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Abstract: Hydrogen peroxide (H2O2) is an important reactive oxygen species that mediates a variety
of physiological functions in biological processes, and it is an essential mediator in food, phar-
maceutical, and environmental analysis. However, H2O2 can be dangerous and toxic at certain
concentrations. It is crucial to detect the concentration of H2O2 in the environment for human health
and environmental protection. Herein, we prepared the red-emitting copper nanoclusters (Cu NCs)
by a one-step method, with lipoic acid (LA) and sodium borohydride as protective ligands and
reducing agents, respectively, moreover, adding chitosan (CS) to wrap LA−Cu NCs. The as-prepared
LA−Cu NCs@CS have stronger fluorescence than LA−Cu NCs. We found that the presence of H2O2

causes the fluorescence of LA−Cu NCs@CS to be strongly quenched. Based on this, a fluorescent
probe based on LA−Cu NCs@CS was constructed for the detection of H2O2 with a limit of detection
of 47 nM. The results from this research not only illustrate that the as–developed fluorescent probe
exhibits good selectivity and high sensitivity to H2O2 in environmental water samples but also
propose a novel strategy to prepare red-emitting copper nanoclusters (Cu NCs) by a one-step method.

Keywords: copper nanoclusters; chitosan; aggregation-induced emission; fluorescent probe; hydrogen
peroxide

1. Introduction

Copper nanoclusters (Cu NCs), which have attracted much attention as functionalized
green metal nanomaterials, have been widely studied and applied in the fields of fluo-
rescent probes, biosensing, and cell imaging [1–3]. Different from traditional fluorescent
materials (such as semiconductor quantum dots, organic dyes, and polymer microspheres),
Cu NCs with ultrasmall size endow them with diversified functions, tunable fluorescence,
low biological toxicity, and low cost [4–6] also prompt Cu NCs to possess broad appli-
cation prospects. At present, Cu NCs can be synthesized by many generally adopted
methods, such as the chemical reduction method, template method, and electrochemical
method [7–9], and the prepared Cu NCs show fluorescence emission that ranges from blue
to red light [10]. However, most Cu NCs show blue fluorescent emission with a short
emission wavelength and a small Stokes shift. The penetrating ability of the sample is weak,
and there is background signal interference, which partly damages biological samples and
limits the applicability of Cu NCs as fluorescent probes for highly sensitive detection and
biological analysis [11,12]. Therefore, the development of red fluorescent Cu NCs with
stable performance and a large Stokes shift has always been the focus of researchers.

Chitosan (CS), a glycosaminoglycan, is a product of partial deacetylation of chitin,
with a wide range of sources, and the main biomass sources are fungi, animal bones, and the
shells of shrimps and crabs [13–15]. As a multifunctional polymer material, CS has various
excellent properties, such as biocompatibility, biodegradability, antibacterial activity, and
nontoxicity [16,17], and is regarded as a good applicable raw material in many fields,
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such as the food industry, pharmaceutical industry, cosmetics, and biotechnology [18–20].
A valuable feature of CS is that its chemical structure contains many intrinsic oxygen and
nitrogen functional groups, which can be used as the starting point for covalent modification
or chitosan chain cross-linking. However, the poor solubility limits the further application
of CS, and many studies have modified CS to prepare derivatives to improve its solubility.
At present, CS can be modified by adjusting the degree of deacetylation and viscosity,
introducing hydrophilic groups, and changing the solvent pH (weakly acidic) [21–23]. In
addition, CS can self-assemble and combine with nanomaterials such as graphene and
metal nanomaterials [24,25] through covalent bonds and hydrogen bonds, which not only
expands the application of CS but also provides functionalized properties.

The proposal of the aggregation-induced emission (AIE) effect fundamentally solved
the problem of luminescence quenching caused by aggregation in solution, and the majority
of researchers have performed much work on AIE [26–28]. The AIE enhancement effect
is also an effective means for many metal nanoclusters to enhance fluorescence. In the
aggregated state, intramolecular movement is restricted, which increases the coplanarity
of the fluorescent molecules and contributes to fluorescence emission [29]. Several past
studies [30–32] have shown that metal clusters can also produce AIE. Combined with
these studies and our experimental results, we reasonably believe that the reason for the
fluorescence of LA−Cu NCs@CS is related to the AIE effect of Cu NCs. After the coating
of LA−Cu NCs with chitosan, the connection between Cu NCs and its ligand is closer, to
produce AIE and emit strong red fluorescence. In this study, with lipoic acid (LA) as the
ligand and sodium borohydride (NaBH4) as the reducing agent, LA−protected Cu NCs
(LA−Cu NCs) were synthesized by a one-step method. The prepared LA−Cu NCs showed
red fluorescence emission, but the stability was poor, the yield was low, and the NCs were
difficult to separate and purify (Scheme 1). After adding CS, the dispersed LA−Cu NCs
showed a state of aggregation, and the fluorescence intensity was increased by four times,
showing AIE enhancement characteristics. Based on this, LA−Cu NCs@CS nanocomposites
were prepared, and their related properties were explored. Finally, a fluorescent probe was
constructed to realize the selective and sensitive detection of H2O2 in environmental water
samples, and the limit of detection (LOD) was 47 nM in the detection range of 0.2–128 µM.
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Scheme 1. The preparation of the LA−Cu NCs@CS nanocomposite and the detection principle
of H2O2.

2. Materials and Methods
2.1. Materials

Lipoic acid (LA) and chitosan (CS) were purchased from Aladdin Reagent Co., Ltd.
(Shanghai, China). Sodium borohydride (NaBH4) was obtained from Kelon Chemical
Reagent Co., Ltd. (Chengdu, China). Copper nitrate trihydrate (Cu(NO3)2•3H2O), anhy-
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drous ethanol, and acetic acid were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Hydrogen peroxide (H2O2) was purchased from Beilian Fine Chemicals
Development Co., Ltd. (Tianjin, China). Different metal−ionic (Ag+, Al3+, Cd2+, Cr2+, Cu2+,
Eu3+, Fe2+, Fe3+, Hg2+, Mn2+, Ni2+, Pb2+, and Zn2+) and anionic (F− Cl−, Br−, I−, S2−,
NO2

2−, S2O3
2−, SO4

2−, Ac−, [Fe(CN)6]3−, CO3
2−, and PO4

3−) solutions were prepared
by their respective crystal salts with the same concentration (32 µM). The tap water and
lake water samples were randomly taken from the local tap water and Sanyuan Lake of
Yantai University. All experimental water in this study was produced from a UPT−II−10T
ultrapure water purifier (18.2 MΩ•cm). All chemical reagents were not further purified
unless otherwise specified.

2.2. Apparatus

Scanning electron microscope (TEM) images were taken through a TSM-7900F elec-
tron microscope (JEOL Ltd., Tokyo, Japan). Transmission electron microscopy (TEM) and
High resolution transmission electron microscope (HRTEM) images were taken through
a JEM−2010 transmis XCsion electron microscope with an accelerating voltage of 200 kV
(JEOL Ltd., Tokyo, Japan). Ultraviolet-visible absorption (UV-Vis) spectroscopy was ob-
tained by a PerkinElmer Lambda 365 spectrometer (Shimfusa, Japan) with a wavelength
interval of 5 nm. Fourier transform infrared (FT−IR) spectroscopy was performed using a
Nicolet 5700 FT−IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). X-ray
photoelectron spectroscopy (XPS) was carried out using a Thermo ESCALAB−250 (Thermo
Fisher Scient-ific, Waltham, MA, USA). The fluorescent spectrum was measured by an
F−2700 spectrophotometer (Hitachi, Japan). Energy dispersive X-ray spectrometry (EDS)
and EDS mapping elemental analysis were measured by an Ultim Extreme detector (Oxford
Instruments Technology, Shanghai, China).

2.3. Synthesis of Nanocomposites
2.3.1. Preparation of LA−Cu NCs

Seventy−two milligrams (0.35 mmol) of LA and 14 mg (0.37 mmol) of NaBH4 were
accurately weighed into 16 mL ultrapure water and stirred thoroughly for 5 min at room
temperature. Then, 700 µL of 25 mM Cu(NO3)2•3H2O was added to the above-mixed
solution, and the color of the solution gradually changed from colorless to yellow-brown.
After that, the dissolved oxygen in the mixed solution was pumped out with a vacuum
pump, and then high-purity nitrogen was injected. The step was repeated three times to
ensure that the oxygen was completely removed. Finally, the above-mixed solution was
stirred and reacted for 6 h in an ice water bath (5–10 ◦C) to obtain a clear yellow-brown
LA−Cu NC solution, which exhibited weak red fluorescence under 365 nm UV light. The
prepared LA−Cu NC solution was stored at 4 ◦C for subsequent use.

2.3.2. Preparation of LA−Cu NCs@CS

The operation was to add 1.6 mL 1 mg/mL CS−1% acetic acid solution (ratio of
CuNCs and CS solutions = 10:1 v/v) to the preprepared LA−Cu NC solution, and there
was a clear yellow precipitate in the solution. After vigorously stirring for 30 min at room
temperature, a large amount of aggregated precipitate was generated, which emitted obvi-
ous red fluorescence under irradiation with 365 nm UV light. After that, the same volume
of absolute ethanol was added to the above-mixed solution, and ultrasonic treatment was
performed for 5 min to uniformly disperse the yellow precipitate. Then, the mixture was
centrifuged at 8000 rpm for 8 min, washed three times with anhydrous ethanol, and dried
in a rotary evaporator at 50 ◦C for 1 h. The yellow powder obtained was the pure product
of LA−Cu NCs@CS, which was stored at 4 ◦C for future use.

2.4. Construction of Fluorescent Probe Based on LA−Cu NCs@CS

First, an anhydrous ethanol solution of LA−Cu NCs@CS (2 mg mL−1, pH = 7.40) was
prepared, and then a series of H2O2 aqueous solutions with different concentrations (0.8, 2,
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8, 16, 32, 64 and 128 µM) were added to 1 mL of LA−Cu NCs@CS solution. After reacting
at room temperature for 5 min, the fluorescence emission spectrum was measured with
fluorescence spectrophotometry. As the concentration of H2O2 increased, the intensity
of the fluorescence spectrum showed a gradually decreasing trend, a linear curve was
drawn, and a linear regression equation was obtained by fitting, which was a model of the
fluorescent probe.

In addition, under optimized conditions, different methodological verifications of the
fluorescent probe were also carried out. Selectivity: Explore the interference of different
cations and anions on the fluorescence of LA−Cu NCs@CS; Stability: the fluorescence
intensity changes of LA−Cu NCs@CS within a certain time; Reproducibility: Three parallel
experiments were performed to verify that the LA−Cu NCs@CS fluorescent probe has a
good response to H2O2.

2.5. Detection of H2O2 Using LA−Cu NCs@CS

To investigate the performance of the fluorescent probe in actual detection, different
actual water samples were analyzed. After filtering the tap water and lake water samples
with a 0.22 µm filter membrane, the fluorescent probe was used to test the tap water and
lake water samples to find no H2O2, and then the spiked recovery method was used for
H2O2 determination. Three groups of H2O2 spiked solutions of different concentrations (0.8,
8, 32 µM) were added to the treated tap water and lake water samples, and the fluorescence
emission spectrum was tested after incubating at room temperature for 5 min. Three
experiments were performed in parallel, and the relative standard deviation (RSD) was
calculated. The measured fluorescence intensity value was substituted into the constructed
linear regression equation to calculate the final spiked recovery rate.

3. Results and Discussion
3.1. Morphology of LA−Cu NCs and LA−Cu NCs@CS

Figure 1 demonstrates the morphology and nanometer size of the prepared LA−Cu
NCs and LA−Cu NCs@CS by TEM and HRTEM. LA−Cu NCs showed spherical dispersion
in shape with an average size of 3.1 nm (Figures 1A and S2). In the presence of CS, LA−Cu
NCs appeared to aggregate in an aqueous solution, which was also confirmed by TEM.
LA−Cu NCs@CS did show an aggregate state in Figure 1B. The HRTEM image (Figure 1C)
showed that the single crystal lattice of LA−Cu NCs@CS was approximately 0.33 nm
(3.3 Å), which corresponded to the 102 planes of Cu [30], and the average size was 3.5 nm
(Figure 1D). The characterization of the morphology above showed that the successful
combination of CS and LA−Cu NCs, the formation of an aggregated state, and the size
distribution had not changed significantly.

3.2. Optical Performance Analysis

As shown in Figure 2A, the UV-vis spectra showed that synthesized LA−Cu NCs
had a broad absorption shoulder at 250~300 nm; LA−Cu NCs@CS had a strong and broad
absorption peak at approximately 300 nm. The change in the spectrum proved that the
encapsulation of the LA−Cu NCs by CS caused variation in the molecular structure of the
light−absorbing group, which led to a shift in the absorption peak. In the FT−IR spectra
(Figure 2B), the infrared peak at 515 cm−1 in the curve (a) was located in the disulfide bond
(−S−S−) in LA. Under alkalinity and the reduction of NaBH4, the −S−S− in LA−Cu
NCs was broken and bonded with the reduced Cu2+ to form a −S−Cu bond and the
characteristic peak position was at 2509 cm−1 (curve c). The infrared peaks at 1060 cm−1,
1066 cm−1, and 3439 cm−1 in curve (b) were the C−O and C−O−C stretching vibration
peaks and the characteristic peaks of amino (−NH2) in CS, respectively. When LA−Cu
NCs were encapsulated by CS, the peak position of −S−Cu (2368 cm−1) was redshifted
under the influence of the electron−donating group (−NH2, −OH) in CS (curve d), and
the infrared peak positions of other groups were unchanged.
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XPS was employed to perform chemical element and valence analysis. The XPS total
spectrum showed that there were five peaks of C 1 s, N 1 s, O 1 s, S 2p, and Cu 2p under
the corresponding binding energy, corresponding to the existence of C, N, O, S, and Cu
elements in LA−Cu NCs@CS (Figure 2C), which was consistent with expectations. In
the Cu 2p spectrum (Figure 2D), the characteristic peaks at 932.2 eV and 952.3 eV were
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attributed to Cu 2p3/2 and Cu 2p1/2 of Cu(0), respectively. In addition, there was no
obvious absorption peak at 943.5 eV, which indicated that Cu(II) in LA−Cu NCs@CS was
almost nonexistent and had been completely reduced. The difference in binding energy
between Cu(0) and Cu(I) was only approximately 0.1 eV, indicating that the valence state of
Cu in LA−Cu NCs@CS may be 0 or +1 [33]. In addition, the EDS spectrum clearly shows
the inclusion of C, N, O, S, and Cu elements (Figure S1), which was consistent with the XPS
spectrum test result, and the mapping element distribution of the characteristic elements
of N, O, S, and Cu was also very uniform. In addition, EDS Mapping analysis of LA−Cu
NCs@CS was performed to further verify the successful synthesis of the materials. As
shown in Figure S1, the characteristic spectra of Cu, N, S and other elements can be seen
from the figure, indicating that the elements in LA−Cu NCs@CS are closely combined.

As shown in Figure 3A, under different excitation wavelengths (350–440 nm), LA−Cu
NCs@CS had the maximum fluorescence emission when the excitation wavelength was
400 nm. At the optimal excitation wavelength, the excitation and emission spectra of
LA−Cu NCs and LA−Cu NCs@CS showed that the fluorescence emission intensity of
LA−Cu NCs was relatively weak, and the fluorescence intensity became approximately
four times that of the original after adding CS (Figure 3B). After CS encapsulated LA−Cu
NCs to form LA−Cu NCs@CS, it triggered the aggregation of fluorophores and increased
the fluorescence intensity. Figure 3C shows the fluorescence decay spectrum of LA−Cu
NCs, whose fluorescence lifetime was 77.94 ns, as calculated by the weighted average
method [34]. After adding CS, the fluorescence lifetime calculated by the same method was
58.03 ns (Figure 3D), which was less than that without CS. This result indicated that the
presence of CS can enhance the fluorescence intensity of LA−Cu NCs.
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3.3. Optimization of Conditions

During the synthesis process, the effects of different reaction conditions on the fluo-
rescence performance of LA−Cu NCs@CS were determined, including the ratio of raw
materials, reaction time, pH, and reaction temperature. Figure 4A shows the fluorescence
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emission intensity of the different molar ratios of LA and Cu2+ (1:1, 5:1, 10:1, 20:1, and
30:1) and the volume ratios (1:1, 5:1, 10:1, 20:1, and 30:1) of the total volume of the LA−Cu
NC solution under excitation at 400 nm. As the ratio of LA increased, the fluorescence
intensity gradually increased, reaching a maximum of 20:1. At the same time, the fluo-
rescence intensity was the largest when the ratio of the total volume of the LA−Cu NC
solution to the volume of the CS solution was 10:1. The appropriate reaction time was
not only conducive to the benign growth of LA−Cu NCs@CS molecules but could also
avoid the excessive growth of the reaction time that would affect the fluorescence perfor-
mance. The fluorescence emission intensity at different reaction times in Figure 4B shows
that the fluorescence intensity was the maximum at 6 h, which was the time for the final
reaction to prepare LA−Cu NCs@CS. The initial pH value of the synthesized LA−Cu
NCs@CS was 4.14. When the pH was adjusted by adding 1 M NaOH, it was found that the
fluorescence intensity changed little at pH 4–6, and the fluorescence intensity decreased
significantly when the pH value was greater than 6 (Figure 4C), which indicated that the
weakly acidic environment (pH = 4–6) was suitable for the synthesis of LA−Cu NCs@CS.
The effect of reaction temperature on fluorescence was also further optimized. As shown
in Figure 4D, as the reaction temperature increased, the fluorescence intensity decreased
greatly, which demonstrated that low temperature was more suitable for the synthesis of
LA−Cu NCs@CS, and the final preparation of LA−Cu NCs@CS was carried out in an ice
bath environment (5–10 ◦C).
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3.4. Fluorescence Response of LA−Cu NCs@CS in the Presence of H2O2

H2O2 is an important and abundant reactive oxygen species in organisms that play an
important role in maintaining the physiological balance of cells in the body, and H2O2 has a
wide range of applications in the food, environment, pharmaceutical, and textile industries.
However, excessive discharge of sewage and waste liquid containing a large amount of
H2O2 will cause harm to the environment and water resources. At present, the analysis and
monitoring of H2O2 have always been the focus of related research. In this study, it is found
that the presence of H2O2 will cause the fluorescence of the LA−Cu NCs@CS solution to
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be significantly reduced. Therefore, the construction of a probe based on LA−Cu NCs@CS
will show good prospects in the detection of H2O2.

Figure 5A and Table S1 show the changes in fluorescence intensity after adding a series
of concentrations (0.2, 0.8, 2, 8, 16, 32, 64, and 128 µM) of H2O2 to LA−Cu NCs@CS for
5 min at room temperature. With increasing H2O2 concentration, the fluorescence intensity
of LA−Cu NCs@CS showed a declining trend, and the greater the H2O2 concentration, the
higher the fluorescence quenching degree. Figure 5B shows the linear relationship between
the H2O2 concentration and LA−Cu NCs@CS fluorescence intensity ratio ((F0 − F)/F0).
Where F0 and F are the fluorescence intensities of the LA−Cu NCs@CS solution without
H2O2 and with different concentrations of H2O2, respectively. There was a good linear
relationship between LA−Cu NCs@CS and the fluorescence intensity ratio. The linear
equation was (F0 − F)/F0 = 0.00378C + 0.00578 (R2 = 0.9941), where C is the H2O2 concen-
tration. The LOD of the probe for the H2O2 response was 47 nM (S/N = 3). In addition,
to reflect the good detection performance of this method for H2O2, the detection of H2O2
by different methods was compared with the methods mentioned in this study. As shown
in Table 1, compared with other nanomaterials [35–39], this method had a lower LOD for
H2O2 detection. The above results showed that the fluorescent probe based on LA−Cu
NCs@CS had a good performance and could achieve sensitive detection of H2O2. Moreover,
this result was obtained by using three different hydrogen peroxide probes on the same
day, which also proved that the probe had little difference in the detection performance of
hydrogen peroxide during the day with acceptable RSD (2.21%).
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Table 1. Comparison of different nanomaterials for H2O2 detection.

Nanomaterial Linear Range/µM Detection Limit/µM Ref.

carbon quantum dots 0.5~50 0.2 [35]

gold nanoclusters capped
by hemoglobin 0.5~700 0.21 [36]

Fe, N−incorporated
carbon nanotubes 0.1~100 0.068 [37]

naphthalene backbone and a boric
acid ester 1~250 0.7 [38]

sulfonated porphyrin 1~8 0.32 [39]

LA−Cu NCs@CS 0.2~128 0.047 This work

3.5. Stability and Selectivity

Stability and selectivity experiments were performed separately to evaluate the appli-
cability of the probe based on LA−Cu NCs@CS. Figure 6A shows the fluorescence intensity
changes of LA−Cu NCs and LA−Cu NCs@CS prepared under the same conditions at
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different periods after storage at room temperature for approximately five days. In the
first 20 h, the fluorescence intensity of LA−Cu NCs (red line) was reduced by approx-
imately half, and the fluorescence intensity of LA−Cu NCs@CS (black line) decreased
slowly within 20 h. Even after 128 h, the fluorescence intensity was also greater than the
initial value of LA−Cu NCs. From this point of view, after adding CS to LA−Cu NCs, CS
might have a certain stabilizing and protective effect on LA−Cu NC molecules, and the
electron−donating groups (−NH2 and −OH) contained in CS were also beneficial to the
fluorescence emission of LA−Cu NCs. It is worth noting that the difference in inner−day
fluorescence intensity is slightly larger, and the relevant RSDs are between 3.77% and 4.84%.
In addition, the red fluorescence intensity of the powder products of LA−Cu NCs@CS was
much higher than that of LA−Cu NCs (inset a) under ultraviolet light. It is worth noting
that the fluorescence intensity of the LA−Cu NCs@CS powder product under ultraviolet
light hardly changed after storage for 2 months (inset b). Therefore, the addition of CS to
LA−Cu NCs not only enhanced the fluorescence but also improved the stability, which
provided a guarantee for practical applications.
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Figure 6. (A) The stability test of LA−Cu NCs (lower, red line) and LA−Cu NCs@CS (upper, black
line), Insert: (a) Photos of the solid powder products of LA−Cu NCs (left) and LA−Cu NCs@CS
(right) under UV light; (b) The photos of LA−Cu NCs@CS powder under UV light before (left) and
after (right) two months. (B) Fluorescence responses of the fluorescence probe towards H2O2 and
various metal ions.

Under optimized conditions, the interference of different metal ions and anions with
the same concentration (32 µM) on the response of the LA−Cu NCs@CS system to H2O2
was explored separately. Figure 6B shows that only the fluorescence response of H2O2 had
a significant change, and different metal ions and anions had almost no effect on the H2O2
probe test process, which indicated that the fluorescent probe based on LA−Cu NCs@CS
had good anti-interference ability for H2O2 detection.

3.6. Actual Detection of H2O2

To verify the feasibility of the prepared fluorescent probe for H2O2 detection, we tested
tap water and lake water samples and the presence of H2O2 was not detected. Then, the
recovery rate was calculated using the spiked recovery method. First, the tap water and
lake water were filtered with 0.22 µm membranes, and then the filtered tap water and
lake water were used to prepare H2O2 with different concentrations (0.8, 8, and 32 µM)
as the spiked samples. Finally, the linear equation of (F0–F)/F0 and H2O2 concentration
was employed for the calculation of the final recovery rate. The spiked experiment was
performed three times in parallel, and the results are shown in Table 2. The recovery rate
of tap water was 95.88–98.44%, the recovery rate of lake water was 94.38–102.5%, and the
total RSD ranged from 2.9% to 4.5%.
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Table 2. Detection of H2O2 in actual water samples. (n = 3).

Samples Added (µM) Found (µM) Recovery (%) RSD (%)

Tap water

0 0 - -
0.80 0.767 95.88 3.6
8.00 7.860 98.25 4.5
32.0 31.50 98.44 3.7

Lake water

0 0 - -
0.80 0.755 94.38 2.9
8.00 7.650 95.62 3.5
32.0 32.80 102.5 3.4

Accordingly, the fluorescent probe based on LA−Cu NCs@CS had good sensitivity
and selectivity, which opened up a new path for the analysis and monitoring of H2O2 in
actual environmental water samples.

4. Conclusions

In summary, we report a novel method that is used to construct a probe for detecting
H2O2. The as-synthesized LA−Cu NCs@CS had good nanomorphology and superior
luminescence properties. The linear range of the method was from 0.2 µM to 128 µM, and
the limit of detection was 47 nM. In addition, this probe exhibits strong anti-interference
ability in water samples with excellent selectivity and reproducibility. Furthermore, the
synthesis of LA−Cu NCs@CS was simple and environmentally friendly, inexpensive, and
served as a reference for the quantitative analysis of H2O2 in natural water and other
water samples.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13030361/s1, Figure S1: The EDS image of LA−CuNCs@CS;
Figure S2: The diameter distribution histogram of LA−Cu NCs.; Table S1: The corresponding
fluorescence intensity under different concentrations of H2O2 from Figure 5A. Equation (S1): The
equation to calculate the LOD.
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