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1. Background

Today, optical, electrochemical, and acoustic affinity biosensors; immunosensors; and
immunoanalytical systems play an important role in the detection and characterization of a
number of biological substances, including viral antigens, specific antibodies, and clinically
important biomarkers [1,2]. In recent years, advancements in acousto-optic techniques
have been made across a variety of medical application fields, particularly in improving the
resolution, detection speed, and imaging depth. Theoretical modeling strategies, numerical
simulation methods, and recent medical applications have been reviewed [3]. The main
advantages of biosensors and immunosensors based on optical and acoustic methods in
comparison to other signal transducers are the non-destructive nature of analytical signal
registration, real-time measurements, the fast and accurate direct label-free detection of
various analytes, and the possibility to perform multiple detections of the analyte with
the same surface. Acoustic methods can also provide information about the changes in
viscoelastic properties during biosensing layer formation and about the specific interaction
with biomolecules. Analytical systems based on electrochemical signal transducers are
characterized by high sensitivity, short response time, and low cost. In addition, the impact
of non-specific binding of various molecules present in the sample on the registered analytic
signal is low; measurements can be performed in turbid, opaque, and colored solutions; the
same surface can be analyzed by a few different electrochemical methods after biomolecule
interaction; and the dimensions of electrochemical biosensors can be easily reduced, allow-
ing them to be integrated directly into microelectronic devices. They can be suitable for
automated detection of a single analyte, or adapted for ultrasensitive multiplexed detection
of tumor markers using a disposable immunosensor array [4]. Recently, the practical appli-
cations of such analytical systems have expanded significantly from clinical diagnostics
to food analysis, quality control of products, environmental studies, and monitoring of
industrial processes [5,6]. This can be performed on high molecular weight proteins or low
molecular weight molecules.

2. Optical Immunosensors and Immunoanalytical Systems

Optical immunosensors and immunoanalytical systems are based on different mea-
surements such as absorbance, index of refraction, scattering, reflectance, photolumines-
cence, or polarization. The goal of silicon photonic evanescent field biosensors is to bring
together the information-rich signal data offered by lab-scale diagnostics at a significantly
low cost, with the portability and rapid detection time offered by paper-based assays [7].
Promising immunosensors based on label-free optical methods, such as surface plasmon
resonance (SPR) and spectroscopic ellipsometry (SE), can measure changes in the refractive
index during biomolecule immobilization or during interactions with an analyte at the
solid–liquid interface [8]. SE is extremely sensitive when applied in total internal reflection
configuration due to the change in light phase. Additionally, by using SE in total internal
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reflection mode in combination with SPR, the highest sensitivity is achieved; this method
is named total internal reflection ellipsometry (TIRE) [9]. The application of SPR and
TIRE for measurements and investigations in real time yields low limits of detection of
the analytes of interest, provides the possibility of calculating the affinity of antibodies
during their interaction with the antigen, and can follow the formation process of immune
complexes. The affinity of an antibody to specific antigens demonstrates how fast and
effectively the immune complex is formed. Furthermore, the evaluation of association and
dissociation rate constants provides important information about the thermodynamics
of such processes [10–13]. The combination of SE and SPR in TIRE has been success-
fully applied in the study of the interactions between various mutations (alpha, beta, and
gamma) of the SARS-CoV-2 spike protein and specific antibodies present in human blood
post-vaccination or after recovery from COVID-19 [9,13,14]. Furthermore, TIRE has been
used for the detection of the bovine leukaemia virus antigen gp51 with immunosensors
based on a native antibody- or antibody reduced fragment-modified sensing surface. It
has also been used for the study of antibody–antigen binding kinetics in real time [9,15].
Additionally, this method was successfully applied in the study of bovine serum albumin
(BSA) covalent immobilization on an Al2O3/ZnO nanolaminate sensing surface and on
ZnO nanowires [16,17], and in the study of receptors of granulocyte colony stimulating
factor and ligand interactions [11,12,14,18]. Recently, TIRE has attracted a lot of attention for
its application in antibody–antigen interaction measurements and immunosensor design,
due to its elevated sensitivity compared to SPR [10,13,19,20]. The TIRE method is capable
of detecting minuscule changes in the refractive index of the surrounding environment
caused by the immobilization of either antigens or antibodies and interactions with the
target analyte.

3. Acoustic Method for Immunosensing

The acoustic method of quartz crystal microbalance with dissipation (QCM-D) has
been applied to measuring the shifts in frequency (∆F) and energy dissipation (∆D) of
vibrational resonance overtones during protein immobilization and affinity interactions
with targeted biomolecules [21]. QCM-D is able to detect changes in surface mass den-
sity during the formation of monolayers of biomolecules in real time and to evaluate the
viscoelastic properties of such layers due to the measurement of ∆D. Simultaneous mea-
surements of ∆F and ∆D allow one to obtain information about biomolecules orientation
on the surface [22,23]. This method has previously been used to study novel coronavirus
SARS-CoV-2 nucleocapsid proteins and specific antibody interactions, providing a new op-
portunity to evaluate antibody flexibility [21]. Additionally, it was shown that parameters
registered by QCM-D and plotted as ∆D/∆F can be successfully applied for the evaluation
and distinction between specific antibody fragment interactions with bovine leukaemia
virus antigen gp51 and non-specific interactions with BSA [24].

4. Electrochemical Biosensors and Immunosensors

Electrochemical biosensors and immunosensors are the most common and widely
used for the quantitative detection of various biomolecules and other clinically impor-
tant analytes. They are very promising and have become a viable alternative to existing
laboratory methods. Electrochemical immunosensors have been successfully applied for
the direct label-free detection of specific antibodies against SARS-CoV-2 spike protein
using electrodes with or without a gold nanostructure [25–27]. L-cysteine was incorpo-
rated into screen-printed carbon electrodes with electrodeposited gold nanostructures
for further covalent immobilization of recombinant SARS-CoV-2 spike proteins (rSpike).
Using cyclic voltammetry and differential pulse voltammetry, the affinity interactions of
rSpike with specific antibodies were investigated [27]. However, different immunoassay
formats and various signal amplification strategies are required for the ultra-sensitive
detection of biomolecules. Challenging bioanalytical problems, such as sensitivity and
specificity, can be resolved by using various nanoparticles, such as noble metals or metal
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oxide nanoparticles, as signal amplifying tags [28]. Electrochemical glucose biosensors
based on electrochemically synthetized gold nanostructures have been developed, the best
enzyme glucose oxidase immobilization methods have been selected, and various glucose
detection strategies have been used to develop biosensors that exhibit analytical param-
eters suitable for glucose detection in human blood or food products [29–31]. Therefore,
the scientific impact of nanoscience and nanotechnology on the development of sensitive
analytical systems is significant [32,33]. One of the novel topics which has recently emerged
in the development of sustainable energetic systems is the development of microbial fuel
cells based on electro-catalytic processes [34].

This Special Issue of Biosensors entitled “Optical-, Electrochemical- and Acoustic-
based Biosensors for the Investigation of Biomolecule Interactions” is dedicated to all
aspects of biosensors and immunosensors regarding the mentioned developments in signal
transducers and applications in the direct, label-free or the indirect, ultra-sensitive, and
labeled detection of different analytes of interest. It is also dedicated to the evaluation
of biomolecule interaction kinetics and to exhibiting the advantages of nanomaterials
in practical applications. As an introduction to the present Special Issue, this editorial
has summarized some aspects of the development and practical applications of optical,
electrochemical, and acoustic biosensors and immunosensors. Original research papers
and review articles are welcome.
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