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Abstract: Copper is a common metallic element that plays an extremely essential role in the phys-
iological activities of living organisms. The slightest change in copper levels in the human body
can trigger various diseases. Therefore, it is important to accurately and efficiently monitor copper
ion levels in the human body. Recent studies have shown that fluorescent probes have obvious
advantages in bioimaging and Cu2+ detection. Therefore, a novel Cu2+ probe (N2) was designed
and synthesized from fluorescein, hydrazine hydrate and 5-p-nitrophenylfurfural that is sensitive to
and can detect Cu2+ within 100 s. The response mechanism of the N2 probe to Cu2+ was studied by
several methods such as Job’s plots and MS analysis, which showed that the Cu2+ and the N2 probe
were coordinated in a complexation ratio of 1:1. In addition, compared with other cations investigated
in this study, the N2 probe showed excellent selectivity and sensitivity to Cu2+, exhibiting distinct
fluorescence absorption at 525 nm. Furthermore, in the equivalent range of 0.1–1.5, there is a good
linear relationship between Cu2+ concentration and fluorescence intensity, and the detection limit is
0.10 µM. It is worth mentioning that the reversible reaction between the N2 probe and Cu2+, as well
as the good biocompatibility shown by the probe in bioimaging, make it a promising candidate for
Cu2+ biosensor applications.

Keywords: fluorescein-based probe; complexation mechanism; copper ion detection; bioimaging

1. Introduction

Copper is commonly found in various organisms and is one of the more abundant
transition metals in the human body [1,2]. Compared with other transition metals, Cu has a
strong stability constant of binding ligands, which makes it an ideal enzyme cofactor [3,4].
Cu can enter the human body in a variety of ways, such as through inhalation, diet and
environmental intake [5]. According to some studies, Cu2+ solutions and metallic Cu
can effectively inhibit the growth of viruses and even inactivate them [6,7]. However, for
human body, systematic Cu content must be intermediate at a relatively fixed level [8].
Changes in Cu levels can contribute to anemia, coronary heart disease, Wilson’s disease
and Alzheimer’s disease and can also trigger cell carcinogenesis and apoptosis [3,8–10].
Levels of Cu have been reported to be a sign of cancers, such as breast cancer, which can
be measured by Cu2+ levels, and prostate tumor proliferation, which can be inhibited by
reducing the uptake of Cu [11]. Therefore, accurate detection of the content of Cu2+ in
organisms is required.

Currently, Cu2+ is detected by atomic absorption spectrometry [12], inductively cou-
pled plasma mass spectrometry [13], electrochemical methods [14], etc. In these detection
methods, it is indubitably necessary to involve advanced pretreatment processes and sev-
eral large-scale instruments, which limit rapid detection in the wild and nondestructive
functions of organisms [15–18]. Fluorescent probes have been widely used in the identifica-
tion and measurement of Cu2+ due to their advantages of sensitivity, good biocompatibility,
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simple operation, and fast and specific recognition [19–25]. As a consequence, a series
of fluorescent probes based on traditional fluorophores, such as coumarin, rhodamine
and BODIPY, has been explored extensively [26–32]. Luciferin, a kind of optically stable
fluorophore, has also been the subject of broad research [33–35]. It has been shown that
amide-modified fluorescein derivatives with large metal ion coordination sites can be com-
plexed with metal ions, resulting in changes in the fluorescence of the probe and successful
applications in bioimaging [20,36–38].

In this study, we designed and synthesized a novel fluorescein derivative of Cu2+

fluorescence, the N2 probe. It is worth noting that this probe has a unique ability to
recognize Cu2+ in multi-ion coexistence solutions and shows a very intense fluorescence
absorption peak at 525 nm, unlike other ions that are almost unchanged. Compared with
other probes reported in the published literature [25,39–43], this probe has a relatively low
detection limit and a stabilized fluorescence response at pH 6.0–9.0. In addition, through
the discussion of the response mechanism between Cu2+ and the probe, it was revealed that
Cu2+ enabled a certain reversibility of the recognition effect of the N2 probe by opening the
lactam ring of the N2 probe and complexing with it in a 1:1 coordination ratio (Figure 1).
Furthermore, cytotoxicity testing showed that the N2 probe has good biocompatibility.
Bioimaging showed that N2 probe can be used as an intracellular Cu2+ tracer sensing
material.
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2. Materials and Methods
2.1. Chemical Reagents

Hydrochloric acid, copper sulfate, sodium hydrate, hydrazine hydrate, fluorescein,
ethanol and 5-p-nitrophenyl furfural were purchased from Aladdin Reagent Co., Ltd.
(Shanghai, China). All such chemical reagents were used with no additional purification.

2.2. Apparatus and Instrumentation

ZF-C-type UV-vis spectrophotometer, a Bruker Tensor 27 spectrometer, a Hitachi
F-4500 fluorescence spectrophotometer, a Bruker micro TOF-Q II ESI-TOF LC/MS/MS
spectrometer, a Varian INOVA-400 MHz spectrometer (400 MHz), a Spectra max190 molec-
ular devices and an Olympus FV1000 confocal microscope were used in this research.

2.3. The Synthesis of N2

According to the literature [44], the synthesis process scheme was exhibited in Scheme
S1. Fluorescein hydrazine was synthesized from fluorescein and hydrazine hydrate. First
6.00 g (18.05 mmol) of fluorescein was added to a 250 mL three-necked round-bottom
flask and dissolve it by adding 110 mL of anhydrous ethanol. Then, 8.0 mL of hydrazine
hydrate was slowly added to the solution over the course of about 30 min. The temperature
of the reaction was gradually raised to 80 ◦C, and the reaction solution was refluxed for
12 h. After the reaction was finished, the solution was cooled to room temperature, and
the reaction solvent was evaporated under reduced pressure. Then, 500 mL of water was
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added, and the pH was adjusted to 4–5 with concentrated hydrochloric acid. The pH of the
system was continuously adjusted to 9–10 with sodium hydroxide. The solid was filtered
under reduced pressure, washed 3 times with distilled water and dried to obtain 5.88 g of
light-yellow solid.

Then, 80 mL of fluorescein hydrazine (3.59 g, 10.36 mmol) dissolved in anhydrous
ethanol and 50 mL of 5-p-nitrophenyl furfural (1.50 g, 6.90 mmol) dissolved in anhydrous
ethanol were added to a 250 mL round-bottom flask. The solution was heated to 78 ◦C for
reaction, and TLC, ethyl acetate and petroleum ether (v/v = 5/3) were used to monitor the
reaction process. The reaction solution was refluxed for 3 h, and a large amount of solid
was precipitated from the bottom of the bottle. After filtration under reduced pressure, a
solid was obtained, which was washed with mother liquor 3 times and recrystallized with
anhydrous ethanol. The crystallized solid was dried, and 3.65 g of an orange solid was
obtained with a yield of 96.88% and a melting point of 243–245 ◦C.

1H NMR (400 MHz, TMS, DMSO-d6) δ 9.95 (s, 2H, OH), 8.77 (s, 1H), 8.32 (d, J = 9.0 Hz,
2H, NO2-Ph-H), 7.92 (d, J = 8.9 Hz, 2H, NO2-Ph-H), 7.93 (d, J = 6.4 Hz, 1H, Ph-H),
7.68–7.55 (m, 2H, Ph-H), 7.38 (d, J = 3.6 Hz, 1H, furan), 7.12 (d, J = 7.4 Hz, 1H, Ph-H), 6.96 (d,
J = 3.7 Hz, 1H, furan), 6.70 (d, J = 2.3 Hz, 2H, OH-Ph-H), 6.54 (d, J = 8.6 Hz, 2H, OH-Ph-H),
6.47 (dd, J1 = 8.6 Hz, J2 = 2.3 Hz, 2H, OH-Ph-H). 13C NMR (100 MHz, TMS, DMSO-d6) δ
164.30, 159.17, 152.88, 152.64, 151.22, 151.08, 146.85, 137.69, 135.54,134.68, 129.63, 128.82,
128.28, 125.00, 124.16, 123.77, 116.89, 112.87, 110.34, 103.11, 65.85. HRMS(ESI) m/z calcd
for C31H19N3O7Na(M+Na)+: 568.1115. Found: 568.1088. IR (KBr, cm−1): 3199.59(OH),
1690.90(C=O), 1629.08(C=N), 1610.82, 1505.02, 1461.85, 1362.82, 1329.06, 1262.24, 1214.70,
1185.62, 1105.48, 992.98, 970.98, 913.74, 848.16, 808.40, 793.08, 752.53, 689.79 (Figures S2–S4
in the Supplementary Material).

2.4. Colorimetric Determination of Copper Ions

To facilitate the titration experiments, the N2 probe, deionized water and EtOH were
prepared as a 1 mM master mix. In the titration experiment, a set concentration gradient of
Cu2+ was added to a 10 mL colorimetric tube containing 1.0 mL of 200 µM N2 probe master
mix. Then, it was fixed to 10 mL with PBS solution. For the interference assay, 20 µM Cu2+

and 1.0 mL of 200 µM N2 probe master mix were mixed with 1.0 mL of the test substance,
which was two equivalents of the probe N2, and the volume was fixated with PBS to 10 mL
in a colorimetric tube. In the ethylenediamine titration context, 1.0 mL of 200 µM Cu2+,
1.0 mL of 200 µM N2 probe master mix and different amounts of ethylenediamine were
added to a 10 mL colorimetric tube with PBS. Spectroscopic analysis was performed using
a 1 cm cuvette. In various tests, absorbance at 440 nm and fluorescence intensity at 525 nm
were recorded separately.

2.5. Detection Limit of the Probe

The detection limits were calculated based on the measured fluorescence signals. In
this study, the luminescence intensity of N2 (20.0 µM) was multiplied by 10 to determine
the ratio of δ/S and the standard deviation of the blank assay. Under this condition, there
was a good linear relationship between the relative luminescence intensity (525 nm) and
the concentration of Cu2+ in the range of 10.0–40.0 µM. The detection limit was determined
by the following equation: detection limit = K × δ/S, where S is the gradient of the
concentration and the intensity of the sample, and δ is the standard deviation of the blank
determination. Fluorescence analysis showed: y = 124.41x + 111.28 (R2 = 0.983), δ = 4.147
(N = 10), S = 124.41, K = 3; LOD = 3 × 4.147/124.41 = 0.10 µM.

2.6. Cytotoxicity Study

The CCK-8 method was carried out to analyze cytotoxicity. Different concentrations of
probes (0 µM, 2.5 µM, 5 µM, 10 µM, 20 µM and 40 µM) were added into the cells, which had
been cultured at 37 ◦C in 96-well plates for 24 h. The absorbance of the cells was measured
at 450 nm, combined with CCK-8 and incubated for two hours. The above experiments
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were repeated three times, and the results of cytotoxicity were presented as a percentage of
control cells.

2.7. Cell Culture Experiment and Cell Imaging

MCF-7 cells were digested in trypsin containing 0.25% EDTA. When a tendency of
rounding and floating was observed under the microscope, DMEM complete medium
(89% DMEM medium, 10% FBS, 1% penicillin-streptomycin) was added to terminate the
digestion, and the supernatant was centrifuged and separated on a centrifuge. Then,
DMEM complete medium was added to afford a given concentration of cell suspension,
divided equally into three confocal dishes and incubated in a 5% CO2 incubator at 37 ◦C
for 24 h. Then, 1 mL of PBS buffer was added, and confocal microscopic imaging was
performed. Then, the configured probe solution was added and incubated in the incubator
for 20 min, at which time the concentration of the fluorescent probe in the confocal Petri
dishes was about 40 µmol/L. After washing three times with PBS buffer, imaging was
performed under confocal microscopy in a wavelength channel of 488 nm. The cells were
then incubated in a copper ion solution at a concentration of approximately 40 µmol/L
for 20 min, washed three times with PBS and imaged. Fluorescence field and bright-field
images were acquired separately and superimposed.

3. Results and Discussion
3.1. Effect of pH and Response Time

The influence of pH on N2 and N2 towards Cu2+ was evaluated in PBS buffer (10 Mm,
PH = 7.4)/EtOH (1:1, v/v) (Figure 2A). It is apparent that the N2 probe has a relatively
stable fluorescence response to Cu2+ in the pH range of 6.0 to 9.0. Hence, it can be adapted
for bioimaging experiments at pH 7.4. The response times were examined at 525 nm
(Figure 2B). After the addition of Cu2+ (20.0 µM), the fluorescence intensity at 525 nm
intensified and reached a smoothed level after 100 s, which means that Cu2+ could be
promptly detected by the N2 probe.
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3.2. Probe Selection and Competition

The sensing properties of the N2 probe towards various cations, such as K+, Na+,
Li+, Ca2+, Ag+, Mg2+, Cd2+, Mn2+, Ni2+, Ba2+, Zn2+, Pb2+, Pd2+, Hg2+, Sn4+, Cr3+, Fe3+,
Fe2+, Al3+ and Cu2+, in PBS buffer (10 mM, PH = 7.4)/EtOH (1:1, v/v) were examined to
evaluate the selectivity and anti-interference ability of N2 to Cu2+. As shown in Figure 3,
with the addition of Cu2+, a significant increase in fluorescence intensity was observed
at 525 nm, in remarkably contrast to the other ions (Figure 3A). In the next competitive
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experiments, the fluorescence intensity of the probes changed slightly when other ions
were added (Figure 3B). Thus, the N2 probe has good selectivity for this application.
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Figure 3. (A) Fluorescence spectrum of N2 (20 µM) in the presence of various metal ions, i.e., K+, Na+,
Li+, Ca2+, Ag+, Mg2+, Cd2+, Mn2+, Ni2+, Ba2+, Zn2+, Pb2+, Pd2+, Hg2+, Sn4+, Cr3+, Fe3+, Fe2+, Al3+

and Cu2+ (20 µM), in PBS buffer (10 mM, pH = 7.4)/EtOH (1:1, v/v); λex = 440 nm. (B) Fluorescence
spectrum of N2 (20 µM) in the presence of various metal ions both alone and in combination, i.e., K+,
Na+, Li+, Ca2+, Ag+, Mg2+, Cd2+, Mn2+, Ni2+, Ba2+, Zn2+, Pb2+, Pd2+, Hg2+, Sn4+, Cr3+, Fe3+, Fe2+,
Al3+ and Cu2+ (20 µM), in PBS buffer (10 mM, pH = 7.4)/EtOH (1:1, v/v); λex = 440 nm.

3.3. Qualitative and Quantitative Studies

Cu2+ with different molar ratios (0–100 µM) was added to the equimolar N2 probe
(5 µM) solution configured with PBS buffer (10 mM, PH = 7.4)/EtOH (1:1, v/v). Figure 4A
shows that the fluorescence intensity at 525 nm increased with increased Cu2+ concen-
tration. When the Cu2+ concentration reached 2.4 eq, the fluorescence intensity reached
the maximum and no longer increased. There is a good linear relationship between the
fluorescence intensity of the N2 probe in response to Cu2+ and the concentration of Cu2+

in the range of 0.1–1.5 eq (Figure 4B). The LOD of the N2 probe for Cu2+ was calculated
as 0.10µmol/L using the formula LOD = 3σ/K which implies that the N2 probe has good
sensitivity for detection of Cu2+.
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3.4. Proposed Sensing Mechanism

Methods such as Job’s plots and MS analysis were applied to further investigate the
response mechanism of the N2 probe to Cu2+. The reversible complex reaction of the probe
to Cu2+ was confirmed in an ethylenediamine titration experiment (Figure 5A), with the
complexation ratio of 1:1 shown in the Job’s plots (Figure 5B).
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In addition, the peak position of [C31H19CuO7N3 (M + H)]+ at m/z 610.34 in the mass
spectrum can be matched with the signal of the N2 probe and Cu2+, which is consistent
with the 1:1 coordination mechanism mentioned earlier (Figure 5C). This indicates that
during the process of recognizing Cu2+, the amide bond broke, and a new Cu-O bond was
formed. In summary, the complexation mechanism of the N2 probe in response to Cu2+

can be described by Figure 5D.

3.5. Cell Imaging

Based on the excellent properties of the probe, we investigated its bioimaging prop-
erties in cells. First, the cytotoxicity of the probe to MCF-7 cells was investigated by the
CCK-8 method. MCF-7 cells were cultured in probe solutions of different concentrations
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(0–40 µM) for 24 h. As shown in Figure 6A and Table S1 in the Supplemetary Material, the
probe had low cytotoxicity. Then, the bioimaging properties of the probe were examined.
MCF-7 cells were cultured in the probe solution (40 µmol/L) for 20 min. No fluorescence
was detected under confocal microscopy. After being treated with Cu2+ (40 µM) at 37 ◦C
for 20 min, the cells showed obvious green fluorescence under the excitation of 448 nm
light. Figure 6 also shows that the probe stained the cells but did not enter the nuclei.
This further indicates that the N2 probe has good biocompatibility and a tracing effect on
intracellular Cu2+.
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4. Conclusions

This study describes a novel fluorescent probe (N2), the superior selectivity for Cu2+ of
which makes it suitable for Cu2+ detection applications. Analysis of data from ethylenedi-
amine titration experiments and mass spectrometry also revealed that the probe complexes
with Cu2+ in a 1:1 coordination ratio. Moreover, the probe achieves a reversible fluorescence
response to Cu2+ via a switching ring, which provides a potential idea for the design of
reusable probes. Cell imaging shows that the probe has good biocompatibility and that the
fluorescence response of the probe to Cu2+ is relatively stable at pH 6.0–9.0. In summary,
the N2 probe can be used as a highly promising Cu2+ sensor in biological samples.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios13030301/s1, Scheme S1: Synthesis route of probe N2; Figure S1:
1H NMR spectrum of compound N2 in d6-DMSO; Figure S2: 13C NMR spectrum of compoundN2 in
d6-DMSO; Figure S3: ESI-MS spectrum of N2; Figure S4: IR spectrum of N2; Table S1: Determination
of the toxicity of different concentrations of probes on human mammary cells.
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