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Abstract: Throughout this research, a unique optical sensor for detecting one of the most dangerous
heavy metal ions, Cu(II), was designed and developed. The (4-mercaptophenyl) iminomethylphenyl
naphthalenyl carbamate (MNC) sensor probe was effectively prepared. The Schiff base of the
sensor shows a “turn-off” state with excellent sensitivity to Cu(II) ions. This innovative fluorescent
chemosensor possesses distinctive optical features with a substantial Stocks shift (about 114 nm). In
addition, MNC has remarkable selectivity for Cu(II) relative to other cations. Density functional theory
(DFT) and the time-dependent DFT (TDDFT) theoretical calculations were performed to examine
Cu(II) chelation structures and associated electronic properties in solution, and the results indicate
that the luminescence quenching in this complex is due to ICT. Chelation-quenched fluorescence
is responsible for the internal charge transfer (ICT)-based selectivity of the MNC sensing molecule
for Cu(II) ions. In a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4) solution, Fluorescence and
UV-Vis absorption of the MNC probe and Cu(II) ions were investigated. By utilizing a solution
containing several metal ions, the interference of other metal ions was studied. This MNC molecule
has outstanding selectivity and sensitivity, as well as a low LOD (1.45 nM). Consequently, these
distinctive properties enable it to find the copper metal ions across an actual narrow dynamic range
(0–1.2 M Cu(II)). The reversibility of the sensor was obtained by employing an EDTA as a powerful
chelating agent.

Keywords: sensor; copper; fluorescence; synthesis; optical properties; chemical analysis

1. Introduction

Copper Cu(II) ion is the third-most abundant metal ion needed by every living creature
and is essential for several processes. In contrast, deficiencies or excesses of Cu(II) ions,
as determined by cellular requirements, result in various diseases. Optical sensors with
outstanding selectivity and sensitivity have been developed to detect Cu(II) ions. The
designed sensor can detect luminescence in the refractive indices adsorption that arises
from light and material interactions. They have garnered significant attention in recent
years because of their simple and naked-eye identification, real-time recognition, cheap
fee, excellent specificity against analytes, speedy response, and less equipment required in
the investigation process. Copper (Cu(II)) ion is one of the essential metal ions. It plays a
significant part in a variety of processes that are necessary to both nature and the human
body [1,2].
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As an enzymatic activator of oxidative enzymes involving tyrosinase, lysyl oxidase,
cytochrome c oxidase, superoxide dismutase, and a number of metalloenzymes [3,4], it
plays a vital function in the human body. It is an essential catalyst for iron absorption and
ferroheme synthesis [5]. Under normal conditions, Cu(II) ion does not harm the human
body; excess and deficiency can produce diverse effects. Although minimal levels of Cu(II)
ion are necessary for normal physiological processes, exceeding the recommended daily
consumption is harmful to human health [6,7]. The increase or decrease in copper ion
concentration causes several disorders related to iron homeostasis, which is controlled by
copper ions.

Excessive Cu(II) ion consumption can result in diarrhea, vomiting, vertigo, and ab-
dominal pain [8]. Long-term exposure causes the accumulation of free Cu(II) ions in the
body, which, owing to redox activity, produces reactive oxygen species that are harmful
to fatty acids, DNA, and tissues. Oxygen radicals have the potential to be cytotoxic [9,10].
Several illnesses may emerge depending on the state of the body’s hemostasis. In addition
to Wilson’s, Parkinson’s, Menkes, neurodegenerative, and Alzheimer’s illnesses [11,12],
increasing the content of Cu(II) ion produces Huntington’s disease, and acute hepatic and
renal failure [13,14]. Environmental Protection Agency (EPA) guidelines for Cu(II) ions in
drinking water are 1.3 ppm [15,16]. The copper concentration in a healthy person’s blood
serum should be 100–150 µg/dL [17,18]. Additionally, home, industrial, and agricultural
operations emit Cu(II) ions into the environment [19]. Cu(II)-containing pesticides are
often used to stimulate crop growth while also preventing illness. Since 1991, the EPA has
limited the amount of Cu(II) ion in tap water to 20 µM [20]. In contrast, the World Health
Organization (WHO) has set the limit at 30 µM [21]. The excessive use of these pesticides
may contaminate different water resources.

Several techniques exist for detecting trace metals. Various advanced techniques
are utilized in the sensing process of copper ions [22–24]. Nevertheless, these techniques
have downsides. For example, many of these techniques are pricey and difficult, and
important factors such as dependability, precision, and speed must be addressed [25,26].
It is imperative and urgent to enhance sensitive, simple, quick, repeatable, cheap, and
analytical techniques for detecting Cu(II) ions in ecological and medicinal materials [27].
The detection mechanism relies on the unique binding of the specified analyte to the
receptor. Based on the contact, the transducers may detect characteristics that include
changes to the pH, electron, mass transfer, temperature, a change in optical qualities, and
potential differences. This method turns the receptor’s response into a significant gesture
exactly proportional to the presence or quantity of the analyte [28,29]. As a result of its
low-priced, simple miniaturization, and rapid output of semi-quantitative data, sensor
research has grown in popularity and importance in recent years. Because of this, sensors
have become indispensable means for scientific ecological and dietary investigation, as
well as the detection of chemical and biological contaminants [30–33].

The Schiff base is a magnificent class of target compounds owing to diverse appli-
cations in different fields that cover analytical, biological, and coordination chemistry.
The Schiff base compound achieved enormous significance in the healthcare and medic-
inal industries and fascinated scientists to generate a novel construction outstanding
variety of bioactivities involving antimicrobial [34], antibacterial [35], antifungal [36], anti-
ulcer [37], anticonvulsant [38], antioxidant [39], anti-inflammatory [40], analgesic [41],
and anti-tubercular [42]. As a part of biological activities, Schiff base emerged as a key
intermediate to elaborate new structures that find multiple applications as optical [43],
photosensitizes in dye-sensitized solar cells [44], catalyst [45], polymers stabilizers [46],
semiconducting multicolumnar mesophases [47], pigments [48], dyes [49], sensors [50–53]
and luminescence [54]. Carbamate derivatives are one of the prospective target molecules
utilized in producing pharmaceuticals, cosmetics, pesticides, and polyurethanes [55]. In-
terestingly, naringenin carbamate and chalcone-O-carbamate have been studied as multi-
faceted Alzheimer’s disease treatments [56,57].
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In this study, we describe a switch turn-OFF Schiff base sensor probe. Our group
developed a practical, extremely selective, reversible, and susceptible chemosensor with a
low detection limit and excellent sensitivity for copper metal ions. Moreover, the copper
ion detecting process is based on the ICT mechanism. The Schiff base chelating ligand was
produced following the scientific literature. The synthesized ligand is a unique optical sen-
sor for detecting copper ions. The detection technique relies on measuring the fluorescence
increase of the Schiff base sensing molecule throughout the complexation process based
on Cu(II).

2. Experimental
2.1. Materials and Methods

All compounds were purchased from (Sigma-Aldrich, St. Louis, MO, USA) and
utilized with no additional processing. The absorbance spectra (UV–vis) were collected
using a 1 cm quartz cell and an EvolutionTM 200 series UV-Visible spectrophotometer.
For emission and excitation spectrum investigations, a 1 cm quartz cell was used with a
JASCOFP6300 spectrofluorometer to detect fluorescence spectra. The 20 mM HEBES buffer
stock solution with a pH of 7.4 has been made. On a Bruker NMR operating at 800 and
125 MHz, the 1H and 13C-NMR spectra were acquired. The chemical shifts were calculated
using DMSO-d6 as the solvent and TMS as the standard internal reference. The melting
points were obtained using the Stuart SMP30 equipment. For analytical TLC, Silica Gel 60
F254 plates (40–60 m) were used from Sigma, and the chromatogram was produced using a
254 nm UV lamp. All reactions were conducted in a nitrogen-protected dry environment
using oven-dried glassware without additional purification.

2.2. Procedure for MNC Synthesis

In a 100 mL round bottom flask, a solution of 4-mercaptoaniline (1.25 g, 10 mmol) in
15 mL of dichloromethane was added to a solution of salicylaldehyde (1.22 g, 10 mmol)
in 40 mL of dichloromethane. After 2 h of refluxing, the mixture was allowed to cool
to room temperature. A 30 mL dichloromethane solution of naphthyl isocyanate (1.69 g,
10 mmol) was added and agitated for 30 min. The mixture was then heated under reflux
for 3 h. In order to monitor the reaction progress, diethyl ether/hexane (70/30) was utilized
as an eluent. Following cooling, the mixture was filtered, and the crude material was
recrystallized from ethanol to yield (3.46 g, 87.4%). M.p. = 215–217 ◦C. 1H NMR (850 MHz,
DMSO d6): 12.88 (s, 1H, NH), 10.53 (s, 1H), 9.00 (s, 1H, CH=N-), 8.04 (d, 1H, J = 8.5 Hz,
Harom), 7.97 (d, 1H, J = 7.68 Hz, Harom), 7.85 (d, 1H, J = 7.65 Hz, Harom), 7.68 (dd, 1H,
J = 7.65 Hz, J = 1.7 Hz, Harom), 7.63–7.57 (m, 5H, Harom), 7.52 (t, 1H, J = 8.5 Hz, Harom);
7.47 (m, 2H, Harom), 7.44 (m, 1H, Harom), 7.02 (m, 2H, Harom);13C NMR (212.5 MHz, DMSO-
d6) δ(ppm): 164.6 (C=O), 160.7 (HS-C), 149.3, 136.8, 134.2, 134.08, 134.09, 128.6, 127.0, 126.7,
126.0, 123.2, 122.4, 119.79, 119.72, 117.1. IR (cm−1) ν: 3245 (NH), 3051(CH), 1650 (C(O)NH),
1614(C=N); 1568(C=C), 1519, 1492, 1481, 1455, 1275, 1240, 1182, 1172. The NMR and IR
spectra were displayed in the supporting information (Figures S1 and S2).

2.3. Optical Measurements

For the different kinds of examined metal ions, such as Gd(III), Ag(I), etc., stock
solutions of metal nitrates were prepared. Fluorometric titration was conducted with a
free ligand concentration of 1.25 M in a buffer solution containing 1:9 (v/v) DMSO-HEPES
(pH = 7.4). In a 1.0 M aqueous solution, the UV-Vis spectra of free MNC and complexes
(MNC-Cu(II)) were assessed. Throughout Absorbance titration, it is reasonable to suppose
that the overall volume of free ligand MNC and metal ions is 2.0 mL since the volume of
metal ions can be disregarded compared to that of free MNC. The length of the excitation
and emission slits within every experiment was 5 nm.
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3. Results
3.1. MNC Probe Synthesis

Our approach started with synthesizing Schiff base carbamate via the condensation
of equimolar amount 4-mercaptoaniline 1 and salicylaldehyde 2 in anhydrous boiling
dichloromethane. After 3 h of contact, one equivalent of naphtylisocyanate 3 was added.
The reaction afforded the corresponding Schiff base carbamate 4 at 85 % yield (Scheme 1).
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Scheme 1. Synthesis of the Schiff Base carbamate.

3.2. Optical Characteristics of MNC

The as-prepared MNC chemical sensor shows distinguishing optical characteristics;
these features were collected in a 1:9 (v/v) DMSO-HEPES buffer solution (20 mM, pH = 7.4)
(see Figure 1). Under excitation with 312 nm, the free chemical sensor displays a distinct
peak located at 426 nm. In addition, the absorbance spectra provide the existence of three
maximums at 226, 266, and 351 nm correspondingly. These peaks might be ascribed to π-π*
and n-π* transitions.
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Figure 1. MNC (a) UV-Vis; (b) emission and excitation spectra.

Absorbance and fluorescence methods were used to observe the fluorescence response
of MNC to the copper ions. In addition to the two notable absorbance peaks of the free
MNC probe, the addition of Cu(II) ions to the MNC molecules formed a novel absorbance
peak at 378 nm [58]. The absorbance of the 378 nm peaks quenches when more copper
ions are added. In contrast, the 266 absorption peak begins to intensify and shift to
273 nm, a redshift, when Cu(II) is added to the MNC solution. With the development of
an isosbestic point at 329 nm, the synchronized behavior of the three absorption peaks
continues (Figure 2a).

Intriguingly, the peculiar response of the MNC UV-Vis spectra verifies the binding
procedure involving Cu(II) metal and the functioning groups, which include oxygen and
nitrogen atoms of the sensitive chemical sensor [59]. The association between the absorption
ratio at 273 and 378 nm of the chemical sensor and as a function of Cu(II) concentration
throughout the range of 0.1 to 0.9 M is noteworthy (Figure 2b). Particularly, when the Cu(II)
concentration reaches an equal molar ratio of 1:1 (MNC/Cu(II)), the absorbance starts to be
constant even at higher molar ratios. The ratiometric detection approach demonstrates that
the mechanism of Cu(II) and MNC interaction is a ratio of 1:1 stoichiometric.
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Furthermore, the MNC sensing molecule exhibits luminescent properties, through
the dominant peak showing at 426 nm and λexc at 312 nm. The optical characteristics
of MNC demonstrate the lack of overlap seen between absorbance and luminescence,
and a considerable Stocks shift (∆λ = 114 nm) was observed. The substantial Stokes
shift reduces self-quenching, which is necessary for potential implementation. With the
stepwise addition of Cu(II) to MNC, the luminescence sensitivity of the prominent peak
at 426 nm was substantially quenched. As seen in Figure 3a, the amplitude of signal
attenuation reached about 74.43%. Moreover, the addition of Cu(II) ion to the MNC probe
in a concentration range from 0 to 1 equivalent of Cu(II) causes the prominent emission
peak to quench and shift to 414 nm. However, the fluorescence intensities stabilized
following the addition of more than 1 equivalent of Cu(II) ions. The fluorescence titration
demonstrated a nonlinear fit of the fluorescence emission titration curve. In accordance
with absorption titration results, a 1:1 complex ratio was observed between the MNC
chemical sensor and Cu(II).
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Figure 3. (a) Luminescence of MNC 10 µM in a 1:9 (v/v) DMSO-HEPES buffer (20 mM, pH = 7.4)
during gradual adding Cu(II) of 0–1.5 µM range, λexc 312 nm; (b) calibration curve of MNC intensity
versus [Cu(II)].

3.3. PH Influence on the MNC Luminescence

The majority of metal cations detection depends on optical sensor fluorescence modifi-
cation coupled with hydrogen proton transfer. Changes in the pH of the ambient solution
have an effect on this occurrence. In the pH range of 2 to 11, the effect of pH on the
selectivity and responsiveness of the chemical sensor to copper ions was examined. By
adjusting the pH of the aqueous solution with 20 M HEPES buffer solutions at a certain
concentration of Cu(II) ion (1 µM) and excitation at 312 nm, we were able to determine
the Cu(II) concentration (Figure 4). As seen, in the pH range of 2.0 to 7.0, the chemical
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sensor’s response is proportional to pH because the Schiff base exists in protonated form
without complex formation. The binding of the proton to the nitrogen and oxygen atoms of
the active groups inhibits the formation of complexes to a certain degree. However, the
observed increase in MNC sensor fluorescence in response to alkaline pH or high pH > 7 is
owing to the precipitation of Cu(II) hydroxide from the aqueous solution. In a variety of
pH 7.4 buffered systems, including the HEBES buffer, the high reactivity and specificity of
the MNC sensing molecule for copper ions were investigated.
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3.4. Quenching Phenomenon

Collisional quenching of fluorescence is described by the Stern-Volmer equation [60]:

F0

F
= 1 + Ksv[Q]

F0 and F are the fluorescence intensities in the absence of a quencher and its presence,
respectively, correspondingly, in this equation. Ksv is the quenching constant, and Q is the
quencher concentration. Ksv denotes the Stern-Volmer quenching constant. Typically, data
on quenching are displayed as graphs of F0/F vs. [Q] (see Figure 5). A linear Stern-Volmer
curve demonstrates that collisional fluorescence quenching has occurred. Over a broad
range from 0 to 1 M, R2 = 0.998% demonstrated an exceptional linear dependency. In order
to assess the nanosensor’s sensitivity, the limit of detection (LOD) was estimated to be
1.45 nM, supposing that emission intensity can be assessed with 1% accuracy [61]. Notably,
these LODs are far lower than the Cu2+ content (31.5 µM) recommended by the WHO
for drinking water characteristic guidelines [62]. Furthermore, the LOD of the MNC is
compared to some of the recently reported sensors (Table 1).
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Table 1. Comparison of Cu(II) optical sensors found in the literature with the investigated work.

Research Group LOD Mechanism Ref.

Torawane et al. 0.35 µM Quenching [63]
Tang et al. 0.48 µM Quenching [64]
Yang et al. 0.49 µM Quenching [65]
Chou et al. 0.87 µM Enhancement [66]
Park et al. 2.90 µM Enhancement [67]

Ghosh et al. 1.01 µM Red shifting [68]
Saleh et al. 0.011 µM Quenching [7]
This work 1.45 nM Quenching -

Under the optimum conditions, the interaction between MNC molecules and Cu(II)
was investigated in the absence and the presence of various metal ions of a 1 µM concen-
tration. There were minor variations in the MNC probe’s emission intensities. As seen in
Figure 6a, none of the studied interfering salt ions had any discernible effect on the chemi-
cal detection of Cu(II) ions. Consequently, the chemical sensor might be used as a highly
selective sensor for Cu(II). The MNC:Cu(II) complex stoichiometric ratio was established
using Job’s plot-based luminescence analyses [69,70]. The Job’s plot (see Figure 7b) was
generated by varying the copper ion concentration within a range of up to 1 M. The greatest
fluorescence intensity quenching value was observed when the molar ratio of Cu(II) was
around 0.5, indicating that MNC and Cu(II) ions formed a 1:1 complex. In addition, this is
consistent with the Absorbance titration.
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Figure 6. (a) Maximum luminescence intensities of the MNC sensing molecule (I) in the presence
of various metal ions (blue bar) and (II) in the presence of the same metal ions and Cu(II) ions (red
bar). The ratio of (MNC: Cu(II): M(II) has a 1:1:1 ratio (λex = 312 nm); (b) Job’s plot of MNC with
Cu(II) ions.
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3.5. Reversibility

Ethylenediaminetetraacetate (EDTA), a very effective binding reagent for especially
Cu(II) ions, was used to investigate the reversibility of the MNC-based optical chemosensor.
Cu(II)-MNC complex solution, with a molar ratio of (1:1) Cu(II) to MNC and a concentration
of 10 µM, was exposed and mixed with an equal molar concentration of EDTA solution.
Upon addition of EDTA, their molecules begin to swap MNC molecules, and an immediate
Cu-EDTA complex formed. Intriguingly, the exchange chelation procedure was followed
by an increase in fluorescence caused by the freed chemical probe MNC. Consequently, the
fluorescence intensity increased until it reached roughly 75% of the intensity of the free
form (see Figure 7).

3.6. Quantum Yield

The quantum yield (QY) estimate for MNC was presented as 0.22. The QY was
detected depending on a standard and reference chromophore of quinine sulfate [71]. The
aqueous solution of the reference chromophore in sulfuric acid was prepared to give a
55% QY. The ultimate deviation for such QY was predicted to be (±6%).

QX = QR
AR Isn2

s
AX IR n2

s

While

• X and R point to the MNC and reference solutions
• n is a refractive index at room temperature
• I is the integrated area under the peak
• A is the maximum absorbance peak.

3.7. Binding Constant Kb

To further comprehend the metal ligand binding mechanism, variations in the fluo-
rescence spectra of the MNC probe in the presence of various Cu(II) concentrations were
examined to calculate the binding constant. On the basis of a 1:1 stoichiometry, the binding
constant was calculated using the modified Stern-Volmer equation,

F0

F0 − F
=

1
A

+
1

A. Kb .[Q]

where F0 is the fluorescence intensity of the free ligand MNC, F is the fluorescence intensity
of the MNC-Cu(II) complex, Q is [Cu(II)], A is a constant, and Kb is a binding constant [72].
When F0/(F0 − F) was plotted as a function of the 1/[Q] concentration, a linear relationship
was obtained: (y = α + βx), y = F0/(F0 − F), α (intercept) = 1/A, β (slope) = 1/A.Kb,
x = 1/[Q], and K was estimated from α/β (Figure 8). Inferred from the fluorescence
titration curves of the MNC probe with Cu(II), Kb, the binding association constant, was
calculated to be 5.53 × 106 M−1.

Also, the extent of the binding of MNC to Cu(II) ions is determined based on the
absorbance enhancement at 266 nm using an experimental plot of absorption data based
on the Benesi-Hildebrand relation [73]:

1
Aabs − A0

=
1

AC − A0
+

1
(AC − A0). Kb .[Cu(I I)]

where A0, Aabs, and Ac are the absorption values in the absence of, at the intermediate,
and at the saturation of Cu(II) ion interaction, respectively, and [Cu(II)] indicates the
concentration of Cu(II) ion added. By linearly fitting an absorbance titration curve, the
binding constant (Kb) was calculated (Figure 9). The greater value of the binding constant
(6.76 × 106 M−1) suggests that the interaction between MNC and Cu(II) ion is strong.
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3.8. Theoretical Study

Software Gaussian09 conducted mathematical methods that rely on the density func-
tional theory (DFT) in conjunction with the time-dependent DFT (TDDFT) [74]. The purpose
is to clarify the complex structure of Cu2+ and its electronic properties, and It may lead to
fluorescence increase or decrease. The structures’ geometry was developed using the mod-
ule CAM-B3LYP, and the basis set was 6–31G(d)/Lanl2dz. The LANL2DZ basis set treated
Cu, and we used a 6–31G(d) basis set for all the other atoms. At the same level of theory,
vibrational frequencies were calculated to confirm that all the structures are stable. As the
experiment is realized in methanol, TDDFT with SMD solvation model and methanol was
used on the compounds optimized by CAM-B3LYP at the PBE1PBE/Lanl2DZ/6–31 + G(d)
level of theory.

Ligand conformers for L and L’ are presented in Figure 10a. The L conformer is more
stable than the L’ structure by 3.31 kcal/mol (Table 2). The theoretical study of the ligand’s
electronic structure alone will focus on the most stable conformer, L. The copper complex
optimized structure (Cu-L) is represented in Figure 10b. In this figure, we see that the
copper center in the complex is five coordinated to the ligand L through one nitrogen
atom and one oxygen atom. The bond length of Cu-N is 2.032 Å, and the bond length
of Cu-O is 1.95 Å in the optimized structure. Thus, the ligand L can accommodate the
cation Cu2+ by forming bonds with one nitrogen and one oxygen. The likely transitions
in such chromophores were identified using time-dependent DFT Numerical simulations.
Figure 11 depicts the border molecular orbitals of MNC and Cu-LMNC-Cu(II). The data
of electronic transitions, wavelength, and oscillator strength from TDDFT calculations are
found in Table 3.
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Table 2. Calculated Relative Energies of the ligands.

Complex Relative Energy (kcal/mol)

L 0
L’ +3.31

Table 3. TDDFT outcomes of certain transitions, including associated absorbance energies and
oscillator strengths.

Complex Transition λ (nm) Oscillator Strength

L HOMO -> LUMO 353 0.4950
L-Cu HOMO(b) -> LUMO(b) 521 0.0156

The electron density for the frontier orbitals in the ligand alone is almost located
on the sulfur atom and the two aromatic rings linked by a CN double bond. In L-Cu,
the delocalization of electrons between the HOMO and LUMO transition levels is due to
ICT: the electron density in HOMO is almost on the sulfur atom and the two aromatic
rings linked by a CN double bond, but in the LUMO, it is almost located on the metal
and the atoms of the ligand linked to the metal. We might speculate that the intensity
quenching in this molecule is the consequence of MNC-Cu(II) binding. The weak value of
the oscillator strength for this transition in the complex, which is equal to 0.0156 (Table 2),
and the relatively large oscillator strength for the transition in MNC, which is equal to
0.4950 (Table 3), support these findings.
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4. Conclusions

In summary, an extremely sensitive and innovative turn-off chemical sensor probe
MNC was developed being prepared for the sensing of Cu(II) ions depending on a chelation
approach to avoid interfering with different types of metal ions in a 1:9 (v/v) DMSO-HEPES
buffer (20 mM, pH = 7.4) solution. The colorimetric and absorption MNC sensor revealed
a considerable Stocks shift of 114 nm; thus, the proposed chemosensor provides a novel
approach for creating a chemical probe with substantial luminescence changes. The MNC
sensor can readily detect Cu(II) ions with high selectivity, exceptional sensitivity, and a
detection limit (LOD) of 1.45 nM. Copper ions and MNC in nano concentrations exhibited
an excellent linear relationship that could be used for quantitatively measuring Cu(II)
ions. Job’s experiments demonstrated that MNC chelates Cu(II) ions in a 1:1 metal/ligand
ratio. The studied chemical sensor depends on the binding of Cu(II) to the MNC synthetic
chromophore and the formation of the MNC-Cu(II) complex molecule for its mechanism.
DFT and TDDFT demonstrate that the quenching of emission intensities in this synthetic
MNC molecule results from ICT throughout MNC to the binding metal ions. This chemical
sensor based on an MNC sensor might provide a unique method for detecting Cu(II) in the
environment and for research purposes.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13030359/s1, Figure S1: FTIR spectra of the MNC probe;
Figure S2: NMR spectra of the MNC probe.
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