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Abstract: Mycotoxins are naturally occurring toxic secondary metabolites produced by fungi in
cereals and foodstuffs during the stages of cultivation and storage. Electrochemical biosensing
has emerged as a rapid, efficient, and economical approach for the detection and quantification of
mycotoxins in different sample media. An electrochemical biosensor consists of two main units, a
recognition receptor and a signal transducer. Natural or artificial antibodies, aptamers, molecularly
imprinted polymers (MIP), peptides, and DNAzymes have been extensively employed as selective
recognition receptors for the electrochemical biosensing of mycotoxins. This article affords a detailed
discussion of the recent advances and future prospects of various types of recognition receptors
exploited in the electrochemical biosensing of mycotoxins.

Keywords: biosensors; mycotoxins; recognition receptors; electrochemical biosensing

1. Introduction

Chemical and electrochemical sensors are an important field of scientific research for
their practical applications [1–3]. An electrochemical chemical sensor transforms the infor-
mation on the nature and concentration of the analyte into an electrical signal [4]. Various
sensors have been reported for the sensing of gases, water pollutants, and mycotoxins in
food for safer health and working environment. Mycotoxins are a group of toxic chemi-
cals naturally produced by various species of fungi and molds. They have been detected
in a variety of foods and crops. Because of their chemical stability, they can withstand
high temperatures of cooking and food processing. Dairy goods, alcoholic beverages, and
agricultural commodities are the main sources of mycotoxins [5]. Mycotoxins have severe
negative health impacts causing increased emergence of gastrointestinal, hepatic, and
carcinogenic diseases [6]. There are around four hundred commonly occurring mycotoxins
that have been reported, although only a handful of them are harmful to human health [7].
A collaboratively convened international committee, i.e., Joint Expert Committee on Food
Additives (JECFA), by World Health Organization (WHO) and Food and Agricultural Or-
ganization (FAO), is responsible for evaluating risks, setting the codes of practice, exposure,
and tolerable daily intake limits of mycotoxins in various food products [8]. Most common
examples of mycotoxins include aflatoxins (AFs), ochratoxins, patulin, trichothecenes,
zearalenone (ZEA), T-2 toxin, nivalenol, HT-2 toxin, citrinin, ergot alkaloids, Penicillin
Roquefort (PR) toxin, cyclopiazonic acid, sterigmatocystin, etc. [5].

There are advanced analytical methods, such as high-performance liquid chromatography–
mass spectrometry (HPLC–MS), gas chromatography (GC), etc. which are widely used
to monitor mycotoxins. However, these methods for sensing require a great level of so-
phistication and control. Electrochemical sensing is an alternate methodology with ease
of use, fast response, and high sensitivity. During the process of electrochemical sensing,
the electrode acts as the core, and at the surface of the electrode, the recognition element
is present. As the analyte and recognition element combine, the reaction signal is trans-
formed into an electrochemical signal. A major demand in this field is the designing of
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recognition receptors with high sensitivity, selectivity, and stability. In the last decade, the
scientific fraternity has been working on the designing of electrochemical biosensors for the
recognition of mycotoxins. Till now, a number of reviews on the presence of mycotoxins
in various food and feed products, their health impacts, and their biological degradation
are available [9–12]. A few reviews on current methods of detection of mycotoxins are
also available. However, the present review is focused on detailed insights into the recog-
nition receptors for the electrochemical biosensing of mycotoxins. In this review article,
different recognition receptors for mycotoxins viz polymer-based materials, DNAzymes,
antibodies, peptides, aptamers, graphene, carbon nanotubes, and metal and metal oxide
nanoparticles are discussed in detail (Figure 1). Their mode of action has been elaborated.
The present status of research in this field has been discussed, and the future potential has
been highlighted.
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Figure 1. Recognition receptors for electrochemical sensing of mycotoxins. Mechanism of electro-
chemical biosensing.

An electrochemical biosensor consists of two main units, recognition receptor and
signal transducer. Natural/artificial antibodies, aptamers, molecularly imprinted polymers
(MIP), peptides, and DNAzymes have been extensively employed as selective recognition
receptors for electrochemical biosensing [13]. The generation of the signal is based on redox
reactions, which are shown by redox-active chemical species, viz. enzymes, polymers,
catalysts, nanoparticles, quantum dots, carbon nanotubes, etc., attached covalently to
the aptamers, for example [14]. In addition to the recognition receptor, a biosensor also
comprises a transduction unit that modifies the signal produced by the binding/reaction
of the analyte with the recognition receptor into an amplified electric signal. The change
in voltage or current is produced as a result of the interaction of the target with the
recognition element. The oxidation-reduction reactions (involving the gain or loss of
electrons) occur on the surface of the electrode. These are monitored using different
electrochemical methods. Electroanalytical methods can be classified into three major types:
voltammetry, electrochemical impedance spectroscopy (EIS), and chronoamperometry,
on the basis of differences in input and observable signals. Voltammetry measures how
varying electrode current with the applied voltage during an electrochemical reaction and
can be further classified into linear-sweep voltammetry (LSV), cyclic voltammetry (CV),
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differential-pulse voltammetry (DPV), and square-wave voltammetry (SWV) [15,16]. LSV
is employed frequently for qualitative analysis only where a one-way linearly varying
voltage (potential sweep) is applied between the working and counter electrode followed
by current measurement. In the case of CV, a voltage cycle (multiple potential sweep) is
applied, and then the resulting current is measured for qualitative as well as quantitative
determination of the analyte. The sensitivity of CV can be further improved with DPV,
where linear voltage input is substituted with a pulsed form for the enhancement of peak
resolution and detection of trace levels of analytes. SWV, on the other hand, involves the
application of a potential waveform having two pulses in opposite directions (staircase
potential and alternating square wave) to the stationary electrode and measurement of
current at the end of both forward and reverse pulse. Due to the low detection limits and
high sensitivity, the SWV technique has emerged as a promising electroanalytical method
for the simultaneous biosensing of multiple analytes. EIS is altogether different from
voltammetry, where instead of current or voltage, an alternating potential wave having
a small amplitude and varying frequency is applied to the electrode, and the impedance
with other electrochemical properties is measured as a response signal. The voltammetric
methods, such as CV, DPV, LSV, and SWV, are better categorized as electroanalytical, and
EIS is considered an electrochemical characterization technique. Chronoamperometry is a
faster method that involves the input signal as a step (single or double) voltage followed
by measurement of electrode current as a function of time. This method can also be used
to assess the stability and repeatability of electrochemical biosensors by monitoring the
variations in the current curve obtained after feeding single/double step potential. In
conclusion, all these methods can be used for the electrochemical biosensing of analytes,
and each method has its own advantages. LSV method provides analysis with a very
small relative standard deviation but also with low recovery as compared to DPV. SWV can
provide an excellent biosensing platform due to its high sensitivity as compared to the other
methods. Table 1 summarizes the different electroanalytical methods employed by the
researchers for the electrochemical sensing of various mycotoxins. For AFB1 detection, the
most sensitive method was based on SWV, which could detect this mycotoxin with a LOD
of 0.6 × 10−7 ng/mL in corn samples (Table 1). Similarly, EIS, CV, and DPV were observed
as the most sensitive electroanalytical techniques for the detection of OTA (Table 1).

In the next section, different recognition elements have been discussed.

2. Recognition Receptors
2.1. Aptamers as Recognition Receptors

The word “aptamer” originated from the Latin word “aptus”, which means “to fit” [17].
Aptamers comprise 15–90 single-stranded synthetic nucleic acid chains, which might get
folded into three dimensions and bind to a target varying from huge proteins to tiny
molecules, such as amino acids or drugs, with extreme specificity and affinity [18]. Nowa-
days, aptamers have been extensively utilized for pathogen recognition [19], clinical diag-
nostics of cancer and stem cells [20], environmental protection for detecting pollutants [21],
as well as in food safety for the recognition of mycotoxins [22]. For biosensing of various
analytes, these single-stranded oligonucleotide molecules acquire special 3-D conforma-
tions, such as hairpins, stems, loops, pseudoknots, bulges, G-quadruplexes, or triplexes [23].
These conformations are caused by adaptive folding due to molecular forces, such as van
der Waals, electrostatic interactions, hydrogen bonding, and π-stacking.

Aptamers can be constructed using the computational method “Systematic Evolution
of Ligands by Exponential Enrichment (SELEX)”, following steps of adsorption, recovery,
and amplification [24]. Aptamers have proven to be cheap, easy to prepare, and exhibit
higher stability. Since the invention of aptamers, beyond 2000 types of aptamers have been
developed using the SELEX approach [17]. Synthetically prepared aptamers can be simply
altered to extend their lifetime in the bloodstream, target them to specific locations, or
permit their immobilization. These can be specially customized to incorporate the labels
and functional groups needed for their immobilization on the electrode’s surface during



Biosensors 2023, 13, 391 4 of 31

the electrochemical detection of mycotoxins, antibiotics, drugs, heavy metals, and ions [25].
Aptamers have become the most preferred alternatives for antibodies in biosensor devel-
opment because of their potential to selectively bind certain analytes via non-covalent
interactions and their reversible reactions [26]. Neither modification nor immobilization
of aptamers generally results in loss of function, whereas antibodies do. Aptamers have
several benefits against antibodies, for instance, thermal equilibrium, economical, easy
chemical change, reusability, and stability toward hydrolysis [27,28]. With their character-
istics in specificity, easy screening, and high stability, aptamers have become prominent
recognition elements for biosensor platforms.

2.1.1. Immobilization

The primary initiative in preparing an aptamer-based biosensor is to immobilize a
suitable aptamer on the conducting surface, such as a carbon nanotube, metal, or poly-
mer electrode. Aptamers can be deposited straight on the electrode surface or indirectly
through chemical coupling. The selection of an immobilization approach relies on several
components, such as the properties of the target analyte, the type of biological recognition
element, the transducer surface, and the operating parameters of the aptasensors [29]. To
use aptamers as molecular identification agents in biosensors, it is essential to develop
methods for aptamer immobilization so that they can maintain their biophysical properties
and association capacities [30]. With the advantage of their compact size and adaptabil-
ity to enable effective immobilization in high-density monolayers, which is essential in
miniaturized systems, such as biosensors, these bioreceptors are mounted on the electrode
in a stable and consistent way. In recent years, numerous immobilization strategies have
been developed, including electrodeposition, chemisorption, physisorption, and (strept)
avidin-biotin interactions [29]. Figure 2 shows four different immobilization methodologies.
As per the driving forces of the process, immobilization could be classified into three
groups, i.e., covalent, physical, and affinity immobilization [31].
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hydroxysuccinimide) (d). Reproduced from [29] with permission from the Royal Society of Chemistry.
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Aptamer immobilization via direct attachment to the gold surface involves mod-
ification of aptamer via thiol group (-SH), sulfides (R–S–R), and disulfides (R–S–S–R)
which exhibit significant assimilation onto metal surfaces, such as silver, gold, copper or
platinum. These sulfur clusters adsorb impulsively onto the metal surface, generating
a stable mono-molecular layer known as the self-assembled monolayer (SAM). Further,
the reinforcement of immobilized aptamers with mercaptohexanol (MCH) helps in dis-
placing the non-specifically adsorbed portions of the aptamers and confirms their upright
alignment [32]. The covalent binding of the aptamer is performed via the formation of
resonance-stabilized amide linkage with the electrode surface. In this process, functional
groups, such as−NH2, −OH, and −COOH, are incorporated onto the surface of an elec-
trode. This functional group interacts with a customized aptamer that has a corresponding
functional group. The most frequently used approach is a carbodiimide-mediated process
that employs the reagents EDC and NHS for linking the aptamer to the surface of the
electrode via an amide bond (Figure 3) [33]. In comparison to the conventional EDC/NHS
coupling, an amine coupling mechanism using cysteamine/glutaraldehyde is extensively
used. Initially, cysteamine forms a SAM by binding to the electrode through its thiol groups,
onto which glutaraldehyde attaches to generate aldehyde groups for the subsequent bind-
ing of aminated molecules [34]. By using diazonium salts, covalent surface modifications
of graphene-based materials are easily accomplished as they permit the addition of several
chemical groups, such as−B(OH)2, −COOH, and −C≡CH. Following the release of N2
molecules and the formation of radicals, diazonium salts form covalent bonds with the
sp2 hybridized carbon lattice atoms of graphene oxide films [35]. Aptamers can also be
immobilized using non-covalent interactions between avidin (or its derivatives) and biotin.
In this method, a biotinylated aptamer can be immobilized on the surface coated with
avidin or its derivatives (neutravidin and streptavidin) via noncovalent interactions [32].
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2.1.2. Classification

The electrochemical aptasensors have been categorized into three groups based upon
the change induced by the analyte, such as conductivity change (the analyte bonding
“turns on” the conductivity of the surface-bound DNA-aptamer structures), the conforma-
tional change (analyte interaction produces a change in the arrangement of the surface-
immobilized aptamer strands), and configurational change (analyte interaction leads to
either an association or dissociation of the sensor developed) [36].

Other classifications of aptasensors include label-free, labeled, signal-off (with de-
creased activity), and signal-on (with improved activity). The label can be covalently
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bonded to the aptamer, and the aptasensor’s behavior to the target relies on the response of
the label following the production of an aptamer-target complex. Until now, a variety of
substances, including enzymes (glucose oxidase (GOD), alkaline phosphatase (AP), and
horseradish peroxidase (HRP)) and nanomaterials (carbon-based nanomaterials, metal-
based nanomaterials, quantum dots (QDs), and polymers) have been used as labels [37].
The sandwich assay scheme is used to monitor various targets where one aptamer is immo-
bilized to the sensor surface, whereas a secondary labeled aptamer/protein/antibody is
employed for signal amplification. The target with two distinct binding sites is trapped
between them [38]. In the label-free type of aptasensors, the binding of the target and
immobilized aptamer can be detected using redox mediators (methylene blue and ferri-
cyanide/ferrocyanide redox couple), which disperse on the surface of the electrode and
show electrochemical oxidation/reduction via heterogeneous electron transfer to or from
the electrode [39].

2.1.3. Advances in Aptamer Research

Since 2008, a series of studies have been reported involving aptamers specific for
mycotoxins using electrochemical [40], colorimetric [41], and fluorescent transducers [42].
Among them, electrochemical aptasensors have gained interest recently due to their sim-
plicity, affordability, sensitivity, and ease of miniaturization, which is widely useful in
their on-site determination [43]. Classical technologies have been utilized for the electro-
chemical aptasensing of ochratoxin A (OTA) [40,44], fumonisin B1 (FB1) [45], aflatoxin B1
(AFB1) [41,46], zearalenone [18], or aflatoxin M1 (AFM1) [47].

Azri et al. [18] prepared a label-free competitive electrochemical aptasensor via a
covalently modifying gold electrode (AuE) with zearalenone employing 1,4-phenylene
diisocyanate and cysteamine-hydrochloride as linkers for analyzing its concentrations in
maize samples using SWV approach. For a given quantity of aptamer in each sample, the
free zearalenone in the solution competed with the immobilized zearalenone on the AuE.
It was observed that TAT, TAC, and CAT were often found in the sequences and could be
considered essential components of potential binding sites. The quantity of aptamer that
could bind to the fixed zearalenone on the surface of AuE was restricted by enhancing the
free zearalenone concentration in the solution, which led to a high current response.

For the sensing of OTA, Zhu et al. [40] devised a ratiometric electrochemical aptasensor
depending on the interaction of methylene blue and DNA using a dual signal amplification
approach (Figure 4). The aptasensor was comprised a three-electrode system, i.e., gold,
silver/silver chloride (potassium chloride), and a platinum wire as working, reference, and
counter electrode, respectively. The aptasensor was designed by the gradual addition of
ferrocene-labeled complementary DNA, the OTA aptamer, and hDNA to devise dsDNA
structures onto the gold electrode (Figure 4A). The cDNA had complementary constituents
(TGTCCG, CGGACA) in its sequences that potentially formed a hairpin structure. When
OTA was present, its strong attraction to the aptamer caused the hDNA and aptamer to
separate from the electrode surface and led to the development of a cDNA hairpin-like
structure. Consequently, a small oxidation current of ferrocene (IFc) went up since Fc was
closer to the electrode, and a large oxidation current of methylene blue (IMB) went down
due to the poor binding ability of cDNA to methylene blue. Thus, IFc/IMB ratio was used
to measure OTA concentrations (Figure 4B). The aptasensor thus obtained signified its
enhanced analytical capabilities and extensive potential administration for the detection
of mycotoxins.
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Figure 4. Schematic representation of the fabrication and detection process of the aptasensor. (A) de-
sign of aptasensor by stepwise addition of Fc-cDNA, OTA aptamer and hDNA on Au electrode (B)
special affinity for OTA caused dissociation of aptamer and formation of hairpin structure. Repro-
duced from [40]. Copyright 2020 Elsevier. hDNA: helper DNA, dsDNA: double-stranded DNA,
cDNA: complementary DNA, MB: methylene blue; Fc-DNA: Ferrocene-labeled complementary DNA.

Using direct and indirect competitive methods, an automatic flow-based electrochemi-
cal aptasensor (5′-GAT-CGG-GTG-TGG-GTG-GCG-TAA-AGG-GAGCAT-CGG-ACA-3′)
was prepared for the on-line detection of OTA with modified magnetic beads and an
aptamer [44]. The designed aptasensor was demonstrated using direct and indirect com-
petitive approaches in conditions of continuous/stopped flow (Figure 5). In the direct
assay, biotin-labeled and free OTA contended in for binding with immobilized aptamer on
screen-printed carbon electrode (SPCE) surface, and further, electrochemical detection was
achieved via alkaline phosphatase avidin (avidin–ALP) couple. In the indirect approach,
free OTA and immobilized OTA competed for aptamer in the solution phase, and then,
Avidin–ALP couple was employed to carry out electrochemical sensing. The introduction
of the aptamer into the flow device has resulted in an enhancement in the sensitivity to
detect OTA at trace levels. The designed flow-based aptasensor could be used by unskilled
persons for the on-the-spot detection of OTA in medical, environmental, and food analysis
due to its simplicity and automation.

Suea-Ngam et al. [48] fabricated an electroanalytical aptasensor (5′-HS(CH2)6 AAA
AAAAAA AGAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG ACA-3′) based on
a DNA aptamer, exonuclease I (for digesting unbound aptamers) and silver metallization
(for signal amplification) for detection of OTA. Exo. I eliminated free aptamers by digesting
single-stranded DNA, but it was found to be ineffective against the G quadruplex generated
upon OTA binding. The signal was significantly improved by adding AgCl and then using
a double reduction technique to metalize the target-bound aptamers. The result obtained
demonstrated exceptional biosensing capabilities, including high selectivity, high sensitivity,
better stability, and excellent reproducibility possessed by the electrochemical aptasensors.
The designed aptasensor was then used for the determination of OTA in beer, with a
recovery rate of 96.6% to 109.7% and less than a 5% standard deviation.
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On the principle of exonuclease-catalyzed target reprocessing, a novel “signal-on”
aptamer (DNA 1: 5′ -Fc–CCG ATG CTC CCT TTA CGC CAC CCA CAC CCG ATC GG-
(CH2)6-SH-3′; DNA 2: 5′-AAA GAT CGG GTG TGG GTG GCG TAA AGG GAG CAT CGG
ACA-3′)-based sensor for detection and quantification of wheat samples was prepared
by Tong et al. [49]. OTA formed a complex with aptamer, which led to the separation of
aptamer from double-stranded DNA and the formation of the hairpin-like structure of
probe DNA. Exonuclease, which selectively digested the aptamer, was used to release the
OTA from the aptamer–OTA couple for analyte regeneration. This innovative method
claimed the benefits of being simple, economical, and sensitive for the evaluation of OTA
in food samples.

A novel electrochemical aptamer-based sensor having aptamer-complementary strands
of aptamer (CSs) conjugate and exonuclease I (Exo I) was reported by Abnous et al. [50]
(Figure 6). The electrochemical biosensor used the π-shaped structure of the Aptamer–
CSs couple as a double-layered physical barricade to prevent the redox mediator [Fe
(CN)6]3−/4− from entering the AuE and Exo I-aided signal amplification. Without incorpo-
rating AFB1, the π-shaped structure on AuE and major sequences remained unaffected by
Exo I. Therefore, [Fe (CN)6]3−/4− had inadequate access to the electrode surface, resulting
in a poor electrochemical signal (Figure 6a). When AFB1 was present, aptamer interacted
with it and was removed from the complimentary strands (CS1 and CS2). The π-shaped
structure was, therefore, disassembled (Figure 6b). The inclusion of Exo I to the electrode
surface aided in the digestion of CS1 on the electrode surface, and thus, [Fe (CN)6]3−/4−

gained greater contact with the electrode surface, which further resulted in strong current
signals. The applicability of the designed aptasensor was also verified by measuring AFB1
levels in human blood and grape juice samples.
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Figure 6. Fabrication process of the developed π-shape electrochemical aptasensor for AFB1. In the
absence of AFB1, most parts of the π-shape structure were intact, and redox mediator did not have
access to the surface of electrode, leading to a weak current signal (a). In the presence of AFB1, Apt
bound to AFB1 and left the CSs. Exo I digested CS1, resulting in more access of [Fe (CN)6] 3−/4− to
the surface of electrode and generated a strong current signal (b). Reproduced from [50]. Copyright
2017 Elsevier.

A “signal-off” electrochemical aptasensor for trace level determination of AFB1 was
designed by Zheng et al. [51] using an aptamer as the recognition unit and telomerase
and exonuclease III as signal enhancement units (double signal amplification) at pH 7.4
and temperature of 298K. In order to increase the signal response span of the aptasensor,
single-stranded DNA probes were amplified using telomerase and subsequently attached
to the surface of gold nanoparticles (AuNPs). Following the recognition of target AFB1,
EXO-III-based amplification was employed, which hydrolyzed the 3′-end of the double-
stranded DNA and released the bound AFB1 so that it could rejoin the sensing system and
participate in the subsequent recognition-sensing cycle (Figure 7).
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Goud et al. [22] designed and prepared a disposable and portable label-free electro-
chemical aptasensor (5′-TGGGGTTTTGGTGGCGGGTGGTGTACGGGCGAGGG-3′) for
the efficient detection of AFB1 in alcoholic beverages. The detection of AFB1 was based on
specific identification by the compact aptamer monolayer bound covalently on SPCE via
diazonium coupling and EDC/NHS reaction chemistry, followed by characterization with
CV and EIS (Figure 8). During the whole analytical procedure, pH was set to 7.4 at room
temperature with incubation durations ranging from 10–320 min. This method exhibited
several advantages, including increased surface stability and ease of formation, and it was
further applied for the detection of AFB1 in alcoholic beverages with a recovery rate of 92
to 102%.
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Wei et al. [52] fabricated a new electrochemical aptasensor for the sensitive detection
of zearalenone by combining hybridization chain reaction, methylene blue, and exonucle-
ase III for signal amplification and minimizing background current. Exo III operates on
double-stranded DNA (dsDNA) and does not require a particular recognition sequence; it
may progressively remove single nucleotides along the 3′-5′ direction. In the absence of
zearalenone, aptamer, and cDNA coupled to form a double-stranded arrangement on the
electrode surface. After the addition of zearalenone, the zearalenone–aptamer complex
got detached from the surface of the electrode, allowing the cDNA to start an HCR, which
resulted in signal amplification. These reported works on aptamers suggest their immense
potential for electrochemical detection.

The advancement in aptamer-based recognition elements for the quantitative analy-
sis of mycotoxins in food samples has facilitated dynamic testing (at room temperature
and neutral pH 7.4) of agricultural products, such as maize, wheat, beer samples, and
corn samples.

2.2. Nanomaterials as Recognition Receptors

Nanomaterials provide structural stability and biocompatibility and offer good electri-
cal properties to the design of biosensors. These provide a wide surface area for effective
binding and immobilization of the recognition element of biosensors. High conductiv-
ity and excellent catalytic activity of nanostructures also eliminate the requirement of
labels and redox mediators during the fabrication of electrochemical sensors. Nowadays,
biosensors with different sizes, surface areas, and electrocatalytic characteristics are being
developed using nanomaterials [53–55]. Numerous nanomaterials and their composites,
including carbon nanotubes (CNTs), graphene, gold nanoparticles, silver nanoparticles,
and other metal/metal oxide nanocomposites, have been used in the design of sensors
because of their excellent optical and electrical properties. These nanocomposites have
greatly improved the sensitivity of biosensors by boosting signal production [54]. Carbon-
based quantum dots have received great interest recently in various scientific and technical
disciplines. These are generally classified into two subgroups, carbon quantum dots and
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graphene quantum dots [55]. Carbon quantum dots, which have a diameter of less than
10 nm, are fluorescent carbon nanoparticles [56]. Two-dimensional nanocrystals, known as
graphene quantum dots, are made up of tiny particles of graphene with lateral dimensions
of less than a hundred nanometres [57]. Carbon nanotubes (CNTs) are rolled-up graphenes
with the axial properties of the in-plane graphenes translated into them, making them some
of the stiffest axial fibers ever made. They are also easily bent, twisted, and buckled, much
like graphene [58]. Nanosheets can also serve as labeled aptasensor since they can differ-
entiate between single-stranded DNA and G-quadruplex depending upon their distinct
absorption properties [59].

The most widely used nanomaterials for making biosensors are those based on
graphene [60,61]. Due to its intriguing characteristics, including its large surface area,
higher electrical and thermal conductivity, high stability, biocompatibility, and low cost,
graphene is a prospective probe for the electrochemical biosensing of mycotoxins [62].
Additionally, compared to other carbon-based materials, graphene-based probes have
superior conductivity and electrocatalytic activity [63]. In the next subsection, the research
work reported on different nanomaterials viz. Graphene, CNTs, and metal and metal oxide
nanoparticles as recognition receptors in electrochemical sensors have been discussed.

2.2.1. Graphene in Electrochemical Sensors

Graphene is a 2-dimensional nanosheet of carbon with a higher electrical and ther-
mal conductivity than CNTs, as well as a bigger surface area [64]. Materials based on
graphene have been used to make electrodes for devising methods of electrochemical
analysis. Electrodes of electrochemical sensors have been coated with graphene to help
them recognize various target compounds [65]. In comparison to glassy carbon electrodes
(GCE), graphene-coated electrodes can function as effective electrochemical sensors [66].

Graphene nanocomposites were successfully coupled with electrochemical devices
to increase the electrochemical characteristics of graphene and mycotoxin detection with
sensitivity and high selectivity. Phenyl-aminophenyl monolayer (Ph-PhNH2/GCE) was
used to treat graphene nanosheets before they were covalently connected to electrode sur-
faces (GNS/Ph-PhNH2/GCE) [67]. Utilizing rabbit anti-mouse IgG alkaline phosphatase
(RαMIgG-ALP)-AuNPs, a sandwich immunoassay was created with increased sensitivity.
Furthermore, using EDC-NHS chemistry, a polyclonal antibody against the clostridium
butyricum botulinum neurotoxin type E was immobilized on GNS/Ph-PhNH2/GCE sur-
faces. Within 65 min, the designed immunosensor could successfully detect botulinum
neurotoxin type E from orange juice and milk.

Oxidizing agents, such as NaNO3, H2SO4, and KMnO4, have been employed to pro-
duce reduced graphene oxide from graphite [68]. Before being put on a glass substrate, the
reduced graphene oxide was immobilized onto the surfaces of indium-tin-oxide (ITO). The
innovative platform was created by coating anti-AFB1 on the modified glass substrate to en-
able highly sensitive AFB1 detection. The creation of amide bonds during the binding of the
antibody is greatly aided via the treatment of reduced graphene oxide with chemical groups
such as−COOH and −OH. A low LOD of 0.12 ng/mL and extreme stability (45 days) were
provided by the anti-AFB1/reduced graphene oxide/ITO-based electrochemical sensor. A
label-free immunosensor for the quick and accurate detection of AFB1 was developed by
the same team using an anti-AFB1/Graphene oxide/indiumtin-oxide immunoelectrode
and EDC-NHS reaction chemistry [69]. The modified electrochemical platform showed a
number of analytical qualities, such as high sensitivity (639 Ω ng/mL), long-term stability,
low LOD (0.2 ng/mL), and broad range (0.5–5.0 ng/mL). This result showed that GO
surface modification significantly enhanced the analytical performance of electrodes. The
reduced graphene oxide film was similarly deposited on the transparent conductive oxide
glass substrate functionalized with bovine serum albumin and anti-AFB1 [70].

The surface of reduced graphene oxide was coated with platinum nanoparticles to
prepare 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt flat, which was modified with
rabbit anti-AFB1 monoclonal antibody to identify AFB1 effectively in bulk samples of
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peanuts [71]. This method enabled the selective and efficient detection of AFB1 (5.0 pg/mL),
which demonstrated the monitoring of AFB1 in samples of food with accuracy and great
precision. The same is true for the assembly of pyrrolepropylic acid (PPa) and polypyrrole
(PPy) molecules on reduced graphene oxide, which were then used as effective electro-
chemical devices for the sensing of AFB1 [72]. Through the -COOH group of PPa, the
anti-aflatoxin B1 antibody joined covalently to the functionalized reduced graphene oxide,
and the presence of PPy improved the detector’s stability and electroactivity stability. The
created impedimetric immunosensor was used with great sensitivity and particularity
in spiked corn samples to analyze aflatoxin B1. Thionine-derivatized reduced graphene
oxide (THI-rGO) has been reported as a reference signal generator to analyze aflatoxin B1.
The working electrode was a customized GCE, with Pt wire and an Ag/AgCl electrode
serving as the counter electrode and reference electrode, respectively. The ratio of current
to intensity was utilized as a signal to detect AFB1 because when AFB1 was present, the
Fc-apt-AFB1 couple was released from the electrode surface, causing a drop in impedance
and a rise in ITHI (Figure 9) [73].
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In the immunoassay for aflatoxin B1, Linting et al. [74] utilized an ionic fluid containing
nanocomposites (graphene/conducting polymer/AuNPs). An ionic fluid nanocomposite
film was created by combining graphene oxide, 2,5-di-(2-thienyl)-1-pyrrole-1-(p-benzoic
acid), and gold nanoparticles and electrodeposited on the surface of gold electrodes with
nanocomposites. Fast electron transport was considerably accelerated by the graphene
and gold nanoparticles. The role of ionic fluid was to connect with the antibodies and
create a micro-environment that could improve the efficiency of the electrodes. These
distinctive characteristics were crucial in developing a simple immunoassay technique for
AFB1 detection, which had 10−15 M LOD and more than three months of stability. The
sensor had been used successfully for accurate and precise AFB1 detection in food samples.
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Anti-Ochratoxin A antibody and amine-terminated dendrimer (PAMAM) on graphene
oxide nanosheets with manganese ions had been utilized to create a novel impedimetric
immunosensor [75]. These authors investigated a cutting-edge idea in EIS for precise
OTA identification that was predicated on the potent performance of signal amplification
brought on by an efficient immediate activator. By performing a normal immunization
between OTA and the immobilized OTA-bovine serum albumin, anti-OTA-graphene oxide
nanosheets were first added to the electrode. The oxidation of 4-chloronaphthalen-1-olwas
then made possible without the use of H2O2 by the formation of MnO2 when Mn2+ ion and
KMnO4 undergo an in-situ redox process. This innovative tool helped to create an easy
electrochemical analytical procedure for the measurement of OTA in actual red wine.

Incorporating metal nanoparticles into graphene oxide nanosheets significantly in-
creased the performance of immunosensors. In order to detect AFB1 without the usage
of a label, nickel nanoparticles were coated on reduced graphene oxide nanosheets and
employed as an immunosensor [76]. The production of nanocrystalline nanostructures
on the reduced graphene oxide–nickel nanoparticle sheets significantly increased the het-
erogeneous electron transport rate and improved the electrocatalytic characteristics of
the material. It was possible to detect AFB1 at a low concentration (0.16 ng/mL) as the
probe’s sensitivity was considerably improved (129.6 A ng−1 mL cm2). An aerogel of
reduced graphene oxide decorated with a single DNA strand (single DNA strand/aerogel
of reduced graphene oxide) has been added to a spinning disc electrode and utilized as an
impediment biosensor for sensitive and specific determination of AFB1 [77]. The impacts
of the electro-redox intermediator and the hydraulics effect were researched by authors to
enhance the efficiency of the sensor.

Additionally, in a phosphate buffer solution, the cyclic voltammetry response of single
DNA strand/aerogel of reduced graphene oxide electrode was examined in the presence
of AFB1 at three charges of the redox intermediator, including neutral FeCH2OH, cationic
Ru(NH3)6

3+, and anionic Fe(CN)6
4−. When utilizing the neutral redox mediators FcCH2OH

(825 mA cm−1), it was found that the modified electrode (single DNA strand/aerogel of
reduced graphene oxide electrode) displayed stronger action current than both Fe(CN)6

4−

and Ru(NH3)6
3+ (615 mA cm−1). Due to the cyclopentadienyl ring of the neutral FcCH2OH

and the aromatic rings of the single DNA strand/aerogel of reduced graphene oxide
electrode–electrode interactions, the neutral FcCH2OH has significantly interacted with
the electrode surface. However, due to attractive or repulsive electrostatic interactions, the
electrode surface did not strongly interact with either the cationic (Ru(NH3)6

3+) or anionic
(Fe(CN)6

4−) mediators. Due to the suppression of charge transfer, a significantly low LOD
of 0.04 ng/mL was attained at a higher revolving speed.

For electrochemiluminescent immuno analysis of AFM1in milk, Fe3O4 nanoparticles
were grafted onto the graphene oxide surface to create magnetized graphene nanocom-
posites [78]. The CdTe quantum dots antibody was used as a signal label in their study,
along with magnetic Fe3O4-graphene oxide as an adsorbent. The signal label (AFM1
Ab1/cadmium telluride-CNT) was then created by decoratingAFM1 antibody onto the
surface of the cadmium telluride quantum dots-CNT nanocomposite. Finally, using the
sandwich model, an immunocouple was created between Fe-graphene oxide and AFM1
Ab1/cadmium telluride CNT, resulting in the emission of a potent electrochemical sig-
nal that could be utilized to detect AFM1. With 0.0003 ng/mL LOD, this approach was
employed to monitor AFM1 in dairy products. These studies showed that due to the out-
standing qualities of carbon nanomaterials, such as CNTs, graphene, and their derivatives,
they are ideal candidates for electrochemical methods for testing mycotoxins. Therefore, us-
ing such materials enables the creation of quick and ultrasensitive electrochemical sensors
to detect mycotoxin’s actual samples without using sophisticated analytical methods.

2.2.2. CNTs in Electrochemical Sensors

CNTs, particularly multi-walled CNTs and single-walled CNTs, have recently been
used as promising candidates for energy devices in analytical and biological sciences due
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to their outstanding features, such as high conductivity, chemical stability, a high value
of surface/volume ratio, high mechanical strength, and biocompatibility, which are the
reasons of their performance [79–81].

Immobilizing single-walled CNTs with different inorganic and biological compounds
has increased the electrical resistance, electron mobility, and biocompatibility of single-
walled CNTs for a variety of sensing applications [82]. An electrochemical approach for
ultra-level thrombin detection in biofluids was developed by [83]. Chen et al. [66] and Li
et al. [84] used single-walled CNTs as electrochemical sensors for the sterigmatocystin and
AFB1 detection, respectively, after functionalizing with chitosan and AF-oxidase.

Numerous enzymes were bonded covalently to the MWCNTs’ surfaces because of
their enormous surface area, indicating that the MWCNTs serve as supports for the en-
zymes. Proteins can be covalently conjugated onto carboxylated CNTs using 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide as a cross-linker. It is crucial to distinguish between
covalent attachment/ adsorption during the immobilization mechanism since CNTs have a
better affinity for a variety of proteins through both electrostatic and hydrophobic interac-
tions [85]. In a similar manner, AF detoxifizyme was mounted on the MWCNTs surfaces
and employed for the sensitive sensing of sterigmatocystin [86] and ochratoxin A [87].
Chemical vapor deposition was used to synthesize MWCNTs, and after being exposed to
concentrated HNO3/H2SO4, carboxylate groups in significant amounts were produced on
their surfaces [88]. The carboxylated MWCNTs were functionalized further with mono-
clonal anti-aflatoxin B1 which then served as electrodes to detect aflatoxin B1. With great
selectivity, the suggested electrochemical sensor provided a lower LOD of 0.25 ng/mL.

MWCNTs were immobilized onto GCE, and then Prussian blue, chitosan, and glu-
taraldehyde were injected by Fang et al. [89]. The modified electrodes were utilized as a
biosensor to detect Clostridium difficile toxin B after being treated with an anti-Clostridium
difficile toxin B antibody. Likewise, single-walled CNTs and microcystin-LR antibodies were
added to the paper to enable electrochemical microcystin-LR detection at 0.6 ng/mL in
an easy and affordable manner [90]. Zhang et al. [91] modified GCE by adding carboxylic
groups to single-walled carbon nanohorn for the microcystin-LR immunoassay. With a
30 pg/mL LOD, the immunosensor provided an optimum analytical platform to mea-
sure microcystin-LR. The results were in close agreement with those based on HPLC. For
the electrochemical assay of cholera toxin, modification of Nafion film was obtained via
MWCNTs [92]. This technique allowed the recognition of cholera toxin even at 1.0 fg/mL
by immobilizing cholera toxin antibodies onto a sandwich immunosensor made up of a
poly(3,4-ethylenedioxythiophene) film- MWCNTs-Nafion complex.

The electrochemical assay of microcystin-LR was conducted with a new plastic anti-
body that has been adsorbed onto CNTs and SPCE [93]. In the study for the potentiometric
analysis of microcystin-LR, microcystin-YR, and microcystin-RR, a carbon electrode was
embellished with molecularly imprinted multi-walled CNTs, which exhibited 1 ng/mL
LOD. Yang et al. [94] modified GCE electrodes for the electrochemical immunosensing of
FB1 in maize with single-walled CNTs/chitosan. Antibodies, including anti-fumonisin B1
and anti-rabbit immunoglobulin G, were utilized and were attached to an electrode surface
via naphthyl phosphate treatment. This approach enabled us to reach a low detection limit
(0.002 ng/mL) under optimal conditions, which is much less than 2–4 mg/L (i.e., the regu-
latory guidelines of European Union Legislation) for fumonisin B1. With this technique,
fumonisin B1 in food samples may be measured with good analytical recoveries.

Similar to this, an electrochemical immunosensor was created for quick and easy
AFB1detection in food samples [95]. This method involved bonding of AFB1-bovine serum
albumin antigen covalently by activating multiwalled CNT and chitosan surface with
-COOH group through EDC/NHS chemistry. An 0.1 pg/mL LOD was attained after
MWCNT/chitosan electrode modification. This electrochemical device was further used to
successfully identify AFB1 in dietary substances, such as soybeans, corn kernels, and palm
kernel cake. CNT-based electrochemical devices were used for the successful monitoring of
mycotoxins with good selectivity due to their enormous surface area, cylindrical symmetry,
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the sp2 hybridized carbon bonds, and quasi 1D nature. These characteristics significantly
aided in the development of materials with enormous potential for real nanoarchitec-
tonic electronic components [96,97]. In the aforementioned CNT-based electrochemical
techniques, electrodes were modified with antibodies and certain enzymes that can specif-
ically adhere to the particular mycotoxin. The binding of antibodies and enzymes has
been achieved through adsorption, covalent binding, self-assembly, and entrapment into
polymers onto the surfaces of CNTs.

2.2.3. Metal and Metal Oxide Nanoparticles in Electrochemical Sensor

For the electrochemical sensing of different chemicals and biological taxonomic groups
in environmental samples, noble metal nanoparticles have been utilized widely as elec-
trodes [98]. In order to build and create user-friendly miniaturized equipment for sensing
organic compounds and biomolecules, the combination of noble metals with electrochemi-
cal analysis has become a renowned technique. Due to a number of properties, including
their ease of fabrication, controllable size and shape, biocompatibility, catalytic and optical
properties, chemical stability, powerful adsorption capacity, and electron-transfer kinetics,
nanostructured metal oxides have attracted significant attention for sensing applications.
In order to quantify mycotoxins in various samples, metal nanoparticles have been widely
employed in the design and development of electrochemical sensing probes [11]. One of
the essential steps in creating efficient electrochemical sensors is to achieve improved per-
formance via surface modification of electrodes [99]. This led to the physical adsorption of
OTA-bovine serum albumin–gold nanoparticles onto the working electrode surfaces, which
were then employed as an electrochemical biosensor for the efficient detection of OTA [100].
Bonelet al. [101] developed an immunoassay based on OTA-bovine serum albumin. The
manufactured electrodes worked well for OTA electrochemical sensing. The effectiveness
of immunosensors for OTA detection has been evaluated using DPV. The outcomes showed
that an immunosensor’s ability to perform analysis was considerably impacted by the
primary and secondary antibodies’ non-specific adsorption. The incorporation of metal
NPs in electrochemical sensing of OTA increased the devices’ analytical capabilities; the
produced immunosensor device showed lower LODs than those without nanoparticles.
Similar to this, a gold electrode-based cyclic voltammetry technique to detect AFB1 was
developed using ferricyanide as a redox couple [102]. This method involved immobilizing
AFB1 onto SAM on gold surfaces and using it as an immune capacitive biosensor to detect
AFB1 in Brazilian nuts at low LODs of range 7.75×10−15 g/mL to 1.35 ×10−14 g/mL. A
bioimprinting system was later developed by Gutierrez et al. [103] using the protein oval-
bumin to create sites with great specificity against aflatoxin B1. A capacitive biosensor with
LOD 6×10−12 M and great selectivity was created using the bioimprinting technology for
the detection of AFB1. A multilayer framework was put together on the Au electrodes using
CV and EIS techniques to create an aptamer-based biosensor for the purpose of identifying
AFB1 specifically. In their research, poly(amidoamine) dendrimers of the fourth-generation
amine-terminated dendrimer (PAMAM G4) were employed to decorate the cystamine-Au
electrode and served as a redox mediator for K[Fe(CN)6]−3/−4 [34]. Then, to serve as
particular recognizing components for AFB1 detection, modified DNA aptamers were
applied to the modified Au NP electrode. AFB1 in food products was successfully detected
using the designed electrochemical device. The concept of coating of electrode surface with
particular materials (antibodies, proteins, polymers, aptamer, etc.) for the discriminative
electrochemical detection of OTA and AFB1 is shown in Figure 10 [14].
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Figure 10. Adsorption of Au NPs, BSA-OTA-pAbOTA, and aIgG antibodies on the surface of SPCE
for electrochemical detection of OTA and Schematic for the attachment of aptamer on the surfaces
of Au electrode, using cystamine and glutaraldehyde PAMAM G4 as ligands for the formation of
self-assembled layer and their interaction with aptamer for specific and selective electrochemical
detection of AFB1. Reproduced from [14]. Copyright 2018 Elsevier.

The food chain is the mechanism by which marine poisons produced by tiny algae
accumulate. They have a well-established history of putting humans at risk for a number
of neurological and gastrointestinal disorders [104]. For the simultaneous determination of
dinophysistoxin-1 and brevetoxin B in seafood samples, a new extremely fast and sensitive
complex immunoassay-based electrochemical procedure was formulated [30]. The surfaces
of magnetic beads were co-immobilized with monoclonal mouse anti-brevetoxin B and anti-
dinophysistoxin-1 antibodies in this study. The created electrochemical sensor was used for
both brevetoxin B and dinophysistoxin-1 monitoring at the same time with a broad linear
range of 0.005 ng/mL to 0.05 ng/mL. An electrochemical method was created, in which
functionalized gold nanoparticles were used with amine-terminated poly(amidoamine)
dendrimers for quick detection of brevetoxin B in food products [105]. These scientists
reported that amine-terminated poly(amidoamine) dendrimers boosted the conductivity
of poly(amidoamine) dendrimers while 3-dimensional poly(amidoamine) dendrimers
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significantly expanded the electrode’s surface area to capture target analytes with extreme
precision. The created sensor made it possible to detect brevetoxin B in food samples at
low concentrations (0.01 ng/mL).

For the highly sensitive analysis of OTA, a signal-on aptamer-based electrochemical
sensor having a DNA-controlled layer-by-layer assembly of dual AuNP couples was created
(Figure 11). Here, five distinct single-stranded DNA strands were used to control the
formation of the first and second AuNP conjugates, which exhibited varied oligonucleotide
modifications but identical AuNP sizes. Both AuNP conjugates were capable of enhancing
the electroconductivity and load abundance of ferrocene (Fc). The identification of OTA
with aptamer caused aptamer to be removed from the electrode surface and the first AuNP
conjugate, freeing the CP2 probe in the single-strand structure. As a result, there was a
direct proportionality between the final signal generated and OTA concentration, and it was
anticipated that this novel approach would make an excellent all-encompassing sensing
platform for trace-level biochemical analysis of OTA [41].
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Thus, the incorporation of nanocomposites and nanostructures in the recognition
receptors of electrochemical biosensors has made possible the extremely sensitive sensing
of mycotoxins in food samples. The advancement of cutting-edge techniques for creating
and modifying nanocomposites and nanostructures with receptors and heteroatoms has
considerably enhanced the performance of biosensors. Nanomaterials have contributed
to an enhancement in electrode analytical capability for the detection of mycotoxins in
comparison to other pure electrode forms.

2.3. Polymer-Based Materials as Recognition Receptors

Developing electrochemical biosensors with an interfacial design derived from polymer-
based materials has gained much attention because of its fast and selective sensing response
and applicability on a small sample. Electrochemical biosensing through polymeric ma-
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terials provides high selectivity, high sensitivity, and robustness at a low cost. Polymers
having functional structures, such as polypeptides, lipid bilayers, and poly (ethylene glycol)
chains, have gained excellent attention due to their continuous use in drug delivery, tissue
engineering, and nanoscale self-assembly [106,107]. All these forms of polymers with their
specific characteristics are linked with the recognition properties, such as biodegradability,
biocompatibility, mimicking catalytic activity, mycotoxins sensing, and antibody-antigen
interaction. Materials, such as polypeptides, exhibit different properties when these are
attached to polymeric materials, such as methoxy poly (ethylene glycol) [108]. There
are various approaches, such as colorimetric immunoassay, electrochemical biosensing,
paper-based lateral flow, and fluorescence-based optical sensing, etc., reported for sens-
ing mycotoxins. In this area, many researchers have developed different methods for
electrochemical biosensing using polymeric materials. Tan et al. [107] synthesized polymer–
enzyme-multiwalled carbon nanotubes (MWCNTs), which showed excellent potential for
electrochemical biosensing of mycotoxins and biofuel applications.

In the area of electrochemical biosensing of mycotoxins, Xing et al. [109] designed
a material from a green enzyme-linked immunosorbent assay (ELISA) grounded over a
single-stranded binding protein (SSB), which was dispersed on a white polystyrene plate
and employed for the detection of mycotoxins ZEN, AFB1, OTA in corn samples.

It showed that when there was a target analyte present, the aptamer−biotin could not
bind to the SSB in the presence of mycotoxins, which resulted in the weak yellow color of the
solution. A strong interaction between the streptavidin (SA) and biotin, after the addition
of substrate/chromogen solution, resulted in a bright yellow-colored solution. From all the
obtained result author found the LOD values 112 ng/L, 319 ng/L, and 377 ng/L for AFB1,
OTA, and ZEN, respectively.

Zhang et al. [110] fabricated a DNAzyme aptamer platform for the determination of
OTA using a glucose meter. The magnetic bead-based receptor was used for the recognition
of OTA present in food samples. Detection of mycotoxins through magnetic beads was
based on the mechanism (Figure 12) where the substrate strand had other 12 T bases at
5′ and 3′ ends as per spacers, and during the whole process of detection, key aptamer
contained a total of four compartments.

During the analysis of mycotoxins, the aptamer arrangement of OTA was attached to
the 3′ end instead of the 5′ end; this was probably due to the aptamer, which was situated
at the exterior of the spherical nucleic acid, which was more appropriate for the direction
of OTA toward the aptamer. The aptamer probe underwent a conformational change in the
presence of OTA molecules, which aided in its detection of the lowest limit of 0.88 pg/mL.

Hu et al. [111] developed a material from poly(o-phenylenediamine) that was further
used for the analysis of AFB1 (Figure 13). The authors developed the software Zsimpwin for
the simulation of EIS results and obtained software without staphylococcal protein A (SpA),
which displayed that the DRbrf values exhibited a linear relationship to concentration
from 3.0–100 ng/mL with a detection limit of 1.5 ng/mL, which signified that developed
impedimetric immunosensor was appropriate for AFB1 detection. Li et al. [112] also
developed an economical and portable electrochemical sensing device that was highly
sensitive and selective for rapid analysis of AFB1 in rice samples. The immunosensor
exhibited a LOD of 5 ng/mL in one hour, including the incubation time.
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Liu et al. [113] developed a simple and cost-effective electrochemical sensing platform
approach through the click polymerization technique for the determination of AFB1. For
this sensing approach, bis-ferrocenoyl propargylamide (BFPA) was synthesized using the
chemical method. Thereafter, P(BFPA-DES) was prepared by click polymerization of BFPA
and disodium salt tetrahydrate (DES) (Scheme 1). The azide group, which was attached at
the end of c-DNA, covalently formed a bond with attained electroactive polymer P(BFPA-
DES). For AFB1, aptamer acted as a capture probe, which further self-assembled over the
surface of the Au electrode through Au–S bonding. When azide groups were modified,
the complementary DNA (c-DNA) was hybridized with the aptamer, and click chemistry
was responsible for the inclusion of polymer. The obtained electrochemical aptamer sensor
exhibited great selectivity, sensitivity, and reliability for analysis of AFB1 in real samples
with potential applications in the area of food safety and hygiene.
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For the detection of AFB1, Yang et al. [114] also fabricated an electrochemical sensor
via ring-opening metathesis polymerization (ROMP) (Scheme 2). For the synthesis of
the sensor, the Au electrode was immobilized with aptamer and AFB1 specific antibody,
followed by grafting of cyclopentenyl ferrocene units using AquaMet catalyst, which
resulted in the formation of long chain polymeric electroactive structure. This developed
polymeric electro-sensor exhibiting a LOD of 0.34 fg/mL with a linear detection range of
2 fg/mL to 2 ng/mL. The prepared sensor was highly specific and selective because of the
excellent interaction of the target with aptamer and antibody. In addition, the developed
sensor exhibited an excellent tendency for quantification of AFB1 in real samples with
92.91% to 107.20% recovery.
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Joshi et al. [115] proposed work in this area to develop a double 3-plex benchmark
approach for the analysis of mycotoxins present in barley. In this regard, the author
prepared surface plasma resonance (SPR) with flat Au biosensor chips, which were effective
in the determination of six mycotoxins present in barley.

For the sensing of OTA, Gaun et al. [116] fabricated a novel method based on tetrahe-
dral DNA nanostructure (TDN) combined with cobalt metal–organic framework (Co-MOF),
with high reproducibility, high stability, high sensitivity, and good versatility. The devel-
oped sensor had excellent selectivity to quantify OTA in red wine with a limit of detection
of 0.3 fg/mL.

A sensor for conductometric analysis of OTA in olive oil samples has been proposed
by Dridi et al. [117]. This electrochemical sensor was derived through the immobilization
of thermolysin (TLN) into a polyethylene (PEI)/polyvinyl alcohol (PVA) matrix, which
crosslinked with glutaraldehyde and contained gold nanoparticles (AuNPs). The devel-
oped sensor displayed a sensitivity of 597 SM−1 at a working pH of 7 and a temperature
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of 298K. Thus, PEI/PVA hydrogel created an excellent aqueous environment for the en-
zyme. Moreover, the bonding between the protonated amino group present on PEI and
the negative charge of thermolysin and citrated AuNPs also helped their dispersion over
the polymer blend. When AuNPs were not dispersed over the polymer blend, no con-
ductometric signal was observed, which indicated the insulating property of crosslinked
PEI/PVA hydrogel films. The author observed that the developed sensor had a LOD of 1
nm for OTA.

In this area, Wang et al. [118] designed a molecularly imprinted polymer (MIP) for
the selective capture of AFB1 from food samples. MIPs come under the category of
biomimetically synthesized material through the bulk polymerization method, which was
used for the recognition of target molecules based on cavities created on the template
surface. Here, the authors synthesized a 3D microporous magnetic inverse photonic crystal
microsphere (MPCM) as a supporting material. In the prepared material, MPCM@MIP 5,7-
dimethoxycoumarin acted as a template, and methacrylic acid monomer worked selectively
toward AFB1. MPCM@MIP displayed a detection limit of 0.4 ng/mL.

In the field of molecularly imprinted polymer, Hu et al. [119] prepared an effective
ratiometric sensor for the detection of ochratoxin A. In these aspects, MIP was prepared
from poly ionic-liquid, gold nanoparticles, and flavin mononucleotide-decorated carbon
nanotubes-MoS2nanosheets couple. A MIP-based electrode was used for the detection of
OTA in real beverage samples. The samples were tested with HPLC for comparison. Under
optimized conditions of the MIP electrode, the LOD was 14 nM, and the linear range varied
from 0.5–15 µM.

Pacheco et al. [120] also worked on the electrochemical sensing of OTA in bear and
wine samples, using GCE, modified with MIP and multi-walled CNTs. In this work,
MIP polymeric films were fabricated by electro-polymerization of pyrrole in the presence
of template OTA, and a prepared sensor was used to investigate the electrochemical
oxidation of OTA via DPV and CV. The obtained results showed a direct correlation
between OTA concentration and current intensity. Thus, the author was able to prepare the
sensitive electrochemical sensor with reproducibility for the detection of OTA in the range
of 0.050–1.0 M, and the detection limit was calculated as 0.0041 M to 0.014 M. Another
effective electrochemical biosensing of AFB1 was proposed by Akgonullu et al. [121], using
MIP with Au nanoparticles coated over the SPR gold chip surface. Sensing of AFB1 was
based on the pre-complexed formation between N-methyl-L-phenylalanine and AFB1
as a template molecule and respectively used functional monomer. The electrochemical
detection of AFB1 in the ground corn sample displayed a LOD of 1.04 pg/mL, and the
linear detection range was varied from 0.1pg/mL to 10.0 ng/mL.

Similarly, Munawar et al. [122] designed MIP nanoparticles for the electrochemical
biosensing of FB1, which is a carcinogenic mycotoxin found in animal feed and food
items. A conducting polypyrrole-(zinc porphyrin) composite was used to fabricate the MIP
nanoparticles over the Pt electrode via the electro-polymerization method. The developed
chemosensor was capable of detection of FB1with high sensitivity from 1 fM–10 pM with
LOD 0.03 fM to 0.7 fM. A molecularly imprinted electrochemical sensor based on metal–
organic framework was designed by Jiang et al. [123] for the detection of AFB1. The
sensor was developed by electro-polymerization of p-amino thiophenol, which was further
functionalized with gold nanoparticles. The cavities formed after extraction of the template
were able to recognize the AFB1 specifically via π-π interaction with aniline moieties. The
prepared electrode was used for the detection of AFB1 in spiked rice sample with LOD
3 fM, and the linear range varied from 3.2 fM to 3.2 µM. Another effective electrochemical
sensing technique for AFB1 and FuB1 was proposed by Singh et al. [124]. MIP matrix was
synthesized from aniline via the chemical oxidative polymerization method. The author
used CV and DPV for electrochemical sensing of AFB1 and FuB1 with a linear range of
1 pg/mL to 500 ng/mL, and detection limits were 0.313 pg/mL and 0.322 pg/mL for AFB1
and FuB1, respectively. Based on the polymerization of o-phenylenediamine and their
fabrication over the screen-printed gold electrode, Radi et al. [125] also proposed a strategy
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for analysis of zearalenone using EIS and CV with LOD 2.5 ng/mL and determination
varied up to 200 ng/mL.

3. Conclusions and Future Prospects

Electrochemical biosensing has proven as an effective tool for the detection of my-
cotoxins. In this review, different types of recognition receptors used for the detection of
mycotoxins have been elaborated. The unique emerging materials include CNTs, molecu-
lar imprinting polymer, graphene, aptamer, nanomaterials, DNAzymes, antibodies, and
peptides. They have paved the way for electrochemical sensing with huge potential for the
facile detection of mycotoxins. Few biosensors have been commercialized for the detection
of mycotoxins in real food samples. There is a need for more research to check their efficacy
under real-life conditions. The shelf life and reusability of sensors are two main aspects
that need to be explored further. Reversible binding and regeneration of recognition recep-
tors after use can increase the shelf life and cost-effectiveness of electrochemical sensors.
Another challenge that needs to be addressed is the miniaturization of the electrode of the
sensor and the analyte sample containing mycotoxins. On-site detection of mycotoxins
using portable, handy, and easy-to-use sensors is another important aspect that needs to be
explored in order the cut the cost of sophisticated instrumentation and skilled manpower.
Research on the monitoring of spoilage of food due to mycotoxins contamination at the
industrial level using smartphone devices is the need of the hour so that the spoilage is
automatically detected and huge economic loss to the industry can be avoided. It can be
concluded that electrochemical biosensing exhibit excellent sensitivity, a wide range of
detection, easy handling, real-time measurement, and a lower limit of detection.
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Table 1. Electrochemical biosensing of mycotoxins using recognition receptors.

Analyte Electrode Materials LOD (ng/mL) Linear Range
(ng/mL) Analytical Method Real Samples Ref.

AFM1 Fe3O4-GO-
CdTe QDs 0.0003 * 0.001–0.001 ×

105 *
Multifuncional

electrochemical analytical
system

milk [78]

AFB1

Apt/NR-TCA/GCE 0.015 0.03–30 DPV Beer and wine [22]

Apt-CSs-modified 0.002 * 0.007–0.5 DPV Human serum, Grape
juice [50]

SPE 0.6 × 10−7 * 0.1 × 10−9 to 1 × 10−4 SWV Corn [51]

Screen-printed
interdigitated

microelectrode (SPIMs)
10 5 to 20 EIS and CV Rice [112]

MPCM@MIP 0.4 5 to 1000 UV and HPLC Analysis Soysauce and vinegar [117]

Thiol-modified aptamer 0.000034 * 0.000002 to 2 * SWV, EIC, and CV Medicine [114]

Au NPs 0.93 × 10−6 * 0.93 × 10−6 to 0.9 * CV Rice [123]

MIP/Au NPs 0.001 * 0.0001 to 10.0 SPR Ground corn [121]

Multi-walled CNTs-Pt 0.46 * 0.9–207.95 * Chronamperomety Corn, rice, and wheat [84]

MWCNTs- COOHITO 0.08 0.25–
1.375 CV - [88]

MWCNTs-CS 0.0001 * 0.0001–
10 DPV Palm Kernel Cake and

Feed Samples [95]

rGO-ITO 0.12 0.125–1.5 CV - [68]

GO-Au NPs 0.23 0.5–5 CV - [69]

rGO-transparent
conductive oxidase 10−10 * 10−10–10−6 * CV Corn [70]

PtNPs-CoTPP-
rGO 0.0015 * 0.005–5.0 DPV Peanut [71]

rGO-PPy-PPa 0.000001 * 0.000001–0.01 * EIS Corn [72]

G-polymer-Au NPs 0.3 × 10−6 * 0.3 × 10−6–
0.910−3 * CV Peanut, rice, milk flour,

and soyabean [74]

rGO–Ni NPs- ITO 0.16 1.0–8.0 CV - [76]

Gold electrode-imprinted
Protein 1.97×10−3 * 1–1000 CV Nut [103]

Gold–PAMAM
dendrimers 0.124 ± 0.03 * 0.1–10 nM CV and EIS Rice, corn [34]
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Table 1. Cont.

Analyte Electrode Materials LOD (ng/mL) Linear Range
(ng/mL) Analytical Method Real Samples Ref.

AFB1 and FuB1 Polyaniline 0.0003 and 0.00032 * 0.001 ng/mLto 500
ng/mL * CV and DPV Rice, barley, peanuts, oat [125]

FB1
Pt electrode 0.5 × 10−5 * 0.031 to 3.12 * DPV and EIS Maize Sample [122]

SWCNTs-CS 0.002 * 0.01–100 EIS Corn [94]

OTA

dsDNA/MCH/ssDNA
modified AuE 0.001 * 0.005–10.0 DPV Mildewed wheat starch

sample [48]

Fc and βCD 0.0004 * 0.001 to 10 * CV Peanut oil [108]

Au NPs@Co-MOF 0.000031 * 0.000001 to 0.00005 * EIS, CV, and DPV Red wine [116]

Au NPs embedded
PEI/PVA hydrogel 0.4 * Upto 24.2 * TLN Conductometric

biosensor Olive oil [118]

MIP/Au NPs/PIL-
FMNS/CNT-MoS2/GCE 5.6 * 2 × 105–6 × 105 * EIS and CV Beer, red wine, and

Chinese liquor [119]

MWCNTs/MIP 1.7 * 20.19–403.81 ng/mL * CV and DPV Beer and Wine [120]

CNT-ITO 0.0025 * 0.0025–0.06 * DPV Serum [87]

Au NPs-BSA- OTA 0.86 0.3–8.5 DPV Wheat [101]

GO-PAMAM- Mn2+ 0.0005 * 0.0001–30 * EIS Red wines [75]

ZEA
AuE 0.00013 * 5.0 × 105–50 * DPV Corn sample and beer [52]

MIP/Au NPs 2.5 * Up to 200 * EIS and CV Corn [125]

* The units have been made uniform for comparison purposes. Electrochemical Impedance Spectroscopy (EIS), Linear-Sweep Voltammetry (LSV), Cyclic Voltammetry (CV), Differential-
Pulse Voltammetry (DPV), Square-Wave Voltammetry (SWV), High-Performance Liquid Chromatography (HPLC), Ultraviolet (UV), Thermolysin (TLN), Surface Plasmon Resonance
(SPR), Zearalenone (ZEA), Ochratoxin A (OTA), Fumonisin B1 (FuB1), Fumonisin B1 (FB1), Aflatoxin B1 (AFB1), Aflatoxin M1 (AFM1), and details of electrode material in text.
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