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Abstract: Sleep is an essential physiological activity, accounting for about one-third of our lives,
which significantly impacts our memory, mood, health, and children’s growth. Especially after
the COVID-19 epidemic, sleep health issues have attracted more attention. In recent years, with
the development of wearable electronic devices, there have been more and more studies, products,
or solutions related to sleep monitoring. Many mature technologies, such as polysomnography,
have been applied to clinical practice. However, it is urgent to develop wearable or non-contacting
electronic devices suitable for household continuous sleep monitoring. This paper first introduces
the basic knowledge of sleep and the significance of sleep monitoring. Then, according to the types
of physiological signals monitored, this paper describes the research progress of bioelectrical signals,
biomechanical signals, and biochemical signals used for sleep monitoring. However, it is not ideal to
monitor the sleep quality for the whole night based on only one signal. Therefore, this paper reviews
the research on multi-signal monitoring and introduces systematic sleep monitoring schemes. Finally,
a conclusion and discussion of sleep monitoring are presented to propose potential future directions
and prospects for sleep monitoring.
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1. Introduction
1.1. Sleep

Sleep takes up about one-third of our lives. As shown in Figure 1, the COVID-19
outbreak has affected people’s sleep in many ways [1–5]. In the wake of the COVID-19
outbreak, it has been reported that many people’s sleep duration has increased, but at the
same time, the sleep quality has declined, and the sleep time has changed [1]. Statistics
have shown that 18.2% of people have poor sleep quality [2]. There was a general increase
in the impact of sleep deficits and mental health burdens on healthcare workers. Sleep
deprivation has increased prevalence in patients with acute and long-term COVID-19.
Dreams under the epidemic [6] and post-vaccine effects [4] also impact sleep.

We should pay more attention to how people can achieve good quality sleep, including
restful sleep, no daytime sleepiness, and adequate objective sleep depth [7]. Sleep duration
and quality are the core indicators to evaluate whether a person has healthy sleep. Where
sleep duration is easier to measure, evaluating sleep quality needs to find an easier metric.
The microstructural sleep analysis of the cyclic alternating pattern may be related to self-
reported sleep quality, that is, the measurement of the total duration of sleep and the
analysis of sleep cycles are normally the most important for analyzing sleep quality (this
will be specified in Section 2.2) [8].
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Figure 1. Changes in (a) Pittsburg Sleep Quality Index (PSQI) total score, (b) time in bed, (c) bedtime, 
and (d) wake time as a function of the presence of the lockdown and the status (worker or student) 
of the participants [9]. Reproduced with permission, 2020 European Sleep Research. 

1.2. Sleep Problems 
Inadequate, irregular, or poor-quality sleep is common in modern society. Factors 

contributing to sleep deprivation include occupation, social demands, mental illness, 
physical illness, sleep disorders, race, age, marital status, gender, and hospitalization 
[10,11]. Sleep deprivation or sleep disorders can lead to low cognition, poor alertness, poor 
mood, cardiovascular disease, diabetes, metabolic and immune disorders, and even death 
[12,13]. 

For particular groups, sleep problems also have their own unique manifestations. 
Adolescents tend to sleep late, wake up early during school days, and catch up on sleep 
on weekends [14], leading to differences in their sleep on weekdays and days off [14,15]. 
Some older adults also experience sleep disturbances because the circadian system and 
sleep balance mechanisms become less robust with normal aging [16]. Finally, women 
with severe premenstrual syndrome (PMS) have poorer sleep quality, which may be re-
lated to altered melatonin rhythms [17]. There are also a variety of sleep disorders that 
may affect patients’ quality of life, such as obstructive sleep apnea, chronic insomnia, nar-
colepsy, delayed sleep–wake phase disorder, and Kleine–Levin syndrome [3]. 

For people with neurological and metabolic disorders, sleep quality is critical to 
health and even life. A classic example is people with depression. Antidepressant medi-
cations may affect sleep structure. Persistent sleep problems can, in turn, increase depres-
sion relapse or increased drug dependence and even potentially cause suicide in patients 
[18,19]. Attention to sleep problems can help determine the best medication regimen for 
depressed patients. In addition, for pregnant women, clinical pregnancy and live birth 
have occurred in 35% of women with sleep-disordered breathing (SDB) compared to 58% 
of women without SDB [20]. Sleep impairment is also a common comorbid and debilitat-
ing symptom for persons with opioid use disorder (OUD). Research into underlying mecha-
nisms and efficacious treatment interventions for OUD-related sleep problems requires both 
precise and physiologic measurements of sleep-related outcomes and impairment [21]. 

1.3. Summary 
Sleep is a complex physiological behavior, and the physiological signals and sensing 

techniques associated with sleep are diverse. Sleep problems are very common in the cur-
rent society. Sleep monitoring technology is also very rich. However, at present, the most 
accurate monitoring system is for clinical use (in Section 2.1), which is difficult to use in 

Figure 1. Changes in (a) Pittsburg Sleep Quality Index (PSQI) total score, (b) time in bed, (c) bedtime,
and (d) wake time as a function of the presence of the lockdown and the status (worker or student) of
the participants [9]. Reproduced with permission, 2020 European Sleep Research.

1.2. Sleep Problems

Inadequate, irregular, or poor-quality sleep is common in modern society. Factors
contributing to sleep deprivation include occupation, social demands, mental illness,
physical illness, sleep disorders, race, age, marital status, gender, and hospitalization [10,11].
Sleep deprivation or sleep disorders can lead to low cognition, poor alertness, poor mood,
cardiovascular disease, diabetes, metabolic and immune disorders, and even death [12,13].

For particular groups, sleep problems also have their own unique manifestations.
Adolescents tend to sleep late, wake up early during school days, and catch up on sleep
on weekends [14], leading to differences in their sleep on weekdays and days off [14,15].
Some older adults also experience sleep disturbances because the circadian system and
sleep balance mechanisms become less robust with normal aging [16]. Finally, women with
severe premenstrual syndrome (PMS) have poorer sleep quality, which may be related
to altered melatonin rhythms [17]. There are also a variety of sleep disorders that may
affect patients’ quality of life, such as obstructive sleep apnea, chronic insomnia, narcolepsy,
delayed sleep–wake phase disorder, and Kleine–Levin syndrome [3].

For people with neurological and metabolic disorders, sleep quality is critical to health
and even life. A classic example is people with depression. Antidepressant medications
may affect sleep structure. Persistent sleep problems can, in turn, increase depression
relapse or increased drug dependence and even potentially cause suicide in patients [18,19].
Attention to sleep problems can help determine the best medication regimen for depressed
patients. In addition, for pregnant women, clinical pregnancy and live birth have occurred
in 35% of women with sleep-disordered breathing (SDB) compared to 58% of women
without SDB [20]. Sleep impairment is also a common comorbid and debilitating symptom
for persons with opioid use disorder (OUD). Research into underlying mechanisms and
efficacious treatment interventions for OUD-related sleep problems requires both precise
and physiologic measurements of sleep-related outcomes and impairment [21].

1.3. Summary

Sleep is a complex physiological behavior, and the physiological signals and sensing
techniques associated with sleep are diverse. Sleep problems are very common in the
current society. Sleep monitoring technology is also very rich. However, at present, the
most accurate monitoring system is for clinical use (in Section 2.1), which is difficult to
use in daily life. There is a lot of research space for the technology that allows people
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to detect long-term sleep at home. This article will start with a brief introduction to
professional polysomnography and its limitations. The main part focuses more on how
various physiological signals can be monitored in the home. For monitoring that cannot
be domesticated at the moment but is of great value, brief introductions and outlook are
provided (mainly in Sections 3.4, 4.7 and 5).

Section 2 introduces the standard clinical sleep monitoring technique, followed by the
main focus of sleep monitoring: sleep cycles and sleep disorders. Sections 3–5 specifically
summarize the work related to sleep monitoring. In this paper, we classify the relevant
studies into three chapters based on the type of physiological signals collected. Sections 3–5
introduce bioelectrical, biomechanical, and biochemical signal monitoring, respectively.
The classification is based on the type of signal generated by the body rather than the
sensor output. For example, strain gauges are classified as biomechanical signal monitoring
because they convert the body’s strain into an electrical signal. Optical sensors, which
analyze blood flow rate by detecting reflected light, are also classified as biomechanical
signal monitoring; using the same optical sensors to detect oxygen levels in the blood is
classified as biochemical signal monitoring. Multi-signal monitoring is summarized in
Section 6. Section 7 provides conclusions and discussion.

2. Sleep Monitoring
2.1. Polysomnography

At present, the technology of sleep monitoring in the clinic is mature and abundant.
A sleep monitoring technology that combines a variety of common sensing methods is
called polysomnography (PSG). Standard PSG includes an electroencephalogram (EEG),
electrocardiography (ECG), electrooculogram (EOG), and recordings of airflow, respiratory
effort, oxygen saturation, and limb electromyography (EMG) [22]. These signals are
collected and recorded simultaneously. PSG can detect the occurrence of sleep apnea (SA)
or performing sleep stages (Figure 2b,c) [23]. PSG is widely used in hospitals for sleep
monitoring. For example, in the intensive care unit (ICU), where special care of the patient
is required, very comprehensive monitoring is performed. Methods for assessing and
monitoring sleep in the ICU include polysomnography, bispectral indices, behavior charts,
nursing assessments, and patient questionnaires [24]. However, technology that allows for
long-term sleep detection at home is still necessary. This is for four main reasons.

First, autonomic adaptation processes within the central nervous system are signif-
icantly vulnerable when subjects sleep in a sleep laboratory [25]. The test results in the
laboratory may not be representative of the state of everyday life. Since it is not convenient
for home use, and people are not conscious during sleep, they may not be aware that they
are suffering from sleep-related diseases in time. Obstructive sleep apnea (OSA) affects
more than 900 million adults globally and can create serious health complications when
untreated, while 80% of cases remain undiagnosed [26].

Second, sleep activity is inherently closely related to daytime life and a person’s
overall level of health. So, it is not related only to the hospital but to their bedrooms
and to their lives in general. Scientists have proven that there is a negative correlation
between the number of steps taken for exercise and the onset of sleep apnea. So, sleep
monitoring should be part of a complete, daily health test to help most people improve
their sleep [27–29]. Figure 2a demonstrates the current use of polysomnography, which is
not convenient in-home conditions. In the future, well-designed assays using new sleep
measures or multimodal mobile wearable devices to assess the three domains of sleep
and performance (objective sleep physiology, objective sleep quality, and subjective sleep
quality) are needed to assess sleep status better and help people to improve their sleep.

Third, patients with poorer socioeconomic status may have lower odds of receiving
good treatment due to cost and time occupation. Low socioeconomic status and its indi-
cators (income, education, occupation, and employment) negatively correlate with PSG
parameters [30]. Disappointingly, existing home-available sleep monitoring techniques
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yield sleep quality evaluations that do not correlate well with the subjective sleep perception
of the user [31].
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Figure 2. (a) The use of PSG [32,33]. Reproduced under the terms of the CC-BY Creative Commons
Attribution License, Copyright 2022 by the authors, published by FRONTIERS MEDIA SA. (b) A home
PSG that divides the sleep stages by monitoring several pieces of physiological information. Heart
rate, respiratory rate, and movement are recorded and compared with the sleep cycle of a professional
PSG [32,34]. Reproduced under the terms of the CC-BY Creative Commons Attribution License,
Copyright 2022 by the authors, published by MDPI. (c) The principle of advanced polysomnography
for sleep detection. Multichannel signals in PSG, after feature extraction, are analyzed using a
machine-learning trained model. Sleep stage classification is performed [35]. Reproduced under the
terms of the CC-BY Creative Commons Attribution License, Copyright 2022 by the authors, published
by MDPI.

Finally, nighttime is when many sudden illnesses, such as sudden death, occur. Sudden
cardiac death and epilepsy are common causes of sudden death, and most of these sudden
deaths occur at rest or during sleep, even in younger age groups [36,37]. OSA is a common
sleep breathing disorder. It causes nocturnal hypoxemia, sleep rhythm disorders, etc. OSA
is associated with increased cardiovascular and cerebrovascular morbidity and mortality,
including sudden cardiac death (SCD) [38,39]. Real-time monitoring is important for
preventing sudden cardiac death during sleep.

2.2. Sleep Cycle

Human sleep is a complex physiological behavior that is complicated to evaluate
comprehensively. However, a common evaluation criterion is whether a night’s sleep is
characterized by multiple complete and healthy sleep cycles.

Human consciousness can be divided into three states: wakefulness, non-rapid eye
movement (NREM or non-REM) sleep (NREMS or non-REMS), and rapid eye movement
(REM) sleep (REMS) [40]. NREMS can be further divided into three or four different stages.
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These stages alternate throughout the night, a phenomenon known as the sleep cycle. A
cycle is roughly 2–3 h (Figure 3) [41]. Sleep with several complete sleep cycles is healthy.
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The wakefulness period is the first stage of sleep when the person is still conscious.
The EEG is a low-amplitude mixed-frequency signal with relatively high muscle tone, and
the predominant EEG frequency is the alpha rhythm in the wakefulness period [40]. The
eyes may move in response to the person’s consciousness.

When the alpha wave disappears, the person enters NREM sleep, in which the eye
moves more slowly. This stage can be further subdivided into three stages according to
the depth of sleep. The first one is when the person just enters the sleep state from the
waking state when the sleep is very light and can be easily awakened. The second one is the
longest and takes up about half of a person’s total sleep time. The third one is the deepest
sleep, which has a large number of low-frequency delta waves in the brain waves [43].
This standard was published by the American Academy of Sleep Medicine (AASM) in
2007. The R&K criteria, widely used before that, was proposed in 1968 [44]. In the latter,
using the slow wave percentage as a criterion, the stages of deep sleep are further split into
S3 (20–50%) and S4 (50%). The difference can be clearly seen in the EEG images, so this
classification method is still followed in many studies (in Figure 4) [42].

In the monitoring of the sleep cycle, REM is a very important stage. It accounts for
20–25% of nighttime sleep in healthy adults [45]. During this sleep stage, the brain is so
excited that it is difficult to distinguish the EEG from waking hours while the muscles are
most relaxed. This is why REM sleep is also called “paradoxical sleep” [43].

REM is considered to be the most unstable period of respiratory and cardiac sleep.
Patients with diaphragmatic dysfunction may be particularly at risk due to the reduced tone
of the accessory respiratory muscles. In addition, almost all antidepressants inhibit REM
sleep [46]. The suppression of REM sleep in depressed patients may be one of the reasons
for their poor sleep quality. A significant coupling of REM sleep cycles was observed when
couples slept in the same bed. REM sleep may contain feedback to the surrounding envi-
ronment [47]. Therefore, it is of great significance to monitor the physiological information
during REM sleep.
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The technique of performing the classification of sleep stages in clinical practice is
well established. Awakening is with high muscle tone, targeted eye movements, and
activated cerebral cortex. Non-REM sleep is characterized by moderate muscle tone, no
eye movements, and slow EEG waves. REM sleep is characterized by low muscle tone, eye
movements, and active cerebral cortex [43]. Thus, polysomnography is the standard gold
method for measuring sleep cycles, but it is not convenient. As a result, the vast majority of
patients do not receive effective diagnosis and treatment [48].

2.3. Sleep Disorders

The sleep disorders described in Section 1.2 and the sleep cycle abnormalities de-
scribed in Section 2.2 are both problems with poor quality sleep itself. In addition to these,
some sleep problems have additional manifestations. These are also important targets for
sleep monitoring.

The first one is obstructive sleep apnea, which is a common sleep disorder. It is a
blockage of the upper airway due to problems with sleep position, tongue position, etc. It
may lead to problems such as low blood oxygen and interrupted sleep. Approximately
34% and 17% of middle-aged men and women, respectively, meet the diagnostic criteria
for OSA. In contrast, there is a 40–80% prevalence among patients with cardiovascular
disease [49]. OSA is one of the most regarded sleep disorders in sleep monitoring.

The second type is involuntary abnormal physical behavior during sleep. Restless legs
syndrome is also one of the important sleep disorder disorders. About 10% of adults have
experienced this condition that causes sleep disruption [50–52]. This abnormal behavior can
affect a person’s quality of sleep and quality of life. Both OSA and restless legs syndrome
can be monitored from multiple perspectives. Since there are different detection angles,
such as EMG signal, motion, and heart rate (HR), they will appear several times in the text.

Sleep grinding, snoring, and nocturnal erectile dysfunction are also common disorders.
However, because there are biomechanical signals that can correspond well, there are
separate subsections for each in Section 4.

3. Bioelectrical Signal Monitoring

In polysomnography, multi-channel EEG signal detection and ECG signal detection
are often clinically needed [23,53–55]. The simultaneous detection of eye movements with
electrooculographic signals is important for monitoring REM sleep. The activity of the
human trunk and extremities is also commonly measured by EMG signals. Bioelectric
signals can be used for the monitoring of numerous physiological phenomena, and the
measurement of bioelectric signals can be achieved by applying electrodes to the skin’s
surface as shown in Figure 4 [56–58]. This non-invasive, inexpensive, and pervasive
detection method has achieved large-scale applications.

However, the wires connected during bioelectric signal acquisition may cause a lot
of inconvenience to the person. The need to ensure the effective fit of the electrodes also
limits their use in daily life [59]. In recent years, new technologies such as wearable devices,
electronic skin, and conductive fabrics have made wireless or even senseless bioelectric
signal measurement possible [60,61]. The design at the device, circuit, and algorithm levels
has allowed the measurement of wearable bioelectrical signals to be free from problems
such as motion artifacts, facilitating the daily use of lay people and greatly expanding its
application prospects [62]. In addition to the advancement of measurement technology,
the development of theoretical research has also allowed more room for the application
of bioelectrical signal measurement in sleep monitoring. More electrical signals related to
sleep monitoring, such as electroretinography (ERG) [63], are being reported.

This section is divided into a total of six subsections. The first four subsections intro-
duce EEG, ECG, EMG (including EOG), and ERG separately, focusing on the significance
and effect of monitoring. Figure 5 illustrates several typical schematic diagrams of bioelec-
trical signal detection. The electrode techniques used in several monitoring modalities will
be summarized in Section 3.6. Section 3.5 is for passive bioelectrical detection.
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Figure 5. (a) Six EEG electrodes, two EOG electrodes, two chin EMG electrodes, two mastoidal
reference electrodes, and bipolar EMG electrodes placed on the masseter [56]. Reproduced with
permission, Copyright 2017 European Sleep Research Society. (b) Wearing of ECG [64]. RA and
LA electrode pairs are placed between 5th and 6th ribs to avoid muscle movement interference.
Reproduced under the terms of the CC-BY Creative Commons Attribution License, Copyright 2020 by
the authors, published by MDPI. (c) Fabric electrodes are designed to avoid clicking on the patch from
affecting the skin. The EEG sensor is fixed in the headband [65]. Reproduced under the terms of the
CC-BY Creative Commons Attribution License, Copyright 2012 by the authors, published by MDPI.
(d) EMG [66]. Reproduced with permission, Copyright 2018 International League Against Epilepsy.

3.1. Electroencephalography

EEG has long been an important part of sleep monitoring. The changes in brain waves
during the various stages of the sleep state have been described in Section 2.2, and this has
become a crucial item in sleep monitoring. Brain-wave characteristics are the gold standard
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for sleep cycle classification. The most accurate sleep staging analysis system is based on
EEG, the only single sensing modality capable of identifying all sleep stages [67].

The brain, as the most important nerve center in the body, has very distinct charac-
teristics during all stages of the sleep cycle and has good results as a sleep monitoring
indicator. As shown in Figure 6, the performance of brain waves varies greatly from stage
to stage and between different genders [68–70], which is why the EEG has become the gold
standard for sleep cycle identification. EEG can reflect the effects of previous nights of sleep,
over-the-counter and prescription drugs, and even illicit drugs on brain activity during
sleep [71]. In 2006, Guilleminault et al. studied the effects of different levels of sound
stimulation on human brain waves during sleep and on the performance of sleepiness
the next day, examining the analysis of the quality of disturbed sleep at the level of brain
waves [72]. In addition to this, many studies have been reported on related detection
devices due to the importance of EEG signals in the diagnosis of Alzheimer’s disease,
Parkinson’s disease, epilepsy, etc. [73,74].
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International Federation of Clinical Neurophysiology, Published by Elsevier B.V.



Biosensors 2023, 13, 395 9 of 41

Miniaturization of traditional electrodes, or home use, allows for wearable EEG
monitoring, but the principle remains that electrodes attached to the skin’s surface can
pick up electrical signals of neural activity [56]. With the arrival of the new coronary
epidemic, many people are less willing to go to the hospital, and home healthcare has
become a healthcare trend. In 2020, Arnal et al. fabricated EEG sensors integrated into a
headband. The mean percentage error of the EEG signal obtained with PSG monitoring
α was 15 ± 3.5%, β was 16 ± 4.3%, λ was 16 ± 6.1%, and theta frequency during sleep
was 10 ± 1.4% [75]. In 2021, Hsieh et al. developed a real-time EEG acquisition system
for home use and used a deep-learning model that allowed the average absolute error of
the wearable device to measure sleep efficiency to be reduced to 1.68% [76]. Studies using
machine-learning algorithms for brain-wave recognition and analysis based on the same
sensors are beyond the focus of this paper, but these studies are a good example of the
significance of brain-wave sensors [77].

EEG is the most demanding for signal quality in bioelectrical signal sensing. Very
often, there is a balance between wearing comfort and signal quality. Conventional EEG
uses patch electrodes that have good signal quality but are not breathable and may cause
skin swelling (see Figure 5c). To minimize the effects of contact resistance, Li et al. designed
an array of microneedles that can be pierced into the skin and prepared the apparatus
on a flexible substrate. The electrodes have record low skin–electrode contact resistance,
1/250th that of conventional electrodes.

From another improvement perspective, many researchers are exploring more user-
friendly forms of wearable sensors. In 2019, Shustak et al. prepared soft, non-gel flexible
electrodes with printed electrode technology to improve the comfort of brain-wave detec-
tion [61]. In 2017, Nakamura et al. designed the acquisition of brain-wave signals in the ear,
which also achieved good results compared to the acquisition of brain-wave signals in the
scalp patch [78]. In 2021, da Silva et al. designed flexible printed electrode sensors in the
ear using graphene electrodes and combined them with a smartphone for recording and
analysis [79].

Finally, in recent years, implantable brain–computer interfaces have enabled stable
monitoring of signals [80–83]. Although its main application area is to assist people with
motor impairments to control assistive devices [80,81], sensors on EEG signals may further
advance the development of sleep monitoring technology in the future. Topchiy et al.
studied in vivo implanted electrodes to monitor sleep in mice. They experimented with
sleep monitoring with implanted electrodes and telemetry and found they could classify
sleep stages more effectively than in vitro monitoring devices [84]. As the technology of
implanted electrodes matures, this may also be a future technology that can strike a good
balance between contact resistance and non-sensory use.

3.2. Electrocardiography

ECG is an important physiological examination closely related to sleep cycles and sleep
apnea [85]. As shown in Figure 7a, the periodic movement of the heart will show different
electrical signals and form regular ECG curves [85]. In hospitals, ECGs are collected
through specialized equipment with the help of professional staff, but self-monitoring
by patients is hardly up to this standard [86]. The fit of wearable device contacts is
also a common problem. For this reason, many studies have expanded the relevant
algorithms and databases so that testing devices can be adapted to self-testing using
devices such as wearables to improve signal-to-noise ratios outside the hospital, exclude
motion artifacts [87,88], and more accurately determine the occurrence of phenomena such
as arrhythmias [89].
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Figure 7. (a) The different phases of muscle movement during the heartbeat produce different parts
of the ECG curve. The depolarization and repolarization of the heart for the generation of a P-wave,
QRS complex, and T-wave [85]. Reproduced under the terms of the CC-BY Creative Commons
Attribution License, Copyright 2022 by the authors, published by MDPI. (b) A flexible skin electrode
sensor. Monitoring ECG at the wrist [90]. Reproduced under the Creative Commons Attribution 4.0
International License, Copyright 2022 by the authors, published by Nature Portfolio.

Wearable ECG allows the detection of sleep apnea. The classification accuracy obtained
from the ECG belt has a sensitivity of 70% and a specificity of 74%, while the patched ECG
has a sensitivity of 88% [91]. Single-lead ECG, worn on the abdomen, can also be good for
detecting sleep apnea index and abnormal breathing [92]. In 2019, Hammour et al. studied
in-ear ECG. The delay was reduced by up to 88% [93].

The electrodes can be kept naturally close to the skin compared to watch-type and
headphone-type ECG measurement devices. ECGs on the torso often require patch elec-
trodes, and many electrode materials can be irritating to the body. ECG sensing can be
integrated into clothing and localized to locations with good signal-to-noise ratios [94]
(Figure 7b).

Compared to EEG, ECG requires less signal quality, so many studies can use non-
wearable, skin-tight electrodes. Lim et al. arranged electrodes on a mattress [95]. Won
Kyu Lee et al. integrated flexible electrodes into the mattress to collect ECG signals from
the skin’s surface after a person lies on it [62]. This avoids the need to wear a dedicated
device and is well-suited for sleep scenarios. In 2020, Klum et al. used multimodal ECG
and analyzed the effects of different sleeping positions [96]. Left ventricular ejection time
and pre-ejection period estimation errors were 10% and 21%.

3.3. Electromyography and Electrooculography

EMG can conveniently reflect human muscles’ tension and limb activity and assist
in measuring sleep cycles. While the monitoring of limb movements is challenged by
mechanical sensors or camera sensing (in Section 3), EMG has an irreplaceable role in many
fields. For example, it is difficult to monitor eye movements outside of the body because
the eyelids obscure them in the human sleep state; nocturnal muscle tensions, such as
changes in neck muscle tone, do not manifest as obvious changes in limb position. On the
other hand, such muscle behaviors have electrical signals that can penetrate the tissues and
be measured on the skin’s surface with good accuracy [97,98]. A variety of new methods
of collecting electrical signals on the skin’s surface in Figure 8 enable convenient daily
measurements of EMG.
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Figure 8. Method for collecting electrical signals on the skin’s surface: (a) gold electronic tattoo [99].
Reproduced under the terms of the CC-BY Creative Commons Attribution License, Copyright 2023 by
the authors, published by MDPI. (b) Multi-layer electronic tattoo [100]. Reproduced under the terms
of the CC-BY Creative Commons Attribution License, Copyright 2020 by the authors, published by
Springer Nature. (c) Conductive fabrics doped with graphene [101]. Reproduced under the terms
of the CC-BY Creative Commons Attribution License, Copyright 2022 American Chemical Society.
(d) Microneedle array electrodes on a flexible substrate [102]. Reproduced under Creative Commons
Attribution 4.0 International License, Copyright 2022 by the authors, published by Shanghai Jiao
Tong University Press.

In 2007, Magosso et al. used electrooculography to assess the sleep cycle, which
proved to be very reliable, addressing the high labor cost and inconsistency of previous
manual scoring [103]. Eye movement is tracked by several muscles. Skin electrodes affixed
to the corners of the eye can pick up electrical signals and thus determine whether eye
movement is occurring. Beach et al. achieved comfortable wear of eye movement detection
devices by integrating EOG sensors in an eye patch through fabric sensor electrodes made
of nylon and graphene. Though, with EOG alone, the accuracy of sleep time calculation
is only about 70% [104]. However, EOG can be included in the sleep cycle analysis as an
important item in sleep polysomnography.

Iranzo et al. used polysomnography to analyze EMG analysis of REM sleep in patients
with REM sleep behavior disorders. These patients need more accurate monitoring of their
REM sleep. EMG of the cardiac, flexor superficial, and extensor profundus muscles can help
in the identification of REM [105]. Maeda used single-channel EMG, which also enabled
sleep mydriasis detection with 100% sensitivity and specificity under some conditions,
demonstrating that single-channel EMG signals can also be of good monitoring value [106].

In 2018, Beniczky et al. used wearable EMG signals to capture the evolution of TCS-
related signals on the human surface for the detection of muscle rigidity and epilepsy
occurring during sleep [66]. In 2022, Yeung et al. completed the diagnosis of obstructive
sleep through muscle electrical signals in the tongue and epiglottis to epiglottal pressure
and nasal airflow and then through EMG at the level of muscle movement [107]. The
diagnosis of apnea was made by Rebelo after collecting the EMG signals generated by the
apical muscles of the tongue and generating electrical signals to stimulate the apical muscles
of the tongue to terminate the respiratory obstruction when sleep apnea was detected [108].
In 2018, Yamaguchi et al. designed a wearable miniature EMG system weighing 9 g,
including the battery, to assess the occurrence of nocturnal teeth grinding [109] (sleep
bruxism is described in detail in Section 3.3). In 2019, Prasad et al. connected the EMG
device to a smartphone and used it to assist in monitoring teething behavior [110].
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3.4. Electroretinography

Among the various types of electrical signals, the study of retinal electrical signals was
the latest to begin and has the least application in sleep monitoring. The retinal electrical
signal expressed the perception of light by the retina and was first used for the diagnosis of
eye diseases [111].

With the development of basic research demonstrating the influence of the light
environment on human circadian rhythms, the response of the human nervous system
to light became an item in sleep monitoring. In 1994, Galambos et al. found that ERG
amplitude during slow-wave sleep was more than twice as high as during wakefulness.
Moreover, ERG patterns during REM sleep were different from those during slow-wave
sleep. Galambos confirmed that ERG signals are also associated with the sleep cycle [112].
In 2016, Liguori et al. demonstrated that ERGs could differ in patients with obstructive
sleep apnea [63]. However, the relationship between fundus disease and sleep needs to be
further explored [113] (Figure 9c).
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Figure 9. (a) Schematic diagram of ERG sensing [114]. The retina produces an electrical signal when
light enters the human eye. A wire needs to be introduced to the surface of the eye to read the signal.
Reproduced under the terms of the CC-BY Creative Commons Attribution License, Copyright 2021 by
the authors, published by Springer Nature. (b) Conventional ERG monitoring requires leads from the
surface of the eye, making it difficult to use for long periods of time. The new sensing method allows
ERG signals to be collected on the skin around the eye, and all-night monitoring is possible [115].
Reproduced under the CC-BY-NC License, Copyright 2021 by the Korean Ophthalmological Society,
published by Korean Ophthalmological Society. (c) A skin electrode was placed on the lower lid
of each eye. The contralateral eye was not covered. A gold-cup electrode was placed on the right
earlobe as the ground electrode [116]. Reproduced under the Creative Commons Attribution License,
Copyright 2023 by the author(s), published by Public Library Science.

Since ERG often requires electrodes placed on the inner eyelid (Figure 9a), it is more
difficult and device-demanding to use than tests such as EOG, which can be applied to
the skin. Research is also underway to attach electrodes to the skin around the eye to
monitor ERG [115]. However, the signal quality is still not as good as the intraocular
type. In addition, the need for ERG signals in sleep monitoring needs to be supported by
more studies.

3.5. Passive Bioelectricity Detection

The electrical signals generated by the nervous system during activity are voltages
actively generated by the body. The four previous vignettes are based on this. However,
the human body can also be considered as a load consisting of resistance and capacitance,
and passive bioelectrical detection is achieved by applying voltage and an electric field.
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Blood pressure (BP) causes changes in the diameter of the blood vessels, which in
turn affects the impedance of the tissues. Kireev et al. used graphene electronic skin
to detect the impedance between electrodes at different locations on the skin [117]. The
signal of impedance change can be detected as blood flow pulses move through the blood
vessels. BP was calculated with an accuracy of 0.2 ± 4.5 mm Hg for diastolic pressures and
0.2 ± 5.8 mm Hg for systolic pressures.

Changes in human posture and position in the external electric field will lead to
different polarization responses. By arranging the Wi-Fi device in the room after the
placement design, the receiver can detect the human body’s activities. Epilepsy detection
with 100% sensitivity is achieved without wearing a human device [118]. This method can
also achieve 92% accuracy in the recognition of rhythmic movement disorders [119]. The
use of multi-antenna arrays allows for the acquisition of richer electric field information.
Yu et al. achieved 81.8% classification of sleep stages and breath detection with an average
error of 0.23 bpm based on a multi-antenna Wi-Fi receiver [120].

In these two examples, mechanical changes in the human body cause changes in
electrical properties. They are placed in Section 2, as the sensor collects electrical signals
directly. More research will be reported in Section 3 on BP and motion.

3.6. Summary

There are similarities in the techniques used to acquire bioelectric signals on the skin’s
surface. For example, electrodes used to monitor ECG might also be used to monitor EMG.
However, different optimizations are needed in specific daily monitoring contexts.

In addition to the sensor itself, the monitoring object’s different back-end algorithm
also greatly impacts the detection accuracy. For example, it is unfair to compare the accuracy
of one sensor measuring EEG for sleep stage classification with the accuracy of another
sensor measuring ECG for heart rate analysis. ECG has a strong regularity and can still
measure heart rate with relative ease in the presence of noise interference. However, EEG is
inherently more non-smooth and random, and its detection requires a higher signal-to-noise
ratio. To focus on the effect of the sensor itself, the signal correlation of EEG acquisition was
compared (with the standard Ag/AgCl wet electrode used clinically as a reference) [121].

Therefore, it is possible to compare the sensor electrodes that have appeared so far
in Table 1.

Table 1. Table of electrodes for bioelectrical monitoring.

Type Contact Resistance Electrode Size Correlation Feature Ref.

Wet/semi-dry
Electrode 1.5–130 kΩ mm–cm 60–100% Most commonly used

in clinical practice. [56,75,121]

Dry electrode 2.5 kΩ–5 MΩ mm–cm 60–98% Easiest to use. [121,122]

Conductive fabrics 3.4 kΩ–34 kΩ cm–dm 50–95.6%

The maximum contact
resistance min. The
same experience as

regular eye masks and
pillowcases.

[62,95,104,121,123]

Microneedle array 14.16–378.18 kΩ cm2 mm–cm 60–95%
Minimum contact

resistance of in vitro
electrodes.

[102,121]

Implantable
electrodes 100 Ω–34 kΩ µm /

Best signal quality.
Surgery is
required.

[80–83,124]

Contact lens
electrodes / mm–cm / Dedicated to ERG [114]



Biosensors 2023, 13, 395 14 of 41

4. Biomechanical Signal Monitoring

In the last section, electrical signals were reviewed. However, many human physiolog-
ical behaviors and phenomena cannot be fully monitored by electrical signals at present, so
the direct detection of mechanical signals in the human body is of irreplaceable significance.

In the absence of integrated dedicated health sensors, some smartphones determine
the length of time a person sleeps based on the amount of time they are stationary [125].
This is one of the simplest ways to analyze sleep based on behavioral science, which is an
important sleep monitoring item [126]. Nocturnal motor and nonmotor symptoms and
other comorbid sleep disorders can disrupt sleep [127]. Diseases related to limb movement,
such as Parkinson’s disease, are closely linked to sleep. This is a very primitive way of
recording, but there is a big difference in how people behave during sleep and when awake.

This section focuses on sensing sleep-related mechanical signals, including posture,
motion, acceleration, respiratory airflow, blood flow, etc.

4.1. Motion Detection

Limb movement is an important concomitant behavior during sleep; many people
experience vigorous limb movement. Based on motion sensors on the wrist, Chun et al.
monitored how often people with dermatitis may itch at night, demonstrating the effects
of pruritus on sleep [128]. In addition to the common sleep onset tests and sleep stage
divisions, some sleep disorders are also reflected in body movements. The most typical one
is restless legs syndrome. In 2022, Brooks et al. used conductive fabric to form a capaci-
tance with a person’s body, and the magnitude of this virtual capacitance changed after a
change in the person’s posture, which in turn was detected. The potential improvement in
diagnostic accuracy for assessing sleep disturbances associated with restless legs syndrome
using this method can be estimated at approximately 68.1%, far exceeding the diagnosis of
measuring anterior tibial EMG signals [129].

Wristband motion sensors are the most common form of sleep monitoring. Accelerom-
eters based on a micro-electro-mechanical system (MEMS) can be combined with everyday
wearable items such as watches for wearability (Figure 10a,b). Nomoto et al. analyzed the
wearer’s sleep quality and tracked various types of phenomena that affect sleep quality
with a wristwatch-based motion sensor worn for a long period [130]. In 2019, Yeom et al.
integrated sensors on watches that can analyze sleep apnea and send results in real time to
a cell phone [131]. In 2022, Katori et al. analyzed over 100,000 data sets and analyzed the
classification of 16 sleep problems [132].
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L6) is displaced by the acceleration [133]. Reproduced under the terms of the CC-BY Creative Com-
mons Attribution License, Copyright 2019 by the authors, published by MDPI. (b) The displacement
of the object block brings about a change in capacitance [134]. Reproduced under the terms of the
CC-BY Creative Commons Attribution License, Copyright 2020 by the authors, published by IOP
Publishing Ltd. (c) A pressure sensor made of a multi-layer structure monitors the changes in received
pressure [34]. Information such as human movement and heartbeat can be resolved. Reproduced
under the terms of the CC-BY License, Copyright 2022 by the authors, published by MDPI.

Although there are multiple joints between the wrist and torso in sleep staging and
the human body, restoring the overall body posture with the wrist is difficult. In 2019,
Trevenen et al. attempted to improve the accuracy of recognition with machine-learning
algorithms [135]. In the same year, Walch et al. also attempted to analyze raw acceleration
data from Apple Watch to analyze sleep, but the specificity was not satisfactory [136].
In 2022, Ode et al. achieved relatively high sensitivity and specificity by designing an
acceleration-based long-term sleep–wake cycle classification and estimation algorithm
(ACCEL) based on simple arm acceleration sensor results [137]. It shows that recognition
rates can be improved by algorithms when sensors can provide limited information, but it is
not feasible to compensate only by algorithms hoping to achieve the effect of more sensors.

In addition to the wrist, the chest is also a common location for placing accelerometers
to more effectively reflect the human torso’s motion and detect mechanical signals of
respiration and heartbeat (described in detail in Section 4.3). In 2017, Razjouyan et al.
also demonstrated that a single chest accelerometer for sleep analysis was closer to the
polysomnography results than a wrist sensor [138]. In 2021, Chen et al. built a detection
system with temporal memory using long- and short-term memory (LSTM) networks after
enriching the sensor data types and also achieved good results. The behavioral sensor on
the wrist was able to identify sleep data with 92% accuracy [139].

In addition to the two broad categories mentioned above, the types of sensors for
detecting posture and movement are actually very rich in various combinations [140]. Sun-
deram et al. incorporated MEMS accelerometers in a wearable detector for the head, which
aided the training set for partitioning different sleep stages and can potentially be used
for neuroprosthetic applications for movement disorders and seizures [141]. Yoshihi et al.
achieved a higher accuracy sleep stage analysis based on a single 3D accelerometer of the
head [142]. However, the accuracy for sleep stage recognition was only 74.6%. For REM
sleep, the accuracy was only 52.7%. Therefore, the wrist and torso are still ideal locations
for sensor placement.

When a person moves, vibrations are transmitted to the bedding. So, it is also common
to prevent mechanical sensors in bed sheets, pillows, and other locations (Figure 10c).
Umetani et al. integrated an IoT system in a comforter that can measure the person’s move-
ment and the bedding to improve sleep quality and prevent accidents during sleep [143].
Xin et al. used a flexible piezoelectric material, polyvinylidene fluoride, to create a flexible
piezoelectric film that was placed on a pillow to convert the human force on the pillow into
an electrical signal. These methods avoid the occlusion of the quilt in optical methods [144].
Xu et al. integrated a piezoelectric film in the mattress, using PVDF material, with a sensing
area of 0.114 m2 and a thickness of only 0.28 mm [145]. It can detect motion signals in a
large area and instantly alert the elderly in case of abnormal sleep.

4.2. Posture Detection

Sleep position also has a great impact on sleep quality. A person’s tongue may fall
under the influence of gravity when relaxed, obstructing the airway in some positions or un-
der specific conditions, which can lead to snoring or even sleep apnea. Since accelerometers
can sense the direction of gravity, many of the studies mentioned in the previous section
have detected motion along with pose (Figure 11b) [142]. In 2007, Kishimoto et al. placed
accelerometers on the user’s chest to accurately distinguish whether the user was in a
supine, prone, or lateral sleeping position compared to sensors on the wrist or lateral sleep-
ing position and could analyze the user’s sleep and wake times based on movement [87].
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In 2015, Heenam et al. used patch accelerometers and achieved an average agreement
of 99.16% for sleep position assessment [146]. Research on pose detection alone also has
important implications in Figure 11.
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Figure 11. (a) Camera images used to analyze sleep posture [5]. Reproduced under the terms of the
CC-BY Creative Commons Attribution License, Copyright 2019 by the authors, published by Inst
Electrical Electronics Engineers INC. (b) The acceleration sensor realizes pose analysis by detecting the
direction of gravity [147]. Reproduced under the terms of the CC-BY Creative Commons Attribution
License, Copyright 2021 by the authors, published by MDPI. (c) Stress sensor stuck to the position
vulnerable to pressure when sleeping [148]. Reproduced under the terms of the CC-BY Creative
Commons Attribution License, Copyright 2021 by the authors, published by Springer Nature.

An infrared camera is an ideal method to analyze human posture. An infrared camera
can record human posture without a visible light source, and infrared light has good
penetration. Insung et al. used an infrared camera to analyze the effect of sleeping posture
improvement on sleep apnea [149]. Cheung et al. used an infrared sensor to monitor the
movement of the sleeping elderly and alert the healthcare personnel in times when there is
bad activity [150]. Non-contact sleep monitoring based on infrared cameras differed from
sleep monitoring devices in the identification of sleep quality by only 4.7%. Infrared array
sensors under laboratory conditions are more than 95% accurate in sleep detection [151].
Using infrared sensors together with microwave sensors, the overall accuracy of sleep cycle
measurements can be as high as 98% [152].

Force sensors also have many roles in this area. As shown in Figure 11c, a pressure
sensor made of a multilayer piezoelectric structure can detect which part of the body is
touching the bed and subjected to body gravity [148]. In 2022, Zhang et al. prepared
resistive flexible angle sensors using metal foil foils, and the accuracy of flexible wearable
sleep posture monitoring devices exceeded 90% [153]. Zhou et al. also achieved sensing
of human posture through a bed sheet made of ultra-thin conductive fabric. The sensors
can divide the bed into a total of 60 zones and detect in which zones the body’s pressure is
located [154].
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4.3. Sleep Bruxism Detection

During sleep, 8% of the population has reported awareness of tooth grinding [155].
Sleep bruxism also represents the third most frequent parasomnia [155]. People in a state of
high mental tension and psychological stress may maintain an excited state of the occlusal
muscles at night and experience nocturnal teeth-grinding symptoms [155–158]. Subjects
with obstructive sleep apnea syndrome, loud snorers, subjects with moderate daytime
sleepiness, heavy alcohol drinkers, caffeine drinkers, and smokers are at higher risk of
reporting sleep bruxism [156]. In 2021, Lee et al. integrated sensors such as accelerometers
and gyroscopes in a jaw advancement device used to improve sleep apnea to help monitor
the occurrence of sleep apnea and teeth grinding and to improve the effectiveness of related
treatment devices [159].

Muscle electrical signals can show the activity of local muscles, but mechanical meth-
ods can more truly and directly detect the occlusion method of teeth, as shown in Figure 12.
D’Addona et al. measured stresses in the human mouth using a Wheatstone bridge to
detect changes in resistance and force output from a miniature strain gauge. When a person
undergoes nocturnal teeth grinding, the strain gauges are stressed. The resistance changes
and is amplified by the Wheatstone bridge into a voltage signal that can be collected [160].
In 2022, Coimbra et al. used light Bragg grating sensors, encapsulated in a PDMS, to
also make wearable pressure sensors that detect different signals from a person biting a
splint during an episode of teeth grinding [161]. In 2021, Jucevicius et al. used permanent
magnets and a triaxial magnetometer. The magnetic field generated by the permanent
magnets at the magnetometer changes when the spatial position relationship between
the mandible and maxilla changes, based on which the movement of the jaw joint can be
monitored [162]. In 2022, O’Hare et al. used pressure sensors to detect the deformation of
the occlusal muscles, which are smaller than myoelectric sensors that are smaller and more
accurate in the analysis of occlusal forces. The results of these works are difficult to achieve
with myoelectric signals and exemplify the need for mechanical sensors [163].
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4.4. Mechanical Breath Detection

In addition to the extreme case of sleep apnea, breathing rate and lung capacity
are also important physiological information. In 2003, Atanasov et al. found a strong
link between nasal cycles and sleep cycles. It is due to the regular circulation of nasal
airflow through the nostrils caused by nasal congestion and congestion. In REM sleep,
the nasal cycle is synchronized with the sleep cycle [165]. In 2006, Kohler et al. analyzed
the effects of different drugs on nocturnal breathing and sleep by detecting airflow and
nasal pressure in the right and left nasal passages with three sensors, respectively. Sleep
apnea is a common sleep-related disorder that poses a significant threat to the life and
health of patients [166]. There have been many studies to detect the occurrence of sleep
apnea by heart rate, blood oxygen, and electromyographic signals, which are described in
the corresponding subsection. However, the detection of respiratory airflow remains the
essential method. Since mechanical signals are important physiological indicators of the
respiratory system, relevant sensing is important for both sleep quality monitoring and
guidance of treatment [167].

Teichtahl et al. used thermistors and nasal pressure sensors to analyze whether humans
were breathing and to assess sleep apnea well [168]. In 2021, Moshizi et al. prepared nano-
complex airflow sensors by growing graphene nanosheets on the surface of PDMS with
good sensitivity and linearity [169]. NP thermistor is a common respiratory detection sensor.
The detection principle is that the air pressure in the nasal cavity and the temperature at
the nostril changes when a person is breathing. In 2018, Jiang et al. combined a respiratory
monitor with a motion sensor to more comprehensively screen for sleep apnea [170]. The
respiratory sensor designed by Vernon et al. takes advantage of the fact that changes in
temperature and humidity in the mouth and nose during human breathing affect the signal
of the acoustic surface wave sensor, as shown in Figure 13a [171]. Sleep apnea can be
captured sensitively.

In addition, breathing behavior can be reflected by detecting thoracic motion. In
2011, Dehkordi et al. obtained signals about breathing by fixing an acceleration sensor
on the sternum. It is also possible to correlate the sleeping position and screen for sleep
apnea [172]. Jortberg et al. fixed accelerometers on the chest and measured the respiratory
rate (RR) with an average error of 1.84 breaths per minute [173]. In 2020, Yuzer et al.
placed accelerometers on the diaphragm, which vibrate a motor on the wristband when
the respiratory movement of the diaphragm is detected to stop, stimulating the patient to
change the sleeping position until breathing resumes [174]. In 2021, Ghahjaverestan et al.
measured the range of motion of the abdominal and thoracic cavities with acceleration
and position sensors, respectively, to restore the respiratory signal more precisely [175].
Stubbe et al. fixed 12 markers on the user’s thorax, used an infrared camera to locate the
markers, and calculated the volume of the thorax, shown in Figure 13b [176]. This method
is known as optoelectronic plethysmography (OEP). The spirometry measured by this
method has an error of only 0.4% with the spirometer, and the mechanics sensor provides
richer information than the bioelectrical signal that can only measure respiratory rate.
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Figure 13. (a) Surface acoustic wave sensors [171]. Reproduced under the terms of the CC-BY Creative
Commons Attribution License, Copyright 2022 by the authors, published by AIP Publishing. (b) A
method for measuring thoracic volume using chest marker loci [176]. Reproduced under the terms
of the CC-BY Creative Commons Attribution License, Copyright 2022 by the authors, published by
Springer Nature.

4.5. Blood Flow Detection

BP and HR vary with circadian rhythms. Prolonged stress may lead to increased HR
during sleep [177]. Although heart rate information can also be obtained from ECG, ob-
taining heart rate in the scheme without bioelectrical sensing is still meaningful. Moreover,
continuous blood pressure detection, including sleep time, is relevant for diagnosing and
treating hypertension [178]. Blood pressure also rises at the end of obstructive episodes
in patients with sleep apnea, which is undoubtedly dangerous for patients with both ob-
structive sleep apnea and vascular disease such as hypertension [179]. In 2000, Dimsdale
et al. studied the effect of continuous positive airway pressure therapy on blood pressure
in patients with obstructive sleep apnea through nocturnal blood pressure monitoring.
The significance of nocturnal blood pressure monitoring was demonstrated [180]. How-
ever, with an automated device, early detection techniques were based on measuring the
patient’s blood pressure every 15 min. A traditional arm band balloon blood pressure
detection method was used. Such a method does not allow continuous monitoring, and the
sudden working of the air pump and the squeezed arm can affect the patient’s sleep quality.

In 2006, Kaniusas et al. used a magnetoelastic skin curvature sensor to measure carotid
blood pressure, enabling continuous blood pressure measurement at night. However,
this method has limited accuracy, with a correlation coefficient of less than 0.9 between
measured and reference values [181]. Such stress-based blood pressure sensors can cause
discomfort from local compression when worn for long periods, both in the fingers and in
the arm. Muscle movement and postural changes can alter the mechanical environment to
affect measurements [182]. A more non-sensitive blood pressure monitoring that people
can wear for long periods at night and does not interfere with their sleep quality is the only
truly usable technology for nighttime blood pressure monitoring.

Heart rate and blood flow sensing based on optical signals have the advantages of
being non-invasive and having low wearing requirements. Photodensitometry, a technique
widely used to monitor blood volume changes according to the Lambert–Beer law, is more
suitable for home use [183]. This can be used for heart rate monitoring, allowing sleep
staging. A type of blood volume sensor—a technology known as photoplethysmogra-
phy (PPG)—is also widely used [184]. From this, the heart rate and other physiological
parameters can be extracted to inform about user activity, fitness, sleep, and health, as
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shown in Figure 14. However, sleep staging based solely on heart rate measured by PPG
waves has a low classification accuracy of between 55% and 78%. Sleep staging com-
bining exercise and heart rate also has an accuracy of 78.2% and cannot replace sleep
polysomnography [185,186]. The recognition accuracy can be improved to more than
93% by machine-learning techniques such as data augmentation and convolutional neural
networks [187].
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Figure 14. (a) Graphical definition of fiducial points detected from photoplethysmogram (PPG),
velocity plethysmogram (VPG), and acceleration plethysmogram (APG) signals [188]. Reproduced
under the terms of the CC-BY Creative Commons Attribution License, Copyright 2022 by the authors,
published by MDPI. (b) Optical sensor for detecting blood flow in fingers [189]. Reproduced under
the terms of the CC-BY Creative Commons Attribution License, Copyright 2021 by the authors,
published by Springer Nature.

Although less accurate independently as a basis for sleep staging, several works
have reported the detection of blood flow under the skin at night by light sensing and
recording the time of pulse passage (PTT), which can restore blood pressure information
by biomechanical models. Blood pressure can be calculated by measuring the time the
pulse wave travels through the blood vessels [178]. Measurements can be made using
the difference in the speed of propagation of the ECG signal and the pulse wave signal.
Shahrbabaki et al., based on fixing sensors at the fingertips [190], and Kireev et al., based
on electronic skin [117], respectively, achieved reliable nocturnal measuring. Zadi et al.
performed the error of blood pressure measurement by PTT in different states, and the
mean value of the model residuals was considered to be less than 3.2 mm Hg during both
normal breathing and breath-holding maneuvers [191]. Krefting, based on this technique,
successfully observed elevated blood pressure due to different postures at night [192].
Carek et al. integrated sensors in underpants, detected the signal when blood pulses flowed
through the legs, and correlated with cuffed sensors [193]. PTT-based blood pressure
functions have been integrated into smart watches [194].

PTT measurements can also be performed by two mechanical sensors located in
different parts of the body. Thin-film piezoelectric sensors give the possibility of wearability
of this sensing. Xin et al. achieved blood pressure monitoring with a standard deviation of
only 1.7 mm Hg using two flexible sensors made of PVDF piezoelectric material. Resonant
amplifier circuits were designed, too [195]. PTT measurements were also implemented by
Fan et al. using textile electronics [196].
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Mechanics signals can also be used for heartbeat detection. Heart rate measurements
were performed by Sanchez et al. by collecting vibration signals in the chest cavity [197].
Xin et al. collected signals from pulse vibrations using thin films made of flexible piezo-
electric materials [144]. The ultra-thin conductive textile bed sheet made by Zhou et al.
has a wide operating frequency bandwidth range of 0 Hz to 40 Hz, good mechanical
durability, and washability [154]. Its high sensitivity allows the sensor to obtain heart
rate measurements with an error of only 1.33% without wearing any wearable device
specifically. However, HR detection by mechanical methods is not common because optical
sensors have been able to monitor HR effectively and accurately.

In the last method, Van et al. monitored the heart rate of users based on an infrared
camera, using three different frequencies of infrared sensors and a broad spectrum of
infrared light sources to achieve transmission of the occlusion [198]. The heart rate detection
accuracy was 92%. In addition, because the camera does not touch the body at all, it is
not disconnected by the person’s movement, as is the case with ECG. After the person’s
posture changes, the camera can also be positioned again in time and continue to measure
heart rate.

4.6. Acoustic Detection

The human body has many mechano-acoustic (MA) signals [199]. Snoring is a common
phenomenon in sleep, which is caused by the poor ventilation of the airway and has a
significant impact on the quality of sleep and in some cases may lead to sleep apnea or
even asphyxia. Dafna et al. analyzed the sleep of patients with obstructive sleep apnea by
recording their sleep sounds [200]. The accuracy of snoring frequency monitoring can be
improved from 81% to 89% by presetting age and gender information [201].

Human sleep is also susceptible to the effects of environmental sounds. Many sleep
monitoring systems now integrate ambient sound acquisition to help people analyze the
causes of poor sleep. Some sounds may prevent a person from falling asleep, while white
noise has shown sleep-aiding effects in many studies [202]. Chen et al. integrated ambient
sound sensors into the sleep monitoring system, which automatically plays white noise
to mask the noise affecting people’s sleep when ambient noise is detected, and the body
sensors in the system monitor sleep quality in real time [203].

If just collecting the sound in the room, perhaps no special equipment is needed.
Snoring signals have strong penetration, so sensing these can often be implemented directly
with the help of a smartphone [202]. Xin et al. prepared acoustic sensors using flexible
piezoelectric films to detect snoring, but there is no significant advantage over existing
integrated microphones [144,204].

However, in some cases, acoustic sensors close to the skin can give more in vivo
information. Ghahjaverestan et al. analyzed respiratory airflow by measuring the sound of
tracheal airflow through a microphone close to the skin and used it for the assessment of
sleep apnea [175]. Li et al. designed a sensor that can be attached to the chest [199]. It is
very sensitive to snoring, and the measured frequency information can be interpreted by
human anatomy.

4.7. Other Mechanical Detection

In men, penile engorgement and erection occur during REM sleep and are important
physiological phenomena accompanying the sleep cycle [205]. There is also an association
between erectile dysfunction and sleep disorders [206,207]. In 2021, Krkovich et al. enabled
monitoring of erections during sleep by recording the diameter of the user’s penis. The
results obtained made it possible to determine reference values for qualitative and quanti-
tative indicators of PNT in healthy male volunteers [208]. In 2022, Edgar proposed several
forms of sensors that could be used to monitor nocturnal sleep erections: a penile arterial
pulse for measuring plethysmograph, a displacement sensor to measure axial length, a
strain gauge to measure radial stiffness and circumference, and a temperature sensor to
measure skin and cavernosal temperature [209]. In 2022, Heo et al. used an electronic fabric
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strain sensor to replace the bulky and heavy Rigiscan device in Figure 15. By immobilizing
carbon nanotubes on the fabric, resistive length, perimeter, and curvature measurements
were achieved. The result shows a 1.44% error rate and a cavity radius of 110 to 300.
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Rapid eye movements are a hallmark feature of REM sleep and can reflect how
neurologically active a person is under that stage of sleep. Although, the occlusion of the
eyelids makes eye movements less easily observable, so the EOG in the previous section
is a more common way to detect eye movements. Many studies have reported direct
mechanical measurements of eye movements. In 2020, Wu et al. designed a smart eye
mask [211]. The hydrogel sensor was integrated with a sleep mask for real-time monitoring
of human sleep. Compared to the sleep recorded using a popular sleep monitoring mobile
app that measures sleep only based on body movements and voices, the sleeping process
measured using the smart sleep mask shows much higher reliability for the recognition of
REM sleep. In 2021, Dang et al. used an infrared optical sensor integrated with an eyecup
to detect eyelid-surface-shaped edges caused by eye movements and used an array of four
sensors to each detecting motion in two vertical degrees of freedom [212].

The last mechanical signal is the intraocular pressure (IOP). Continuous monitoring
of IOP, especially during sleep, remains a great challenge for glaucoma care. Zhang et al.
designed contact lenses with integrated strain sensors and induction coils that allow
continuous IOP monitoring at night but with some discomfort [213]. However, very
mature, formally usable studies have not been reported. The important difficulties are the
passive wireless devices and the lack of oxygen caused by wearing the device all night.

4.8. Summary

The biomechanical signal monitoring techniques presented in this section are often
related to specific behaviors, for example, movement, teeth grinding, restless legs, erec-
tions, etc., but also the monitoring of physiological phenomena such as respiration and
heartbeat. Since there are major differences in the objects and purposes of detection, it is
difficult to compare them at the methodological level from a unified dimension. Table 2
of this section is more like a summary. Sleep stage is an important indicator of sleep
monitoring, which also appears in many studies and is therefore listed separately.
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Table 2. Table of biomechanical signal monitoring.

Methods/Technology Monitoring
Objects Sleep Stage Accuracy (Error) Feature Ref.

Record the usage time
of cell phone keyboard / Sleep–awake (9.83 + 5.40 min)

Related to cell phone usage
habits. Does not require any
new devices

[125]

Wristband
accelerometers 7 types of insomnia Sleep–awake / / [132]

Wrist accelerometer / NREMS 96.90%
Accuracy for REMS is low,
comparing different
classification algorithms

[135]

Wrist accelerometer
(apple watch) / 3 stages 72%

Exercise alone is better than
HR alone. The combination
can be improved to a certain
extent

[136]

Wrist accelerometer / Sleep–awake 91.71% The algorithm takes into
account the tic behavior [137]

Wrist accelerometer / Sleep–awake 95.80% Use commercial products, add
HR analysis [139]

Chest acceleration Sleep position / 99.16% / [146]

Chest acceleration / Sleep–awake 85.80% 6% higher than wrist under
the same conditions [138]

Wrist and chest
orientation
sensors

Sleep position 95% The combination of different
positions was compared [140]

Head accelerometer / 3 stages (2.0–5.2%)
with EEG Help EEG improve accuracy [141]

Head accelerometer / 4 stages 74.6% [142]
Quilt accelerometer Accidental falls / / There is no need to wear [143]

Smart watches Posture,
movement, sound / 87–98% / [214]

Piezoelectric film
mattress

Abnormal sleep in
the elderly / / / [142]

Chest and wrist
accelerometers Sleep position / 85% / [147]

Infrared camera In bed state / 99.80% Non-contact [150]
Infrared array Sleep position / 95% Non-contact [151]
Microwave sensor,
infrared sensor / 4 stages 98.65% + 0.05% Non-contact [152]

Capacitive,
accelerometer

Restless legs
syndrome Sleep–awake 83.72% / [129]

Ultra-thin
smart textiles Sleep position / / Non-contact [154]

Intraoral
accelerometer AS, Sleep position / / / [159]

Intraoral magnetic
sensors Teeth grinding / (0.260 + 0.004 mm) / [162]

Intraoral pressure
sensor Teeth grinding / 82.20% Close to EMG results [163]

Nasal pressure and
oro-nasal thermal
sensor

Respiratory events / Up to 94% / [168]

Airflow, activity OSAS / 96.50% / [170]
Chest acceleration Spirometry, RR / −1.50% / [172]
Chest acceleration RR / (0.26 bpm) / [173]
Accelerometer near
the
diaphragm

SA / 100% Vibrations stimulate the body
to change posture [174]
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Table 2. Cont.

Methods/Technology Monitoring
Objects Sleep Stage Accuracy (Error) Feature Ref.

Tracheal sound sensor Breath airflow / / / [175]
OEP RR / −0.40% / [176]
Skin curvature sensor BP / (4 mmHg) Poor correlation [181]

PPG BP, HR Sleep–awake Up to 93% / [185,
187]

PTT BP / (3.2 mmHg) /
[117,
190,
191]

Chest acceleration HR / 95% / [197]
Infrared camera HR / 92% Non-contact [198]
Microphone Sleep–awake 82.10% Non-contact [200]
Microphone Snoring / 89% Non-contact [201]
Electronic fabric
strain sensors Nocturnal erection / (1.44%) / [209]

Sensors on contact
lenses Eye pressure / / Can warn of high eye pressure

problems during sleep [213]

5. Biochemical Signal Detection

Biochemical tests have important applications in medicine. The physiological activities
of the human body, such as immunity, endocrinology, and cellular metabolism, can be
realized to a large extent by the detection of the concentration of relevant substances in
the body. With the maturity of non-invasive testing technology, wearable health testing
devices can also realize chemical sensing. For example, blood drug concentration detection
using electrochemistry [215], wearable continuous glucose monitoring [216], etc. These
devices can also be used while sleeping, and there have been reports about them [217]. In
this paper, we focus on three biochemical assays that are closely related to sleep, shown in
Figure 16.
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Figure 16. Examples of three biochemical detection methods in this section. (a) The concentration of
carbon dioxide through the skin is detected by a gas sensor [218]. Reproduced under the terms of the
CC-BY Creative Commons Attribution License, Copyright 2021 by the authors, published by Inst
Electrical Electronics Engineers INC. (b) A blood oxygen sensor based on the detection of reflected
and transmitted light [219]. The absorption of light by hemoglobin is different when the blood oxygen
level is different. Reproduced under the terms of the CC-BY Creative Commons Attribution License,
Copyright 2019 by the authors, published by American Association for the Advancement of Science.
(c) Immunofluorescence test paper for detecting cortisol in saliva [220]. Reproduced with permission,
Copyright 2014 Elsevier B.V.
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5.1. O2 Level Detection

Blood oxygenation is a common physiological indicator. In 2013, Elizur et al. identi-
fied the effects of hypoxemia on glucose metabolism during REM sleep [221]. In 2014, the
patterns of brain tissue oxygen content changes in adults and adolescents during different
sleep stages were revealed by NIRS [222]. In 2022, Elmenhorst et al. used blood oxygen
sensors to analyze the sleep quality of long-haul flight crews at high altitudes and investi-
gated the effect of a hypoxic environment on sleep at high altitudes, which has important
implications for civil aviation safety [223–226].

The oxygen content of the different parts of human vasculature is different. Easily
measured and well-referenced is the percutaneous arterial oxygen saturation (SpO2). Cak-
mak et al. detected obstructive sleep apnea with the help of an optical blood oxygen sensing
device. This relies on the different absorption rates of light by hemoglobin in the human
body before and after binding oxygen, which in turn monitors the oxygen content within
the blood through a reflected light sensor [227]. The finger is rich in capillaries, which is a
common location for blood oxygen detection [226]. The dual-channel continuous oxygen
saturation sensor designed by Zhang et al. explored different types of fingers as well as
different wearing positions. It ended up with a root-mean-square error of only 1.8 [228].
The correlation coefficient tested by Tran et al. reached 0.93, with a 95% agreement limit of
±2.5% [229].

Because optical signals can easily detect oxygen levels in the blood at any capillary,
various types of wearable sensing devices can be used. Earlobe sensors [230] and ear
canal sensors [231] can be developed without being limited to common locations such
as the wrist, as shown in Figure 17. Among them, brain tissue oxygen saturation is very
important for the quality of sleep, and Metz et al. designed measurement of this using near-
infrared spectroscopy to detect the oxygen saturation of brain tissue before and after human
sleep [222,232], since the oxygen content of human arterial and venous vessels is not the
same, and the veins at the arms may interfere with the results. Capillary-based monitoring
in areas such as between the fingers, which is 2–3% higher than the armed vessel oxygen
content test, is more suitable as a measure of sleep apnea [233]. Nabavi et al. used intraoral
photoplethysmography and showed more than 96% accuracy in estimating physiological
characteristics such as SpO2 compared to conventional monitoring techniques [234].
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Figure 17. Positioning of the pulse oximeter sensor. (a) Forehead [224]. Reproduced with permission,
Copyright 2004 Blackwell Publishing Ltd. (b) In ear [225]. Reproduced under the terms of the
CC-BY Creative Commons Attribution License, Copyright 2020 by the authors, published by MDPI.
(c) Finger [226]. Reproduced under the terms of the CC-BY Creative Commons Attribution License,
Copyright 2021 by the authors, published by MDPI.

In 2021, Van et al. used a broad-spectrum infrared light source to enhance the infrared
signal and used three infrared cameras with different frequencies to measure the reflected
light signal and calculate the blood oxygen concentration. Based on this, non-contact
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infrared measurements were achieved, avoiding the detachment of the sensing device from
the body due to motion. The non-contact oximeter estimated blood oxygen values with an
89% time error within four 4% [198].

5.2. CO2 Level Detection

The carbon dioxide level is another important test. Insufficient sleep breathing at night
may cause hypercapnia, leading to respiratory failure. This process occurs mainly due to
increased carbon dioxide levels in blood vessels, such as arteries, due to hypoventilation, in
relation to the person’s height, body mass index, and the degree of obstruction of the upper
airway [235]. In cardiac patients, the partial pressure of carbon dioxide at night alters their
pathophysiology during the day and night.

Ramos et al. measured carbon dioxide levels, volatile organic compounds (VOCs),
and air temperature in indoor environments using low-cost gas sensors [236]. Rauhala et al.
used electromechanical film sensors, a flexible material that can analyze carbon dioxide
concentrations in blood vessels on the skin’s surface through differences in electrical signals
of the skin’s surface and analyze increased carbon dioxide concentrations due to sleep
apnea [237]. Kang et al. used gas sensors to measure the concentration of breathing
gases in human bodies [238]. Chhajed et al. used an earlobe carbon dioxide sensor
to monitor nocturnal carbon dioxide concentrations and monitored the effectiveness of
positive pressure ventilation for chronic hypercapnia. This took advantage of the fact that
small carbon dioxide molecules have high tissue solubility and can diffuse rapidly through
the skin [239]. Tipparaju et al. improved the accuracy of a transdermal continuous carbon
dioxide sensor by solving humidity interference with a miniature non-dispersive sensor
through a hydrophobic membrane, as shown in Figure 18.
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mans. Through feedback to light, the accumulation of melatonin in the body will make 
people sleepy [240–242]. Melatonin is also now available to treat some insomnias [243]. In 
addition, diseases such as adrenal hyperplasia or a prolonged state of emergency may 
lead to an overproduction of hormones such as adrenal hormone, norepinephrine, and 
adrenocortical. These hormones can put a person in a hyperactive state and cause diffi-
culty falling asleep, poor sleep quality, and easy awakening [244,245]. 

Multi-hormones can be detected in human saliva through secretory glands and thus 
enable non-invasive sensing. Previously, the level of hormone detection in non-invasive 
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sensor. (a) Image of the integrated wristband, ø20.9 mm × 18.1 mm. (b) The zoom-in shows cross-
section view of the gas chamber, sealing O-ring, and wristband body. (c) Miniaturized Cozir NDIR
CO2 sensor [218]. Reproduced under the terms of the CC-BY Creative Commons Attribution License,
Copyright 2021 by the authors, published by Inst Electrical Electronics Engineers INC.

5.3. Hormone Detection

The human body has many hormones that play a regulatory role in the sleep process.
For example, melatonin plays an important role in regulating circadian rhythms in humans.
Through feedback to light, the accumulation of melatonin in the body will make people
sleepy [240–242]. Melatonin is also now available to treat some insomnias [243]. In addition,
diseases such as adrenal hyperplasia or a prolonged state of emergency may lead to an
overproduction of hormones such as adrenal hormone, norepinephrine, and adrenocortical.
These hormones can put a person in a hyperactive state and cause difficulty falling asleep,
poor sleep quality, and easy awakening [244,245].

Multi-hormones can be detected in human saliva through secretory glands and thus
enable non-invasive sensing. Previously, the level of hormone detection in non-invasive
samples was mainly performed by sending the samples to the laboratory and detecting
them by fluorescent probe method without real time. Massey et al. prepared a non-
invasive body fluid sensor based on EG-FET to monitor the cortisol hormone concentra-
tion in saliva samples. The detectable cortisol concentration range is currently identified
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as 27.3 pM–27.3 µM [246]. Shahub et al., on a nanoporous matrix by electrochemical
impedance spectroscopy, measured cortisol concentrations in sweat with 100% accuracy
and 0% false negatives, with a dynamic range of 8–140 ng/mL [247].

Sensor research at the hormone level is less compared to the rest of the field, but with
the maturation of wearable chemical sensor technology, the future promises to provide
more health information at the secretory system and drug therapy level.

5.4. Prospect of Biochemical Detections

Among the studies related to sleep detection, biochemical detection has been signifi-
cantly less studied than in the previous two sections. This is probably because chemical
sensors tend to be more complex. However, there is no substitute for the importance of
biochemical signals in sleep monitoring. Melatonin is the most commonly used medication
for insomnia, and caffeine intake is the most common method used when people want
to stay awake. Biochemical methods are commonly used to treat sleep-related problems.
Biochemical-based tests can guide individualized treatment.

By tracking cortisol concentrations, Dornbierer et al. demonstrated that pulsed-release
caffeine could help people suffering from insomniac sleep inertia to wake up from sleep
faster [248]. In addition, Julia et al. demonstrated that caffeine concentrations in the body
could be detected in sweat from the fingertips after coffee consumption [249]. Akiyo et al.
used optical methods to measure ATP concentrations in the brains of mice and observed
fluctuations in the intoxicated sleep–wake process [250]. This allows analysis of brain activ-
ity in terms of energy metabolism and has important implications for some abnormalities
in the neurological causes of the brain during sleep.

The related study shown in Figure 19 may not be designed for at-home sleep monitor-
ing, so it is not yet available for people to use daily. This is a valuable direction for future
research. With the development of relevant biochemical detection technology, doctors may
be able to prescribe more personalized prescriptions or even automatically adjust the use
of drugs based on the hormone levels detected in the user’s body each night.
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Figure 19. (a) Measurement of ATP concentration in mouse brain using optical methods [250].
Reproduced under the terms of the CC-BY Creative Commons Attribution License, Copyright 2021
by the authors, published by Springer Nature. (b) Detection of caffeine concentration in finger
sweat in the laboratory [249]. Neither method is available for people to use at home by themselves.
Reproduced under the terms of the CC-BY Creative Commons Attribution License, Copyright 2020
by the authors, published by Springer Nature.

6. Multi-Signal Sleep Monitoring

Some studies use single signal sensors with algorithms that achieve certain analysis
functions. Nowadays, smart detection devices in the market are mainly based on smart-
watches and smart bracelets, and the measurement of total sleep time is accurate with good
sensor quality. Still, the results of complex analysis, including measuring different sleep
stages, are not yet satisfactory [251–254]. Current consumer sleep-tracking technologies
may not be mature in diagnosing sleep disorders, and more multi-signal sensors have
much room for research. For example, Figure 20 shows the combined use of an infrared
camera and bed sensor.
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6.1. Multi-Signal, Single Physiological Information

The first category uses multiple sensors of different types to jointly analyze a particular
physiological activity, such as REM sleep detection, sleep apnea detection, etc. Models that
analyze sleep based on individual sensor data may vary with the underlying conditions of
different individuals. For example, the EEG sensor and model designed by Sharma et al.
achieved an accuracy of 83% in the sleep stage classification test for healthy individu-
als [256]. However, the same method yielded an accuracy of only 72% for patients with
an REM disorder. Different types of sleep-related disorders have an impact on the results.
Deep-learning methods have limited effectiveness in solving this problem [35]. In this case,
introducing the rest of the sensors for auxiliary classification is often necessary. Another
method is to use multiple signals for sleep stage classification.

Sleep apnea, sleep stage division, and other physiologies with multiple signal pre-
sentations are the most common. A relatively simple monitoring such as respiratory rate
can also be boosted with a multi-channel signal. Combining different broad categories of
signals helps better complement each other but also adds more cost and invariance to the
use. For the identification of sleep apnea, the best studies have increased the accuracy to
100%. Respiratory rate monitoring can also have an error of less than one per minute. The
complete information is provided in Table 3. The future direction of this type of research
will be comfortable to wear. In addition, there is still room for improvement in the truth
rate of some behavioral monitoring.

6.2. Single Sensor, Multiple Physiological Information

The second category is the implementation of different tests based on single-sensor
hardware with different usages. Sometimes the sensor’s response may be related to several
different mechanical, biochemical, etc., signals. For example, the PPG sensor can measure
blood pressure and heart rate separately when measuring different values. Another ex-
ample is the limb acceleration signal, which is a superposition of multiple signals such as
posture, movement, and respiration and thus can be interpreted with multiple information.
So, some studies, although based on different physiological signals, may ultimately be
achieved using the same hardware in different ways.

The accuracy of heart rate and blood oxygen monitored by a single sensor has been
reported in many studies. However, no new protocols have emerged from such studies,
and several major protocols are relatively well-established. More accurate measurements
or more comprehensive analyses require multi-bed sensor combinations.

The paper is divided into sections according to physiological signal categories, and this
subsection adds results that are somewhat classified from a sensor perspective. Achieving
multiple monitoring through a single sensor can significantly reduce costs. The complete
information is provided in Table 4. Here, we can see studies that use a single sensor to
acquire multiple signals and enhance the correlation between different signals.
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Table 3. Table for analyzing single subject based on multiple sensors.

Objectives Sensors Accuracy (Error) Feature Ref.

Sleep Apnea
Nasal airflow sensor, body
activity
sensor, SpO2 sensor

96.5% Specificity of 100% [170]

Sleep Apnea Utilizing thermocouple;
pulse oximeter 100% Wireless data sharing [227]

SRBD ECG, microphone 89% [257]

Sleep Stages EEG EOG 89.2% The recognition rate of
non-REM sleep stage 1 is low [258]

Sleep Stages

3-axis accelerometers,
respiratory
acoustic sensor, four infrared
optical
sensors

/ Integrated into the eye mask [212]

Breathing rate Bioimpedance sensor,
temperature sensor (0.71 bpm)

Effectively in different
postures and
dynamic environments

[259]

Grinding Masseter pressure sensor,
masseter EMG 82.8%

Pressure sensors are less
accurate than combined
sensing

[163]

Restless Leg Syndrome
Capacitive sensors;
six-axis inertial
measurement sensor

93.65% Effectively improve diagnosis
rates [129]

Ventricular
Bigeminy ECG, microphone / The delay was reduced by up

to 88% [93]

Table 4. Table for multi-signal detection based on a single sensor.

Sensor Outputs Accuracy (Error) Feature Ref.

Infrared camera Pulse rate, respiratory rate,
blood oxygen 92% No contact [198]

Optical Blood Oximeter Pulse rate, blood oxygen /
Vibration makes people
adjust their posture when
breathing is not good

[260]

Optical Blood Oximeter Pulse rate, blood oxygen 99% [227]
Intraoral
photoplethysmography

Pulse rate, respiration rate,
respiration pattern, blood oxygen 96% [234]

Acoustic sensor Pulse rate, respiration rate (2.6–3.9 bpm)
Mild with anatomical
structure-based
interpretation

[199]

Piezoelectric film Movement, pulse rate, respiratory
rate, blood pressure (3 mm Hg) [195]

Conductive textile Posture, pulse rate, sleep apnea (1.33%) Can be washed repeatedly [154]

Textile electronics Pulse rate, respiration rate,
PTT, SAS /

Can be fixed in any
position,
washable

[196]

6.3. Integrated Sleep Monitoring

The third category is using multi-signal sensors for a comprehensive sleep quality
analysis. It is similar to a PSG system for home use.

The ideal product provides professional PSG monitoring under in-home conditions. It
includes accurate sleep stage classification and disease diagnosis. It should also be easy
to use, inexpensive, and not interfere with sleep. There is much room for improvement in
integrated sensing solutions. Some existing commercial solutions appear in the table, with
advances in the laboratory.

The combinations of signals and sensing modalities are very diverse and difficult to
exhaust. The ability to achieve the best-integrated sleep monitoring under home conditions
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with the lowest cost and most user-friendly combination of sensors is the core research
goal. Many researchers have investigated how to improve this combination. The complete
information is provided in Table 5. In the table, there is an example of the conclusion that
some techniques can detect anomalies earlier than others. Many studies have also been
conducted on special populations or commercial devices.

Table 5. Table of integrated sleep monitoring.

Sensors Output Indicators Feature Ref.

Infrared depth sensor,
camera, four-microphone
array

Sleep quality analysis /
Automatic play of white
noise to
improve sleep quality

[203]

Acceleration sensor,
temperature sensor,
humidity sensor

The movement of the
person and bedding / No need to wear

wearable devices [143]

Passive infrared sensor,
bed sensor (Nokia sleep
bed
sensor)

Sleep latency, sleep
interruptions, time to wake,
sleep efficiency

4.7% robust statistic
confidence

Sleep quality can be
effectively assessed [255]

Galaxy Watch (PSG sensor,
PPG sensor,
3-axic accelerometer)

Sleep stages,
epoch-by-epoch respiratory
events classification, snore
events classification, blood
oxygen

77% accuracy in
sleep stages
prediction, 80% accuracy in
epoch-by-epoch respiratory
events classification, 60%
accuracy in snore events
classification 70% accuracy
in SpO2 level classification

Commercial
integrated wearable
devices

[261]

ECG, accelerometry,
Heart rate and 5 ECG
characteristics, posture,
sleep quality

/
Cardiac changes start
earlier and last longer than
movement

[262]

Single-channel EEG; nasal
pressure transducer and
thermistor; thoracic and
abdominal respiratory
inductance
plethysmograph belts;
pulse oximetry; EMG

Sleep-disordered
breathing and periodic leg
movements

Failure rate was reduced to
19% / [263]

EDA; ACC; skin
temperature sensor

Sleep/wake; high/low
sleep quality

92.2% accuracy of
sleep–wake, 61.51%
accuracy of low sleep
quality

/ [264]

Accelerometer, gyroscope,
orientation sensor;
microphone; ambient
light sensor

Sleep posture and habits,
environment, sleep quality

98% accuracy of event
detection

Identify causes for
sleep problems
compared to prior work

[214]

MEMS triaxial
accelerometer, pressure
sensor

Vital signs, snore events,
and sleep stages

97.2% accuracy of snoring,
95.1%
accuracy of sleep stage

/ [265]

6.4. Summary

In summary, multi-channel monitoring showed many better results than single chan-
nels. EEG and ECG are information-rich sensors, but the combination is still not comparable
to professional polysomnography monitoring. More sensing is useful.

However, sleep monitoring with good results is not a simple combination of sensors
in the previous three sections. Random combinations of unrelated sensors or multiple
interpretations of individual sensor data may improve classification but with limited results.

Good combinations of sensors often come from a particular physiological phenomenon
or object to be measured, with multiple different facets of performance. Multiple interpreta-
tions of data are common since multiple effects inherently modulate a given physiological
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signal. In this context, the construction of multi-channel detection devices and the develop-
ment of related algorithms make sense.

7. Conclusions and Discussion

Sleep monitoring is important in an era when people are increasingly concerned about
their health. Sleep is also related to the function of many body systems, diseases, and health
conditions. In addition to the most basic sleep duration and quality records, new tests
can help people find the causes that affect sleep. Sleep apnea, sleep grinding, restless legs
syndrome, and other disorders affecting sleep have been reported in many tests. Techniques
such as blood pressure, environmental, and endocrine monitoring can help give people
more insight into the causes of their poor sleep. However, many other triggers of poor
sleep still need to be tested only in the hospital, such as white matter hyperplasia of the
brain [266].

Many wearable devices and bedding for sleep monitoring have been commercialized.
However, there is room for further improvement in their accuracy and reliability. The
current research, taking PSG as the comparison standard, still fails to reach the accuracy
of the clinical level. In addition, the detection effects become even worse when seeking
senseless use. The balance between performance, versatility, cost, and ease of use needs to
be found to suit the consumer. Professional polysomnography monitoring in the clinical
setting also remains difficult to replace.

The development of sleep monitoring technology is the miniaturization, wearability,
and senselessness of existing sensors. On the other hand, there is also a need for better
models and algorithms to help people improve their health. The development of artificial
intelligence has brought greater possibilities for the back-end algorithm of the sensor, but
this does not replace the improvement of the sensor itself. There are also many reports of
cutting-edge laboratory results, including hormone testing. Future sleep monitoring in
home and clinical settings is expected to expand its capabilities further.
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