer claims a sensitivity for ricin and staphylococcal enterotoxin B < 1 ng for an
assay lasting 5 min.

Lateral flow tests, also known as lateral flow immunoassays, are an analytical tool
for the semiquantitative analysis of various chemicals, drugs, semiquantitative substances,
biochemical and immunochemical markers, and microorganisms [82–88]. Toxic biological
warfare agents can also be analyzed by lateral flow tests, and some manufacturers offer
these immunoassay devices specific to toxins of security interest. Manufacturer Advnt
Biotechnologies (Phoenix, AZ, USA) produces lateral flow tests for various biological
warfare agents. There are tests for a single agent or for up to five agents analyzed in one
assay. The tests for a single agent are named BADD (Biowarfare Agent Detection Devices);
the tests for five simultaneous agents are called the Pro Strips Rapid Screening System.
Other analytical specifications are the same for both tests. The detection limit for ricin and
staphylococcal enterotoxin B is 10 ng/mL, the botulinum toxin variant A has a detection
limit of 33 ng/mL, and the botulinum toxin variant B has a detection limit of 500 ng/mL
for an assay that requires a sample size of 0.2 mL and a time of 3 min. The practical use of
these strips was described in the papers cited for the assay of ricin [89] and the A variant
of botulinum toxin [90]. Alexeter Technologies manufactures (Wheeling, IL, USA) similar
lateral flow tests under the trade name BioDetect (test of a single biological warfare agent),
RAID 5 (up to five contemporary assayed biological warfare agents), RAID 8 (up to eight
contemporary assayed biological warfare agents), and RAID 10 (up to 10 contemporary
assayed biological warfare agents). Ricin, staphylococcal enterotoxin B, and botulinum
toxin are covered by these tests, but the manufacturer does not offer an assay for other
toxic biological warfare agents. The assay takes 15 min to complete, though other analytical
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specifications are not disclosed by the manufacturer. Practical testing for ricin was described
by Slotved et al. [89]. Lateral flow tests are also produced by other manufacturers. ANP
Technologies (Newark, DE, USA) produce lateral flow tests for biological warfare agents
and infectious microorganisms. Botulinum toxin A, ricin, and staphylococcal enterotoxin
B tests are offered as tools for toxin assay. The manufacturer provides the tests for single
target and multiplex assays suitable for the contemporary detection of two, four, five, and
ten biological warfare agents. An example of a multiplexed lateral flow test is depicted in
Figure 3.
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The assay by lateral flow test can be further improved by using a digital reader to
measure the coloration of lines, and automatizes manipulation with samples. The device
BioHawk LF by Research International is an example. It can even collect samples from
aerosols via an external wetted wall cyclone, and perform automated detection of biological
warfare agents and their identification in a total elapsed time of 10–25 min. The device is
suitable for outdoor use, and its small size of 47.0 × 24.8 × 36.5 cm with a weight of 13 kg
makes it single-person portable. The commercially available immunosensors for the assay
of toxic biological warfare agents are summarized in Table 2.

Table 2. Commercially available immunosensors for assay of toxic biological warfare agents.

Name of Device Manufacturer Type of Immunosensor
or Assay Analytical Specifications References

Raptor
Research

International
(Monroe, WA, USA)

automatic flow through
fluorescence

immunoassay

limits of detection up to 0.1 ng/mL for
staphylococcal enterotoxin B, 5 ng/mL

for ricin, and up to 1 ng/mL for
botulinum toxin, assay time 15 min

[74–80]

Biosensor 220R MSA (Pittsburgh,
PA, USA)

fluorescence
immunoassay based on

magnetic separation

sensitivity for ricin and staphylococcal
enterotoxin B < 1 ng, assay time 5 min [81]

BADD and Pro
Strips-Rapid

Screening System

Advent
Biotechnologies lateral flow test

limit of detection for ricin and
staphylococcal enterotoxin B is

10 ng/mL, botulinum toxin variant A
33 ng/mL, botulinum toxin variant B

500 ng/mL, sample sized 0.2 mL,
assay time 3 min, contemporary

analyzed biological warfare agents: 1
or 5

[89,90]

BioDetec, RAID 5,
RAID 8, RAID 10

Alexeter
Technologies lateral flow test

assay time 15 min, contemporary
analyzed biological warfare agents: 1,

5, 8 or 10
[89]
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5. Progress on Immunosensors for Toxic Biological Warfare Agents Assay

Research on a new immunosensor for the assay of toxic biological warfare agents
brings improvements, making devices more competitive to standard methods. New mate-
rials typically improve expected specifications, such as decreasing limits of detection and
sample volume on one side and making the assay simple on the other. Miniaturization
additionally leads to savings on raw materials and production costs.

An immunosensor that works on the principle of the Raman scattering-lateral flow
immunoassay was developed by Jia et al. [91]. Composite gold—silicon oxide nanoparticles
were chosen for the assay as fluorescent labels. Variants of the immunosensor for the ricin,
botulinum toxin, and staphylococcal enterotoxin B assay were developed. The toxins
were analyzed with a detection limit of 0.1 ng/mL for ricin and botulinum toxin A, of
0.05 ng/mL for staphylococcal enterotoxin B, and the time per single measurement was
15 min. A voltametric immunosensor was developed to detect vacuolating cytotoxin A from
Helicobacter pylori [92]. Although this toxin is not listed among biological warfare agents, the
assay provides promising results and can be easily adapted for other bacterial toxins. The
authors prepared a graphitic carbon nitride/zinc oxide nanocomposite electrochemically
deposited on gold electrodes, further immobilized antibodies via carbodiimide and N-
hydroxysuccinimide, and vacuolating cytotoxin A was detected by voltammetry. The
detection limit for the assay was equal to 0.1 ng/mL for vacuolating cytotoxin A with a
linear range of calibration between 0.1 and 12.8 ng/mL and a time per test of 10–15 min.
An electrochemiluminescence immunosensor for a ricin assay was developed on a platform
of screen-printed electrodes [93]. The immunosensor contained magnetic beads with
antibodies specific for ricin immobilized through streptavidin-biotin. A sandwich was
formed in the presence of ricin with CdSe/ZnS quantum dots, the immunocomplex formed
on the magnetic beads was magnetically separated, and electrochemiluminescence was
measured. The immunosensor had a detection limit of 5.5 pg/mL and a linear assay
range of 0.01–100 ng/mL. Magnetic beads were also used in the work by Atanasova
and colleagues concerning the detection of aflatoxin M1 [94]. The magnetic nanoparticle-
based fluorescent immunoassay provided a limit of detection for aflatoxin M1 2.9 pg/mL
and a linear calibration range of 3.0 to 100 pg/mL. An immunosensor for aflatoxins was
also developed in the work of Peltomaa et al. [95]. They developed a non-competitive
immunoassay in which a primary anti-aflatoxin antibody was bound via streptavidin to
magnetic beads, and an immunocomplex was formed in the presence of aflatoxin B1 with a
secondary Eu-labeled antibody. Fluorescence was measured after the magnetic separation.
The assay had a detection limit of 70 pg/mL for an assay lasting 15 min.

Botulinum toxin A was measured by an immunosensor, in which specific antibod-
ies were attached to gold nanoparticles, a sandwich immunocomplex was formed with
botulinum toxin and antibodies on fluorescent probe particles, and diffusivity was mea-
sured [96]. The assay had a detection limit of 10 pg/mL for a measurement time of 2 min,
and botulinum toxin A was measured in a calibration range of 0.01–500 ng/mL. In another
work, the simultaneous detection of botulinum toxins A and E was performed by a volta-
metric assay [97]. The immunosensor comprised magnetic core/metal-organic framework
nanoparticles covered with antibodies specific to botulinum toxins and monoclonal anti-
bodies labeled with polystyrene@polydopamine/cadmium and silver. The assay had a
dynamic range of 0.1–1000 pg/mL and a limit of detection of 0.04 pg/mL for botulinum
toxin A, and a dynamic range of 0.5–1000 pg/mL and a limit of detection of 0.16 pg/mL
for botulinum toxin E.

The botulinum toxin assay was also developed in the work of Kumar et al. [98]. They
chose the toxoid form of botulinum toxin types C and D for their analysis, and the porous
silicon Fabry-Perot interferometer as a platform for a competitive immunoassay. It was
covered with a gelatin membrane and botulinum toxoid. Primary antibodies specific for
toxoid and secondary antibodies labeled with horse radish peroxidase were used, and
peroxidase-catalyzed oxidation of 4-chloro-1-naphthol using hydrogen peroxide created
insoluble products. The botulinum toxin in a sample was completed with the immobilized
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toxoid for the antibodies applied. Reflectivity spectra were collected, and calibration was
performed. The assay had a linear response of 10 pg/mL to 10 ng/mL and a limit of
detection of 4.8 pg/mL for an assay occurring in nearly real-time.

The immunosensor for toxins can also use complex and more expensive platforms
to achieve outstanding specifications. Shiga toxins were, for instance, analyzed with
surface plasmon resonance imaging [99]. This immunosensor contained immobilized
immunoglobulin G on 50 nm gold film and proved Shiga toxoid Stx1 in a label-free mode
with a detection limit of 50 ng/mL in an assay lasting 20 min. The signal can be further
improved by applying gold nanoparticles covered with anti-Shiga toxin antibodies. The
sensitivity of the assay improves when the immunosandwich forms, and the limit of
detection is around 1 pg/mL. Surface plasmon resonance was used to detect ricin and abrin
in another article [100]. A sandwich immunocomplex comprised of a protein G, a magnetic
bead with an antibody, analyte, and secondary antibody, was formed and placed at the site
of the proper sensor chip. The assay contained a magnetic separation step that enriched
the analyte and improved sensitivity. The limit of detection for abrin and ricin assay was
equal to 0.6 ng/mL. Immunocomplex formation on the surface plasmon resonance chip
was also used in work by Stern et al. [101]. The authors co-immobilized antibodies against
ricin, and agglutinins were assayed in the first step. Adding an antibody specific for ricin
formed a sandwich immunocomplex, and the level of ricin could be differentiated from
the level of agglutinin. The detection limit was equal to 3 ng/mL for ricin and 6 ng/mL
for agglutinin in an assay providing the assay results in real-time. The total analysis time,
including sample processing, was less than 30 min. The newly developed immunosensors
for the toxic biological warfare agent assay are summarized in Table 3.

Introducing new immunosensors into practice is not an easy task. It requires not only
assembling the particular parts but also using original nanomaterials and antibodies, and
their production is a condition for getting an immunosensor into the market. Generally,
producing biosensors and immunosensors has a great practical perspective, and their use by
various consumers is expected [102,103]. Immunosensors for toxic biological warfare agents
assays are devices designed for the military, police, or other organizations. The introduction
of immunosensors to these consumers will highly depend on governmental support or
acquisitions. The fact that one immunosensor typically detects only one type of toxic
biological warfare agent is a disadvantage. Militaries tend to require a single analyzer for a
wide number of analytes, and that the analyses are performed by trained staff for whom
education in analytical chemistry, bioanalytical chemistry, or similar disciplines is necessary.
There can also be problems with the manufacturing processes in which new materials are
used, and shortcomings in quality or reproducibility can occur. The limitations mentioned
here should be considered when the introduction of an immunosensor is planned. On
the other hand, the benefits of small, portable, and cheap analytical devices for security
practices are undeniable. The practical spread of the immunosensor for toxic biological
warfare agents will depend on the verification of their potential by military specialists.
If the first of the new types of immunosensors are at least partially successful, further
propagation of them for toxic biological warfare agents can be expected.
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Table 3. New immunosensors for toxic biological warfare agents assay.

Type of Assay Toxins Analytical Specifications References

Raman scattering-lateral flow
immunoassay

ricin, botulinum toxin,
and staphylococcal

enterotoxin B

limit of detection 0.1 ng/mL for ricin and
botulinum toxin A, and 0.05 ng/mL for
staphylococcal enterotoxin B, assay time

15 min

[91]

voltametric immunoassay
vacuolating cytotoxin

A from Helicobacter
pylori

limit of detection 0.1 ng/mL, linear range
of calibration between 0.1 and 12.8

ng/mL, assay time 10–15 min
[92]

electrochemiluminescence
immunosensor with magnetic separation
of immunocomplex on magnetic beads

ricin limit of detection 5.5 pg/mL, linear assay
range 0.01–100 ng/ml [93]

magnetic nanoparticle-based
fluorescent immunoassay aflatoxin M1 limit of detection 2.9 pg/mL, linear

calibration range 3.0–100 pg/ml [94]

non-competitive immunoassay, primary
anti-aflatoxin antibody bound via

streptavidin on magnetic beads, an
immunocomplex is formed in the

presence of aflatoxin B1 with a secondary
Eu-labelled antibody

aflatoxin B1 limit of detection 70 pg/mL, assay time
15 min [95]

diffusivity measurement of sandwich
immunocomplexes comprised of gold
nanoparticles with antibodies, analyte,

and antibodies on fluorescent
probe particles

botulinum toxin limit of detection 10 pg/mL, calibration
range 0.01–500 ng/mL, assay time 2 min [96]

voltametric immunosensor containing
magnetic particles with antibodies

forming a sandwich with analyte and
other antibodies labeled with Ag or Cd

nanoparticles

botulinum toxin
A and E

dynamic range 0.1–1000 pg/mL and limit
of detection 0.04 pg/mL (botulinum

toxin A); dynamic range 0.5–1000 pg/mL
and limit of detection 0.16 pg/mL

(botulinum toxin E)

[97]

Fabry-Perot interferometric competitive
immunoassay using primary and

peroxidase-labeled secondary antibody,
precipitation of 4-chloro-1-naphthol by

peroxidase was responsible for the
detected signal

toxoid form of
botulinum toxin type

C and D

linear response 10 pg/mL to 10 ng/mL,
limit of detection 4.8 pg/mL, assay going

in nearly real time
[98]

surface plasmon resonance imaging,
antibody bound on gold film, signal

improved by adding of gold
nanoparticles with

immobilized antibodies

Shiga toxin—tested on
toxoid

limit of detection 50 ng/mL for label-free
assay, 1 pg/mL when

gold-immuno-nanoparticles are applied,
assay time 20 min

[99]

surface plasmon resonance combined
with magnetic separation ricin and abrin limit of detection 0.6 ng/ml [100]

surface plasmon resonance with
antibodies immobilized on chip and

secondary antibody used for specific ricin
assay and signal improvement

ricin, agglutinin
3 ng/mL for ricin, 6 ng/mL for

agglutinin, assay time including sample
processing 30 min

[101]

6. Conclusions

Toxins represent a substantial risk to human health; they can be present in the envi-
ronment, food, and drugs or accompany infectious diseases. They are also a threat that can
be misused for military or terrorist activities. Early detection is a necessity for helping to
decide what countermeasures or therapies should be chosen. Although current analytical
techniques are accurate and reliable, early test detection for outdoor measurement or point-
of-care diagnosis is extremely helpful. Immunosensors can provide a highly sensitive assay
and the possibility to perform testing outside of standard laboratories. Recent discoveries
and the implementation of new materials make immunosensors highly sensitive and ca-
pable of detecting toxins in very low concentrations. At the same time, these devices are
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typically inexpensive, small, are readily integrated into portable or even wearable electron-
ics, and perform point-of-care tests. The currently commercialized immunosensors are fully
applicable. The newly developed ones will further improve possibilities for toxin assay.
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