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Abstract: Organs-on-chips (OoCs) are miniature microfluidic systems that have arguably become a
class of advanced in vitro models. Deep learning, as an emerging topic in machine learning, has the
ability to extract a hidden statistical relationship from the input data. Recently, these two areas have
become integrated to achieve synergy for accelerating drug screening. This review provides a brief
description of the basic concepts of deep learning used in OoCs and exemplifies the successful use
cases for different types of OoCs. These microfluidic chips are of potential to be assembled as highly
potent human-on-chips with complex physiological or pathological functions. Finally, we discuss
the future supply with perspectives and potential challenges in terms of combining OoCs and deep
learning for image processing and automation designs.
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1. Introduction

Current drug research and development have faced the dilemma of long durations,
large investments, and low rates of success. Preclinical drug development usually involves
testing in static, planar cell cultures and animal models. However, conventional cell
culturing oftentimes cannot reproduce the complex physiology and pathology of the
human body, and animal models have drawbacks, such as species differences, high cost,
low throughput, and ethics [1,2]. For example, patient-derived xenografts (PDXs) directly
transplant tumor tissues from patients to immunocompromised mice without culturing,
and hence, the biological specificities of the tumors are maintained to the greatest extent.
However, the PDX models have very low success rates of transplantation. In addition, the
applications of animal models are subject to the associated high costs, low throughput, and
ethical issues in the early stages of drug discovery [3,4]. These reasons lead to a great risk
of failure in human clinical trials of candidate compounds. Although significant progress
has been made in computational biology, in vitro biology, and toxicology, most drugs have
still failed to pass clinical trials due to the lack of efficacy and the problem of unwanted
toxicity [5].

To provide effective alternatives for drug screening at the preclinical stage, the concept
of microcell culture analogs (microCCAs) was initially proposed [6], which later on evolved
into the terminology of organs-on-chips (OoCs) or microphysiological systems (MPSs) [7].
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The OoC is a miniature device for dynamic three-dimensional (3D) cell culturing, and
they have the merits of streamlined operations and small volumes. The OoC simulates
the environment of the target human organ on the chip in order to study and control the
biological behaviors of cells in the process of culturing in vitro. Although the OoCs may
not completely replace animal experiments in most scenarios, they play an increasingly
important role in the fields of toxicity assessment, disease modeling, and drug screening,
among others [8].

OoCs have the strong advantages of rapid responses and desirable throughput and
thus generate massive data. Researchers with biomedical backgrounds may find it difficult
to manually analyze these data in short periods. Consequently, it is urgent to develop
an automated tool that can assist or even replace researchers in conducting data analysis
so as to improve the efficiency and accuracy of the experiment. Artificial intelligence
(AI) [9] has strong abilities in feature representation and data mining, thereby achieving
remarkable success in computer vision [10], text recognition [11], and natural language
processing [12]. Nowadays, deep learning of AI has started to be applied to device design,
real-time monitoring, and image processing in OoCs [2]. The integration of deep learning
and OoCs offers a powerful tool for the exploration and analysis of massive image-based
data, which consequently enhances the intelligence of OoCs and stimulates their great
potential in higher-throughput drug screening.

To provide a comprehensive overview of all relevant applications of deep learning
and OoCs in higher-throughput drug screening, we used Google Scholar to search papers
published in journals, conferences, and ArXiv in the past 10 years (2013–2022), including
deep learning methods applied to different tasks, such as synthesis, segmentation, recon-
struction, classification, and detection. We divided the reviewed papers into 7 categories
according to the following applications: lung-on-a-chip, liver-on-a-chip, heart-on-a-chip,
gut-on-a-chip, brain-on-a-chip, kidney-on-a-chip, and skin-on-a-chip. Descriptive statistics
of these papers based on years, tasks, and practical cases can be found in Figure 1.
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Figure 1. Breakdown of the publications included in this review according to the year of publication,
task addressed in deep learning (Section 3), and application cases (Section 4). The number of
publications for 2022 has been extrapolated from the publications published in or before April.
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In summary, with this review, we aim to:

• Show that deep learning has begun to be explored in OoCs for higher-throughput
drug screening.

• Highlight the critical deep learning tasks in OoCs and the successful use cases that
solve or improve the efficiency of drug screening in the real world.

• Describe the potential applications and future challenges between deep learning
and OoCs.

The remainder of the paper is structured as follows. We begin with a brief introduc-
tion of the principles of deep learning and widely used network structures in Section 2.
Image-processing tasks based on various deep learning methods are described in Section 3.
Section 4 summarizes existing examples where different deep learning methods are applied
to OoC systems. Section 5 discusses the prospective applications and the future challenges
of deep learning in OoCs.

2. Overview of Deep Learning Methods

This section introduces the concepts, techniques, and architectures of deep learning
methods widely applied in high-throughput drug screening, especially in biomedical appli-
cations and the microscopy field. The included deep learning methods are neural networks
(NN) [13], deep neural networks (DNN) [14], convolutional neural networks (CNN) [15],
recurrent neural networks (RNN) [16], generative adversarial networks (GAN) [17], and
auto-encoder (AE) [18].

Based on the availability of label information, deep learning methods can be di-
vided into supervised and unsupervised learning. In supervised learning, given a dataset
D = {xn, yn}

N
n=1 of N samples where x is the observation and y is the label, supervised

learning methods generally aim to optimize a regressor and classifier. When we feed data
into the general supervised model ŷ = f (x; W, B), we try to minimize the loss L(y, ŷ)
between the predicted value ŷ and ground truth value y and optimize the model pa-
rameters, including a set of weights W = {w1, w2, · · · , wi, · · · , wK}, and a set of biases
B = {b1, b2, · · · , bi, · · · , bK} during the training. In unsupervised learning, the dataset
D = {xn}N

n=1 excludes the label information and focuses on tasks including clustering, di-
mensionality reduction and representation learning. For example, representation learning
uses AE to minimize the reconstruction loss L(x, x̂) between the original data x and the
reconstructed one x̂ to enable the encoder to learn the latent representation of the data in a
lower-dimensional space.

2.1. NN and DNN

NN is the foundation of modern deep learning methods, as well as the state-of-the-art
machine learning model since the 1980s. A typical NN consists of an input layer, one or
more hidden layers, an output layer, and neurons within each layer. Each neuron connects
to another one and has an associated activation a, a set of weights W and a set of biases B.
At the final layer of the network, a probability of classification P(y|x; W, B) is calculated by
passing the activation through a softmax function.

P(y|x; W, B) = so f tmax(x; W, B) =
ewT

i x+bi

∑K
k=1 ewT

k x+bk
, (1)

where wi indicates the weight vector leading to the output neuron associated with the class
y = i.

The probability function above is parameterized by W and B on dataset D. A common
approach to solving the function is the maximum likelihood estimate (MLE) [19] with
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stochastic gradient descent, which, in practice, is equivalent to minimizing the negative
log-likelihood [20]:

argmin
θ
−

N

∑
n=1

log[P(yn|xn; W, B)]. (2)

The obtained softmax score will be further used in binary cross-entropy for binary
classification and categorical cross-entropy for multiple classifications [21–24].

While NN models were invented decades before, issues such as the local optimum
lead to poor performance and hard training. To that end, four strategies are widely utilized
during training. (i) Mini-batch [25,26]: mini-batch only utilizes a batch of data instead of
full data during each update to reduce memory usage and improve the training efficiency.
(ii) Stochastic gradient descent (SGD) [27,28]: The SGD strategy adds random factors in
gradient calculation, which is generally fast and benefits the model’s generalization. In
addition, the randomness may help avoid local minimum and continue searching for the
global minimum. (iii) Simulated annealing [29,30]: At each step, simulated annealing
will accept a suboptimal solution with a probability that decays over iterations, which is
another practical approach to avoiding the local minimum. (iv) Different initialization
parameters [31]: This approach suggests initializing multiple neural networks with different
parameter values and choosing the parameters with the smallest errors as the final solution.

2.2. CNN

CNN is a popular variation of DNN with convolutional layers inspired by the receptive
field mechanism in biology. Compared to conventional DNN, CNN has two unique merits.
First, the full connection architecture in DNN layers usually leads to parametric expansion,
along with local optimum and vanishing gradient problems. CNN, on the other hand,
mainly uses convolution layers, which drastically reduces the number of parameters
to be learned through weight-sharing. Second, CNN and its convolution layers and
pooling layers are particularly suitable for image feature learning or grid data in general.
Convolution layers can maximize local information and retain plane structure information
while the pooling layers (i.e., mean pooling and max pooling) aggregate the pixel values of
neighborhoods via a permutation invariant function. This architecture allows for translation
invariance and again reduces the number of weights in the CNN. Specifically, at Layer l,
the k-th feature map xl

k is formulated as:

xl
k = σ

(
wl−1

k ×xl−1 + bl−1
k

)
, (3)

where xl−1 is the output feature map at Layer l − 1, and σ represents an element-wise
non-linear transform function. The top layers of CNN are usually implemented as fully
connected, and thus, weights are no longer shared. Similar to DNN, the activations at
the last layer are fed to a softmax function to compute the probability of each class. The
objective function of training is solved by MLE.

2.3. RNN

While CNN has been widely applied to grid data, e.g., 2D images, it fails to explicitly
model the temporal changes over time in time series data. To that end, RNN establishes
weight connections between neurons in each hidden layer, which allows the output at
time t to be used as the input for time (t + 1). Therefore, RNN is suitable for multi-variate
time series, e.g., language translations, natural language processing [9], and video analysis
where the input to RNN is a high-dimensional sequence {x 1, x2, · · · , xT}. Then, the hidden
state hT over time T is passed through one or more fully connected layers. Last, the output
will be fed into a softmax function [32] to calculate the probability of classification:

P(y|x1, x2, · · · , xT ; U, W, B) = so f tmax(hT ; U, W, B), (4)
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where U represents the state-input weights of recurrent cells, W denotes the state–state
weights of recurrent cells, and B is a set of biases.

While RNN is capable of modeling time-series data, it suffers from the long-term
dependencies problem [33], resulting in gradient vanishing and gradient explosion. Follow-
up solutions, e.g., leak unit (i.e., linear self-connection unit), partially addressed the issue
but also have two deficiencies. One is that the manually set weights are not optimal in the
memory system. The other is that the leak unit lacks a forgetting function and is prone to
information overload. Therefore, a gated unit was introduced that is capable of forgetting
the past states that are fully used by the recurrent cells. Successful implementations with
gated units include long short-term memory (LSTM) [34] and gated recurrent unit networks
(GRU) [35].

2.4. GAN

AI-generated content (AIGC) has been widely discussed recently, and one of the popu-
lar AIGC tools is GAN. In addition to content generation, e.g., artwork and style translation,
GAN plays key roles in general data augmentation where data are relatively expensive to
collect. Once properly trained, GAN is able to generate data under the same distribution
but that did not exist before. These “high-fidelity” data can be used as additional training
data in addition to the augmentation by rotation, crop, and varying illumination.

The vanilla GAN is a generative model that conducts direct sampling or inference
from the desired data distribution without the Markov chain learning mechanism [36].
The GAN consists of two NNs: the generator G and the discriminator D. Two networks
compete and eventually reach a balance when G receives random noise and generates data
xg that D fails to distinguish from the actual data xr. The training objectives of G and D is a
“min-max” game between their respective loss functions. Essentially, D is trying to detect
the forged area, and hence D maximizes the loss function LD:

LD = max
D

Exr∼pr(x)
[log D(xr)] + Exg∼pg(x)

[
log

(
1− D

(
xg
))]

. (5)

Once D’s learning is finished, D is fixed, and G training starts. Since G aims to generate
the data under the same distribution, its training minimizes the following:

LG = min
G

Exg∼pg(x)
[
log

(
1− D

(
xg
))]

. (6)

Overall, D and G’s networks are trained alternately until converged. In general, GAN
is adopted for data generation or unsupervised learning [37]. Recent work has proposed
adding a gradient penalty [23] to the critic loss to avoid the problems of exploding and
vanishing gradients in GAN.

2.5. AE

Representation learning has recently been playing an increasingly important role in
pretraining, thanks to the cheap unlabeled data. Among them, AE is one of the most
fundamental models that learn in an unsupervised manner. AE uses an encoder to map the
input data x into a latent vector and has a decoder to reconstruct the input data x̂ from the
latent vector. Since the dimension of the latent vector is usually small, the latent vector is
usually treated as features or learned representation with compression.

For an encoder with a hidden layer, the input data are passed through a non-linear
function, which is formulated as:

z = f (W1x + B1), (7)
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where z stands for the latent vector, f denotes the non-linear function of the encoder, W1
represents the weight matrix, and B1 is the bias matrix. Then, the latent vector is fed to the
decoder, which contains a hidden layer:

x̂ = g(W2z + B2) (8)

where x̂ stands for the reconstructed input, g denotes the non-linear function of the decoder,
W2 represents the weight matrix, and B2 is the bias matrix. The parameters of the AE are
optimized by minimizing the mean square error (MSE) loss function [38], equivalent to
minimizing the differences between decoder output x̂ and the encoder input x.

There are takeaways regarding the usage of AE. First, AE is data-specific, or in other
words, data-dependent, meaning the efficacy of compression depends on the similarity to
the training datasets. Second, the AE conducts lossy compression, and the output of its
decoder is degraded compared to the original input. Third, AE learns from training datasets
regardless of labels. However, when labels are available, class-specific encoders can be
learned without additional work. Last, AE is mainly used for unsupervised pretraining
followed by supervised fine-tuning [24] to resolve the problem of initializing weights,
vanishing gradients, and model generalization.

3. Deep Learning Methods Potentially Useful for OoCs

Several key technologies arise from the various OoCs, which are categorized into
5 canonical tasks: synthesis, segmentation, reconstruction, classification, and detection.
Since the technical combination of deep learning and OoCs is at the proof of concept (PoC)
so far, we provide the following application prospects for consideration.

3.1. Image Synthesis (Super-Resolution, Data Augmentation)

Image synthesis is one of the first areas in which deep learning made a major con-
tribution to the field of OoCs. Biological experiments based on OoCs oftentimes utilize
light-based time-lapse microscopy (TLM) to observe cell movements and other struc-
tural alterations, and a high spatial resolution is critical for capturing cell dynamics and
interactions from data recorded by the TLM [39]. However, due to the high costs of ad-
vanced devices, high-resolution images and videos are not always acquired. To improve
the image resolution, we [40] trained a GAN model to enhance the spatial resolution of
mini-microscopic images and regular-microscopic images acquired with different opti-
cal microscopes under various magnifications. To address the issue of video resolution,
Pasquale Cascarano et al. [41] extended the deep image prior (DIP) [42] in image super-
resolution to the recursive deep prior video (RDPV) for video frames so as to improve
the spatial resolution of TLM videos. The author of the DIP demonstrated that a ran-
domly initialized CNN could be used as a hand-crafted prior with excellent results in a
super-resolution task. Based on this, the same prior could also be adopted for restoring
images for which paired training data were hard to collect. Instead of searching for the
answer in the image space, the DIP searched in the space of the CNN’s parameters. The
DIP was utilized to fit a low-resolution image, which converted a super-resolution task to
a conditional image generation problem. The needed information for CNN’s parameter
optimization were low-resolution images and the hand-crafted prior produced by the CNN.
Similar to DIP, the utilized CNN architecture in the RDPV was built as an encoder-decoder
framework. The RDPV was fed with one low-resolution frame from a TLM video at a time
and applied the knowledge of previous super-resolved frames to reconstruct the new one
through a recursively updating the weights of the CNN. Figure 2A depicts an example of
video frame reconstruction with RDPV. When using the TLM video improved by the RDPV,
the researchers can effectively decrease the error of cell localization, successfully detect the
clear edges of cells, and draw a precise trajectory for cell tracking.
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Figure 2. Application of DL in TLM videos for improving the accuracy rate of detecting cell migrations
and interactions in OoC experiments. (A) Super-resolution method for TLM video frames. This
method utilizes un-trained NN to obtain super-resolved images while fitting the input low-resolution
video frames without paired training data [41]. Reproduced with permission from Elsevier Copyright
(2023). (B) Data augmentation for TLM videos. The proposed method generates interleaved video
frames for providing high-throughput TLM videos. These two methods can effectively improve the
accuracy of cell tracking [43]. Reproduced with permission from Springer Nature Copyright (2023).

In addition, when observing the cell movements and cell–cell interactions, it is desir-
able for the TLM to increase the frame rate for accurately reconstructing cell-interaction
dynamics. However, high frame rates increase photobleaching and phototoxicity so as to
affect cell growth and imaging quality. The balance between high-resolution and carried
information content is required to reduce the overall data volume. Comes et al. [43] built a
multi-scale GAN to generate interleaved frames of the predicted cell moving and inserted
them into the original videos to provide high-throughput videos. This GAN architec-
ture not only increased the temporal resolution of original videos but also preserved the
biological information in the original videos. Figure 2B shows the flowchart of work [44].

3.2. Image Segmentation

Some OoC experiments need to segment the cell populations from the images for
different analyzing tasks. Stoecklein and colleagues [44] utilized a CNN to segment nerve
cell images into three categories consisting of the axon (blue), myelin (red), and background
(black). As shown in Figure 3, a target fluid flow shape was input to the CNN, which
outputs a predicted pillar sequence. This predicted pillar sequence was fed into a forward
model to predict the sequence flow shape, which was compared with the original target
fluid flow shape by computing the pixel match rate (PMR) [45].

The U-Net [46–48] was successfully applied in various image segmentation tasks, es-
pecially for cell detection and shape measurements in biomedical images. The authors [49]
developed a plug-in for the ImageJ software [50] to conduct a flexible single-cell segmenta-
tion. This plug-in can produce the segmentation mask from an input cell image.
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cropped from the corresponding papers [44]. Reproduced with permission from Springer Nature
Copyright (2023).

3.3. Image Reconstruction

Lim et al. [51] reconstructed all pixels of red blood cells (RBCs) [52] by using a DNN-
based network, which greatly eliminates the introduced distortions due to the ill-posed
measurements acquired from the limited numerical apertures (NAs) [53] of the optical
system. This network has been validated to exactly compute the 2D projections for recon-
structing the 3D refractive index distributions.

3.4. Image Classification

Classification is one of the most widely used technologies in deep learning. The
image labels are adopted to train a classifier, which can successfully extract hierarchical
image features. In Figure 4A, Mencattini et al. [54] developed a CNN (AlexNET) [55] to
perform experimental classification on an atlas of cell trajectories via a predefined taxonomy
(e.g., drug and no-drug). They reposted that the cell trajectories were detected from the
video sequences acquired by the TLM in a Petri dish [56] or in an OoC platform [54]. This
method was able to accurately classify single-cell trajectories according to the presence or
not of the drugs. This method was inspired by the successful application of deep learning
for style recognition in paintings and artistic style transfer [57]. This method reveals the
universal motility styles of cells, which are identified by deep learning in discovering
unknown information from cell trajectories.

Because of motion blur, it is extremely difficult to acquire a high-quality image of a
flowing cell. To address it, the researchers [58] proposed to construct high-throughput
imaging flow cytometry (IFC) by integrating a specialized light source and additional
detectors with conventional flow cytometry (FC) [59] (Figure 4B). The complementary metal-
oxide semiconductor (CMOS) camera [60] on the microscope collected image sequences
of the microfluidic channel through which cell suspension flowed. The multi-tracking
technology was utilized for the original region-of-interest (ROI) image frame so as to crop
the single-cell images from the video sequence. The cropped single-cell images were passed
to a classifier based on supervised learning to identify the cell type. Since multiple cells
could be detected and tracked simultaneously, the proposed method could maintain high
throughput at a low flow rate by increasing the concentration of cells.

3.5. Image Detection

To understand the anatomic and dynamic properties of cells, it is necessary to analyze
the massive amounts of time-lapse image data of live cells to this end. Tracking large
numbers of cells is a common method to analyze the dynamic behavior of cell clusters.
On a tumor-on-a-chip device [2], CellHunter [61] was proposed for tracking and motion
analysis of cells and particles in time-lapse microscopy images. By using CellHunter, the
effective movement of dendritic cells toward tumor cells was assessed.
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Figure 4. Application of deep learning in classification. A and B are directly cropped from the
corresponding papers [54,58], respectively. (A) The work [54] utilized AlexNET to classify the cell
motility behaviors by implementing transfer learning on the input cell trajectories. Reproduced with
permission from Springer Nature Copyright (2023). (B) Schematic of the designed system and the
real-time moving object detector (R-MOD) in work [58]. Reproduced with permission from Springer
Nature Copyright (2023).

Currently, most detection methods are based on supervised or semi-supervised learn-
ing and need tremendous datasets with labels or annotations. However, the process of
labeling training images is largely manual, which is time-consuming. Some unsupervised
learning approaches without manual annotations are proposed to tackle this limitation.
The authors [62] studied the OoC for the culture of complex airway models. They built
connections between microscopic and macroscopic associated objects by embedding the
fuzzy C-means cluster algorithm [63] into the cycle generative adversarial network (Cycle
GAN) [64]. This network took advantage of transfer learning for toxoplasma detection and
achieved high accuracy and effectiveness in toxoplasma microscopic images.
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4. Case Studies in OoC Applications

Table 1 provides a summary of representative applications of deep learning used for
different OoCs. Although at a very early stage and hence with limited demonstrations to
date, the combination of OoCs and deep learning represents a breakthrough for drug screen-
ing and related applications [65]. Given the appropriate data quantity and data quality,
deep learning approaches can potentially be used throughout the drug screening pipeline
to reduce attrition. In addition, OoCs with AI boost the capacity for high-throughput drug
screening and, to some extent, reduce the ethical and legal regulation problems in animal
models due to the possibility of avoiding some animal experiments. Figure 5A depicts a full
system that integrates OoCs with multi-sensors for automatically monitoring microtissue
behaviors [66]. The data acquired from physical/chemical and electrochemical sensing
modules are analyzed by AI modules, which are designed for image processing, signal
abnormal diagnosis, data classification, and prediction. This multi-sensor information
fusion was not previously available but nowadays can be applied for potentially enhancing
the efficiency of drug screening. The detailed structure of the integrated multi-OoCs is
provided in Figure 5B, including microbioreactors for housing organoids, a breadboard
for microfluidic routing via pneumatic valves, a reservoir, bubble traps, physical sensors
for measuring microenvironment parameters, and electrochemical biosensors for detecting
soluble biomarkers secreted by the microtissue.

Table 1. Summary of different applications of deep learning used for OoCs.

Network Platform Function Refs

CNN OoC Improve the spatial resolution of TLM videos
for observing cell dynamics and interactions. [41]

GAN OoC
Providing high-throughput videos with more
cell content for accurately reconstructing
cell-interaction dynamics.

[43]

CNN OoC Segment nerve cell images into axons,
myelins, and background. [44]

AlexNET OoC Classify the treated cancer cells and untreated
cancer cells according to their trajectories. [54]

NN Lung-on-a-chip Predict the toxicity for drug discovery via
image analysis. [67]

GAN, CNN Gut-on-a-chip
Enhance the resolution of confocal
fluorescence photographs and conduct a
better analysis of protein expression.

[68]

CNN, RNN Brain-on-a-chip, Brain
organoid-on-a-chip

Read the data for analysis in both HCS and
HTS via deep learning rather than in a
labor-intensive manner.

[69]

CNN Kidney-on-a-chip Improve early prediction of DIKI. [70–73]

CNN Skin-on-a-chip
Classify the skin cells as healthy or unhealthy
based on metabolic parameters acquired
from sensors.

[74]
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Figure 5. The idea of an automated monitoring and analysis platform integrating multiple OoCs
with sensors for maintaining appropriate temperature and CO2 levels [66]. (A) The schematic of a
multi-OoC platform in a benchtop incubator, which is connected with automated pneumatic valve
controller, electronics for operating physical sensors, potentiostat for measuring electrochemical
signals, and a computer for central programmed integration of all commands. (B) The in-house
designed multi-OoC platform contains a breadboard, microbioreactors, medium reservoir, a physical
sensing suite, one or multiple electrochemical sensors, and bubble traps. Reproduced with permission
from Proceedings of the National Academy of Sciences Copyright (2023).

4.1. Lung-on-a-Chip

There is a pressing need for effective therapeutics for coronavirus disease 2019 (COVID-19),
which is a respiratory disease caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) virus [75–77]. The SARS-CoV-2 virus affects several tissues, including the
lung, where the unique 3D structure of its functional units is critical for proper respiratory
function. The lung-on-a-chip is an in vitro lung model, which essentially recapitulates the
distinct tissue structure and the dynamic mechanical and biological interactions between
the different cell types. Figure 6 depicts the design of a lung-on-a-chip, which successfully
replicates the physiology and pathology of the human lungs for culturing immortalized
cell lines or primary human cells from patients [78]. As shown in the cross-section of the
lung model of Figure 6B, human alveolar epithelial cells at the upper channel and human
pulmonary microvascular endothelial cells at the lower channel were separated by the
extracellular matrix (ECM)-coated membrane. Once confluent, the media was aspirated
from the upper channel to cultivate alveolar cells at the air–liquid interface, and a syringe
pump was connected to the lower channel to continuously infuse the media.
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Figure 6. Alveolar–capillary barrier in vivo mimicked in a lung-on-a-chip model [78]. (A) The
exchange of O2 and CO2 occurs in the human lungs, especially in the alveoli. (B) Cross-section of
the lung model on microfluidic chip, where two different channels are separated by a thin, porous
membrane. Reproduced with permission from Elsevier Copyright (2023).

Deep learning can be introduced into the lung-on-a-chip to accelerate drug develop-
ment for COVID-19 and beyond. Sun et al. [66] reported that the lung-on-a-chip with deep
learning has been utilized in COVID-19 infection studies, which is depicted in Figure 7. In
Figure 7A, small-molecule immunosuppressants can inhibit the JAK/STAT pathway intra-
cellularly and have been suggested for use against COVID-19-associated HLH. These small
molecules bind to PDMS channel walls. In Figure 7B, biologics adsorb to PDMS channel
walls, and the antiadsorptive coating is a method to prevent adsorption. In Figure 7C, a
lung-on-a-chip is integrated with automated liquid handling and continuous flow, which
would provide a new solution for streamlining drug discovery and increasing throughput
for screening lead compounds. In Figure 7D, deep learning algorithms (e.g., NNs) can
aid drug discovery through molecular docking and design, image analysis, and toxicity
predictions. Effective usage includes generating and seeking out sufficiently large datasets
to train algorithms to make accurate predictions.
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Figure 7. Application of deep learning in lung-on-a-chip and upcoming advances. This figure is
directly reproduced from the corresponding paper [67]. (A) Small lipophilic molecules bind to sur-
faces such as PDMS channel walls and can be characterized by the Langmuir–Freundlich isotherm.
(B) Biologics such as antibodies and recombinant proteins adsorb to PDMS channel walls. (C) Inte-
grating lung-on-a-chip with automated liquid handling and continuous flow. (D) AI algorithms such
as NNs can aid drug discovery through molecular docking and design, image analysis, and toxicity
predictions. Reproduced with permission from Springer Nature Copyright (2023).
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4.2. Liver-on-a-Chip

Drug-induced liver injury (DILI) is a major cause of drug failure [79]. Drug metabolism
leads to bio-transformations of pharmaceutical substances that alter drug efficacy, toxicity,
and drug interactions. The liver is the primary site of drug metabolism, but traditional
liver models cannot replicate the complex physiological structure and microenvironment
of the liver, especially the O2 and nutrient gradients. Therefore, many researchers are
making efforts to develop the liver-on-a-chip and have achieved significant progress in
relevant technologies. Figure 8 is a schematic of a liver-on-a-chip for recapitulating liver
cytoarchitecture [80]. Primary hepatocytes were grown in the upper parenchymal channel
with the ECM sandwich format, while the liver sinusoidal endothelial cells (LSECs), Kupffer
cells, and hepatic stellate cells were populated in the lower vascular channel.
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Figure 8. The cross-section of the liver-on-a-chip for simulating hepatic sinusoids [80]. Reproduced
with permission from Elsevier Copyright (2023).

However, the field is still somewhat in its infancy in terms of the standards, procedures,
and methods for translating the data obtained in vitro into reliable predictions applicable
to human body responses [81]. Some deep learning methods were built to predict a
chemical’s toxic potential in silico so as to replace in vitro high-throughput screening [82].
One example is the Tox21 project for toxicity assays, which is a database comprised of
compounds with various activities in each of the 12 different pathway assays. To this end,
Capuzzi et al. [83] built quantitative structure-activity relationship (QSAR) [84] models
by using the random forest method [85], DNNs, and various combinations of molecular
descriptors and dataset-balancing protocols. However, the large experimental dataset has
a higher chance of containing mislabeling either the chemical structures or their toxicity
classes. To expand the availability of highly confident data, industry-driven collaborative
efforts are required. In addition, Li et al. [2] reported that Johnson & Johnson used the
liver-on-a-chip to test the hepatotoxicity of drugs [86]. Zhang et al. [87] reported that
introducing AI [88] into OoCs could effectively improve the ability of data analysis of
biomedical platforms.

4.3. Heart-on-a-Chip

Heart diseases are the major killers threatening human health, and drug-induced
cardiotoxicity is a major problem in drug development [89–91]. To resolve these two
problems, many researchers are devoted to studying heart diseases in different manners.
The heart-on-a-chip is a novel way of building heart models in vitro, and it is a promising
tool for the study of heart diseases and drug screening. Figure 9A is the schematic of a
heart-on-a-chip, including medium reservoirs, microfluidic channels, gel-loading ports,
and a thin PDMS membrane within the PDMS device [90]. Figure 9B is a screenshot of
human microvascular endothelial cells (hMVECs) cultured in this microfluidic system.
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Figure 9. The heart-on-a-chip platform for culturing hMVECs [90]. (A) Schematic of the heart-on-a-
chip. (B) Perpendicular alignment of hMVECs cultured in this heart-on-a-chip (10%, 1-Hz strain).
Reproduced with permission from Elsevier Copyright (2023).

Two sensing methods are mainly employed in heart-on-a-chip for physical and electri-
cal measurements [92]: (i) optical sensors, which are devices related to direct and calcium
imaging, and fluorescent, laser-based, and colorimetric sensing; (ii) electrical sensors, which
record the contractility of cardiomyocytes in real time, such as impedance, strain, and crack
sensing. However, these electrical sensors have limitations on the number of recording
sites and the capacity to process huge amounts of data. Hence, the sensors based on
deep learning can be developed and introduced into the heart-on-a-chip for both optical
and electrical-based measurements, to facilitate automated analysis, and to improve the
accuracy of cardiac physical and electrical monitoring. In addition, the deep learning-based
algorithms can acquire the physical properties (including size, shape, motility, and moving
patterns) and electrophysiological features (such as strength, velocity, and propagation
pattern of action potential) of numerous cells in order to increase the accuracy of predict-
ing both therapeutic and unexpected side effects of novel drug candidates during drug
screening [93,94].

4.4. Gut-on-a-Chip

Many drugs are absorbed through the gut, and nowadays, the gut microbiome research
community commonly utilizes laboratory mice to study drug performance on diseases.
However, Marrero et al. [95] reported that animal models often failed when extrapolated
to humans due to the complex gut dynamics, the interactions of the host and different
microbiota components, and different immune systems between species. The latest gut-on-
a-chip attempts to replicate the relationship between gut inflammation and host-microbial
population so as to clarify the pathological mechanism of early intestinal diseases. There-
fore, the gut-on-a-chip is a particularly necessary model to improve the knowledge of
intestinal physiology and disease etiology [96]. Figure 10A is a full system integrating a
gut-on-a-chip with its monitoring and culturing component [68]. Figure 10B shows the
schematic of a gut-on-a-chip, which has the simultaneous integration of three-electrode
sensors and an Ag/AgCl electrode for the in situ detection of Hg(II) and transepithelial
electrical resistance (TEER). Figure 10C depicts the expression of the tight junction protein
(ZO-1, red staining) and brush border protein (ezrin, green staining) in static culturing
(3 days and 21 days) and dynamic culturing (3 days). The immunofluorescence staining of
ZO-1 and ezrin demonstrated that Caco-2 cells displayed tight junctions and brush borders.
The resolution of confocal fluorescence photographs can be enhanced by involving AI
algorithms (GAN [97], CNN [98]) and can thus potentially conduct a better analysis of
protein expression.
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Shin et al. [99] reported gut-on-a-chip devices inhabited by microbial flora. To 

develop a high-throughput system, Trietsch et al. [100] reported a gut-on-a-chip array and 
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devices generated huge amounts of data, and hence deep learning technology is needed 
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Figure 10. The gut-on-a-chip platform for exploring the transport mechanism of Hg(II) [68]. (A) The
actual design of the gut-on-a-chip platform. (B) A photograph of the gut-on-a-chip connecting with
multi-sensors. (C) A confocal fluorescence photograph of a tight junction protein (red-marked ZO-1)
and brush border protein (green-marked ezrin) in static (3 days; 21 days) and dynamic cultures
(3 days) (scale bar 20 µm). Reproduced with permission from Springer Nature Copyright (2023).

Shin et al. [99] reported gut-on-a-chip devices inhabited by microbial flora. To de-
velop a high-throughput system, Trietsch et al. [100] reported a gut-on-a-chip array and
demonstrated the efficiency of testing for drug toxicity. These multiplied gut-on-a-chip
devices generated huge amounts of data, and hence deep learning technology is needed for
data acquisition, data communication, and data analysis. During data acquisition and data
communication, as many related sensors are involved, the novel visual sensor networks
(VSNs) [101] can be used to perceive visual information (e.g., videos, images) in the ROI
so as to improve the quality of data communication. A VSN contains a set of spatially
distributed visual sensor nodes with the capabilities of image processing, communication,
and storage [102]. The key technologies of image processing for improving the performance
of a VSN are image segmentation and super-resolution reconstruction. Therefore, many
state-of-the-art AI methods based on deep learning can be transplanted into multiplexed
gut-on-a-chip devices. In addition, deep learning can also be integrated into the drug
testing phase for predicting the effectiveness of the new drug and its side effects in the
short and long term. Marrero et al. [95] proposed an alternative biosensing solution, which
could translate to a gut-on-a-chip from other devices used in vitro or lab-on-a-chip.

4.5. Brain-on-a-Chip and Brain Organoid-on-a-Chip

It is challenging to develop new drugs for treating neurodegenerative diseases and
neurodevelopmental disorders due to the poor understanding of pathogenesis and the lack
of appropriate experimental models. Animal models have drawbacks, including ethical
concerns, genetic heterogeneity with humans, and high costs [1]. Brain-on-a-chip and
brain organoids are two alternatives that have been extensively studied [103]. As shown



Biosensors 2023, 13, 389 16 of 25

in Figure 11A, brains-on-a-chip have been mainly developed in the field of engineering,
which can construct sophisticated and complex microstructures for 3D cell cultures by
using microfabrication techniques [104]. Brain organoids belong to the biological field.
Cakir et al. [105] reported that vascularized brain organoids could be formed through the
co-culturing of brain organoids and endothelial cells. Alternatively, certain portions of
stem cells within the stem cell aggregates could be differentiated into brain endothelial
cells. Although brain organoids have great potential to mimic the ultrastructure of the
brain tissue, the brain-on-a-chip is good at reconstructing the characteristics of the brain
microenvironment on the engineering platform. However, these two technologies also have
limitations in the generalization of microenvironment characteristics and structures, which
means that more in vivo-related brain models are needed. In this regard, brain organoid-
on-a-chip has emerged to serve as a novel “human brain avatar”, which was formed
by incorporating matured brain organoids into the brain-on-a-chip with hydrogels [106].
As shown in Figure 11B, brain organoid-on-a-chip has a heterogeneous 3D structure in
a single organoid, and its unit size is large, which makes it difficult to image at high
magnification. Therefore, continuous imaging should be performed to visualize the height-
dependent structures, which is essential for high-content screening. In addition, for high-
throughput screening, an automatic imaging system should be used to image multiple
organoids. In both cases, it is too difficult to identify the number of massive images in a
labor-intensive manner (Figure 11B). Therefore, deep learning techniques can be utilized
for data analysis in both HCS and HTS, ranging from supervised learning methods (CNN,
RNN) to unsupervised learning methods (deep generative models) [69]. These algorithms
are capable of clustering, classification, regression, and anomaly detection (Figure 11C).
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Figure 11. Comparison of human brain avatars and the deep learning techniques for high-throughput
drug screening [104]. (A) The relationship between different brain avatars. (B) The injection-molded
microfluidic chip allows the high-throughput drug screening of brain organoids-on-a-chip. (C) Deep
learning is needed to conduct biological data analysis on massive data for high-throughput drug
screening. Reproduced with permission from AIP Publishing Copyright (2023).

Deep brain stimulation (DBS) [107] is a surgical treatment for motor symptoms of
Parkinson’s disease (PD) [108], which can provide electrical stimulation to the basal ganglia
(BG) [109] region of the brain. Existing commercial DBS devices only use stimulation
based on fixed frequency periodic pulses, but this device is very inefficient in terms of
energy consumption. Moreover, fixed high-frequency stimulation may have side effects,
such as speech impairment. To address the above problems, Gao et al. [110] proposed a
deep learning method based on reinforcement learning (RL) [111] to help derive specific
DBS patterns, which were able to provide effective DBS controllers and energy efficiency.
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This RL-based method was evaluated on a brain-on-a-chip field-programmable gate array
(FPGA) [112] platform to conduct the basal ganglia model (BGM) [113].

In general, the amount of data obtained from a single brain-on-a-chip is limited.
However, the fact that the manufacturing processes of a brain-on-a-chip and a brain
organoid-on-a-chip can be labor-intensive and time-consuming [114], makes it difficult to
introduce high-throughput analysis or deep learning in some scenarios.

4.6. Kidney-on-a-Chip

The kidney is an important excretory organ responsible for maintaining osmotic
pressure and the internal environment. Kongadzem et al. [115] reported that the kidney-
on-a-chip can be used to overcome the shortcomings of traditional animal models and
perform the following operations: first, improving the dosages of drugs in kidney diseases.
Second, using the kidney-on-a-chip can help understand the increase in blood urea and
other nitrogenous waste. In addition, the kidney-on-a-chip can help in drug testing and
development for kidney diseases so as to more effectively identify the drug efficacy, drug-
induced nephrotoxicity, and interactions.

Kim et al. [116] reported a pharmacokinetic profile that could reduce the nephrotoxicity
of gentamicin in a perfused kidney-on-a-chip platform (Figure 12A), which provided
the structure of a kidney-on-a-chip and junctional protein expression of each group. In
Figure 12B, the static and shear groups were measured before exposure to gentamicin, and
D1 and D2 groups were measured 24 h after exposure to gentamicin. Compared with the
Transwell cultures, the polarization of all groups was improved.
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Figure 12. The kidney-on-a-chip was developed for monitoring nephrotoxicity [116]. (A) Schematic
and actual image of the kidney-on-a-chip. (B) Biomarker expressions by the cells in the kidney-on-a-
chip in different groups. Reproduced with permission from MDPI Copyright (2023).

Since the activities and mechanics of a kidney can be stimulated by the kidney-on-a-
chip, it is expected that the developed chip can function as a normal kidney component for
conducting effective drug testing [115]. This will generate a large amount of data because
it is necessary to determine the parameter values required for drug efficacy from the cell
measurements in the kidney-on-a-chip. Deep learning can analyze these parameters in
order to classify or predict the cell response to drugs in the chip and then determine the
drug efficacy.

Nowadays, drug-induced kidney injury (DIKI) is one of the leading causes of failure of
drug development programs in the clinic. Early prediction of the renal toxicity potential of
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drugs is crucial to the success of drug candidates in the clinic. The development of kidney-
on-a-chip technology is crucial to improve the early prediction of DIKI [73]. Kulkarni
et al. [117] reported that newer in silico and computational techniques, such as physiologi-
cally based pharmacokinetic modeling and machine learning, have demonstrated potential
in assisting the prediction of DIKI. Several machine learning models, such as random forest,
support-vector machine, j-nearest neighbor, naïve Bayes, extreme gradient boost, regression
tree, and others, have been studied for the prediction of kidney injury [70–72]. Machine
learning may improve the DIKI predictive ability of the biomarker by automatically identi-
fying non-linear decision boundaries and classifying compounds as toxic or nontoxic with
greater accuracy [72]. Potentially, the kidney-on-a-chip can simulate certain functions of a
kidney, and deep learning is more suitable for tackling massive data than machine learning.
Therefore, the progress in kidney-on-a-chip platforms, in combination with the ability of
deep learning, can be a new alternative for resolving DIKI in the future.

4.7. Skin-on-a-Chip

When the skin contacts the external environment, ultraviolet rays, pollutants, and
microorganisms in the environment can cause skin diseases [118]. In recent years, drug
delivery through the skin has also become a research hotspot, including the screening of
drugs in vitro by using the skin-on-a-chip. This miniaturized chip based on microfluidics
is a platform to mimic the skin and its equivalents in a simple manner. Figure 13 depicts a
solution for designing the skin-on-a-chip for testing drug penetration through the skin [119].
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contains a flow-through dynamic microfluidic device and a programmable syringe pump. The
experimental samples can be collected below the diffusion system in the collection bench. Reproduced
with permission from MDPI Copyright (2023).

Sutterby et al. [74] reported that the skin-on-a-chip circumvented the drawbacks of
traditional cell models by imparting control in the microenvironment and inducing related
mechanical information. The skin-on-a-chip assesses the metabolic parameters (O2, pH, and
glucose and lactate) via embedded microsensors so as to assist in the rigorous evaluation
of cell health and streamline the drug testing process. This process has the potential to be
intelligentized since the various metabolic parameters can provide multi-source labeled
datasets for training a deep network. A possible solution for this is to learn a mapping
between these metabolic parameters and their labels through deep learning so as to classify
the cells as healthy or unhealthy. In this way, deep learning can further improve the
prediction accuracy of drug absorption rate through the skin.

5. Discussion

Recently, researchers in different fields have started trying to solve problems in their
respective fields with deep learning. Some reports show that the integration of OOCs and
deep learning has broad prospects, which can further extend to developing patients-on-
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a-chip for precision medicine [120]. Meanwhile, there are also various challenges in the
future applications of deep learning [121].

5.1. Upcoming Technical Challenges

Data with automatic annotation. The development of automatic data annotation
algorithms and tools can automatically label a large number of unlabeled data, reduce
the tremendous cost of manual annotation, and enhance the efficiency of annotation and
development [122]. The automatic data annotation algorithms and tools can effectively
expand training and validation datasets so as to improve the prediction accuracy of the
neural networks, which are trained for classifying single-cell trajectories, tracking, and
motion analyses of cell clusters and particles in time-lapse microscopy images.

Automated network design. As an important branch of AutoML [123], neural architec-
ture searching (NAS) [124] has attracted more and more attention. In deep learning-based
tasks of classification, detection, segmentation, and tracking, the structure of the neural
network has a decisive impact on the performance of the overall algorithm. The traditional
structure designs of neural networks require expert knowledge and trial-and-error costs.
Therefore, it is extremely difficult to manually design network structures. The NAS tries to
automatically design a network structure with good performance and fast computing speed
and frees people from complex network tuning. The ideal NAS technology only requires a
user-defined dataset, and the entire system can try various network structures and network
connections. Through training, optimizing, and modifying these neural networks, the
system gradually outputs a desired network model. The NAS methods replace the conven-
tional time-consuming process by avoiding “manual design-try-modify-try”. There are two
main challenges during network design: intractable search space and non-transferable opti-
mality. Different from the hyperparameter optimization (HO) [125] for network training,
the NAS is adopted to optimize the parameters that define the network structure.

Multi-variate time-series. The analysis of short-term cardiovascular time series can
help to achieve the early detection of cardiovascular diseases. Integrated AI systems can
help expedite time-series analysis and improve the accuracy of time-series prediction. The
key models for time-series data in computer science (such as NLP) are sequence-to-sequence
(seq2seq) models [126], attention models [127], transformer models [128], and graph neural
networks (GNN) [129]. These technologies can help explore the relationship network and
correlation weights between different data points to increase the accuracy of prediction and
analysis. The seq2seq-based time-series anomaly detection methods can detect abnormal
fragments in cardiovascular time series. Attention models generally are utilized in neural
network models for sequence prediction, which makes the model pay more attention to the
relevant parts of historical variables and current input variables. TPA-LSTM [130] is one
of the multi-variate time series forecasting approaches, and it modifies the conventional
attention mechanism by paying more attention to the selected important, relevant variables
rather than all relevant variables. Conventional multi-variate time-series anomaly detection
has the following challenges, such as a large amount of data and the requirement of
real-time ability. The transformer is a seq2seq model using the self-attention mechanism,
and its advantage is the ability of parallel computing. Based on this advantage, the
transformer can conduct quick anomaly detection in a large amount of multi-variate time
series over a wide time span. Moreover, the multi-variate time series requires additional
technologies to handle the issue of high dimensions, especially to capture the potential
relationships between dimensions. The introduction of GNN is a way to model spatial
dependencies or the relationship between dimensions. The survey [131] demonstrates
that the combination of GNN and attention model/transformer can significantly improve
the performance of multi-variate time-series prediction. Therefore, using the transformer
and GNN to model multi-variate time-series data is worth further studying. In addition,
multimodal input data [132,133] (e.g., statistical data of cardiovascular time series, text data
of subjective physician’s experience, and image of electrocardiogram) can further perfect
the performance of a multi-variate time-series analysis system.
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5.2. Promising Applications

Human-on-a-chip. As shown in Figure 14, a human-on-a-chip consists of multiple
OoCs with different organ representations [2]. Future works can possibly focus on an-
alyzing multi-scale data of each OoC (e.g., the growth, differentiation, or metabolism
of cells) and their interactions by using deep learning methodologies so as to integrate
OoCs as fully controllable microfluidic platforms and achieve high-throughput assays at
single-cell resolution.
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Rare disease-on-a-chip. Although OoCs have achieved significant progress in in vitro
disease models, drug development for rare diseases is greatly hindered due to a lack of
appropriate preclinical models for clinical trials [134,135]. Building rare diseases-on-a-chip
can generate important real-time datasets, which is hardly observable in clinical or in vivo
samples [136]. Such datasets can be utilized to train a deep learning model for analyzing
the changes of such rare diseases at the molecular level and further study the mechanisms
of disease occurrence, along with improved capacities in drug discovery by conducting
larger-scale clinical trials on OoCs not possible with small pools of patients.
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