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Abstract: Cortisol is a steroid hormone that is involved in a broad range of physiological processes in
human/animal organisms. Cortisol levels in biological samples are a valuable biomarker, e.g., of stress
and stress-related diseases; thus, cortisol determination in biological fluids, such as serum, saliva and
urine, is of great clinical value. Although cortisol analysis can be performed with chromatography-
based analytical techniques, such as liquid chromatography–tandem mass spectrometry (LC-MS/MS),
conventional immunoassays (radioimmunoassays (RIAs), enzyme-linked immunosorbent assays
(ELISAs), etc.) are considered the “gold standard” analytical methodology for cortisol, due to their
high sensitivity along with a series of practical advantages, such as low-cost instrumentation, an
assay protocol that is fast and easy to perform, and high sample throughput. Especially in recent
decades, research efforts have focused on the replacement of conventional immunoassays by cortisol
immunosensors, which may offer further improvements in the field, such as real-time analysis at the
point of care (e.g., continuous cortisol monitoring in sweat through wearable electrochemical sensors).
In this review, most of the reported cortisol immunosensors, mainly electrochemical and also optical
ones, are presented, focusing on their immunosensing/detection principles. Future prospects are
also briefly discussed.

Keywords: biomarkers; biological samples; blood plasma/serum; cortisol; electrochemical im-
munosensors; immunoassays; optical immunosensors; saliva; sweat

1. Introduction

The steroid hormone cortisol is the final product of the well-known hypothalamic–
pituitary–adrenal (HPA) axis, one of the four major neuroendocrine systems through
which the hypothalamus and pituitary gland govern neuroendocrine function. Cortisol
is synthesized in the zona fasciculata/reticularis cells of the adrenal cortex, under the
control of adrenocorticotropic hormone (ACTH), and then secreted to the circulation.
Approximately 80–90% of cortisol in blood plasma is bound to corticosteroid-binding
protein (CBP), the rest is circulated bound to albumin, and only a small fraction, <10%, of
total hormone is free circulating cortisol. Cortisol is lipophilic enough to cross the plasma
membrane of target cells without the need of a membrane transporter. Within the target
cell, cortisol binds to intracellular glucocorticoid receptors and the complexes formed
translocate to the nucleus, where they may either enhance or decrease the expression of
multiple genes. In this way, cortisol may affect many important biochemical functions,
including release of ACTH, synthesis of gluconeogenesis-related enzymes, breakdown of
muscle proteins, and lipolysis. Cortisol may be transformed into its inactive metabolite,
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cortisone, either reversibly through the action of 11β-hydroxysteroid dehydrogenase (11β-
HSD1), an enzyme expressed mainly in the liver as well as in the subcutaneous and visceral
adipose tissue, or irreversibly through the action of 11β-hydroxysteroid dehydrogenase
isozyme (11β-HSD2), which is expressed mainly in the adrenal cortex, as well as in the
renal distal tubules and collecting ducts. Cortisol is removed from the body through the
liver and kidneys [1,2].

Cortisol concentrations in the body are a valuable indicator of a series of important
activities and functions of the organism crucial for homeostasis, and may also serve as a
biomarker in a variety of disorders [2](2. Boolani_2019). More specifically, cortisol levels
have been investigated in/correlated with a series of stress-associated disorders [3–5],
while they are considered a hallmark in the diagnosis of Cushing’s syndrome (neoplas-
tic hypercortisolism) [6]. Thus, the 2008 Endocrine Society clinical practice guidelines
have recommended measurement of cortisol levels under precisely defined conditions
(i.e., late-night salivary cortisol, 24 h urinary free cortisol (UFC) and serum cortisol af-
ter dexamethasone-suppression test, as screening tests for Cushing’s syndrome [1,7,8].
Moreover, monitoring of cortisol levels has been considered a useful approach to detect
recurrences in patients who have undergone pituitary surgery [6] or to investigate so-called
adrenal incidentalomas/adrenal insufficiency [9].

As with many other hormones, cortisol shows diurnal variation. More specifically,
its levels start to increase between 03:00 h and 04:00 h, reach a peak between 07:00 h and
09:00 h, and then fall steadily, with the lowest level (nadir) observed at about midnight [7].
Thus, collection schedules of the biological fluids to be analyzed should be strictly planned.

Cortisol is most often determined in blood serum/plasma, saliva, or urine. As already
mentioned, the vast majority of circulating cortisol is protein-bound, mainly to CBP and to
a lesser extent albumin, while only a small fraction occurs in free form. [1,2]. According
to the free hormone hypothesis, the level of unbound hormone determines its biological
activity, and thus measurement of free serum/plasma cortisol is of the greatest clinical
value [1]. However, measurement of free cortisol in serum/plasma samples requires an
often time-consuming and laborious preanalytical step, usually including equilibrium
dialysis, gel filtration or ultrafiltration, to separate free from bound cortisol, and is therefore
difficult to perform in routine clinical practice [1]. Instead, total (bound and unbound)
cortisol is usually determined. Serum cortisol levels of normal individuals have been
reported to range between 45 and 227 ng/mL in the morning and 17 and 141 ng/mL in the
evening [10].

Measurement of cortisol levels in saliva is considered a reliable alternative to measur-
ing free cortisol in serum/plasma, since there is a high correlation between salivary cortisol
levels and unbound cortisol levels in serum/plasma; thus, salivary cortisol is believed to
reflect the changes in free serum/plasma cortisol [2,11–13]. Saliva is considered a body
fluid with well-recognized diagnostic potential [14], while saliva sampling has the advan-
tage of causing the least possible intrusion to the organism, thus avoiding stress, which
may in turn affect cortisol levels [2]. To this end, as already mentioned, late-night salivary
cortisol has been recommended as a first-line screening test for the diagnosis of Cushing’s
syndrome [1]. To avoid critical changes in the oral milieu that may affect measurement,
sampling instructions should be strictly followed. Thus, use of ointments and creams
containing hydrocortisone (chemically identical with cortisol) should be avoided before
sampling, since it may lead to false-positive results due to contamination of the saliva
sample [6,15]. Moreover, various factors, such as age, gender, medical status/medications,
menstrual cycle, pregnancy, caffeine, and alcohol consumption, should be taken into con-
sideration before evaluating the clinical meaning of cortisol measurement in saliva [2,16,17].
Under normal conditions, saliva cortisol levels have been reported to range between 1 and
12 ng/mL in the morning and 0.1 and 3.0 ng/mL in the evening [10].

A small fraction of free circulating cortisol (1–2%) is excreted in urine, and urine
cortisol levels are also believed to reflect the levels of free cortisol in serum/plasma. Urine
cortisol exists in conjugated (e.g., glucuronide-conjugated and sulfate-conjugated) and
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unconjugated (free) forms. Measurement of 24 h UFC, which is not affected by diurnal
variation, is considered to reliably reflect tissue exposure to free cortisol over a day, and
has therefore been used as a well-established screening test for the diagnosis of Cushing’s
syndrome, as already mentioned [1,7,8]. Under normal conditions, urine cortisol levels
have been reported to range between 21.5 and 149.7 µg/24 h [10] or between 10 and
100 µg/24 h [18].

Besides determination of cortisol levels in blood serum/plasma, saliva, or urine
samples, measurement of cortisol extracted from human hair (usually, 1–3 cm of hair
from the posterior vertex region of the scalp) has also been reported [19,20]. Since hair
has been reported to grow at an average rate of 1 cm per month [21], hair samples allow
determination of cumulative cortisol over a period of several months. In this regard, hair
cortisol levels have been suggested as a retrospective, long-term biomarker of HPA axis
functioning [20], stress-related, emotional and behavioral symptoms [22,23], or systemic
exposure to cortisol in patients with Cushing’s syndrome [1]. Hair cortisol levels have
been reported to range between 18 and 153 pg/mg [10] and 1.7 and 153.2 pg/mg [18]. In
addition, cortisol levels in fingernail samples may also serve as a putative retrospective
biomarker [24,25]. Finally, measurement of cortisol metabolites in feces of animals has been
used as a noninvasive means to evaluate release of glucocorticoids and thus adrenocortical
activity in various animal species [26].

The two main methods for measuring cortisol in biological samples are immunoassays
and LC-MS/MS [2,7,27–29].

Cortisol immunoassays are based on antibodies recognizing cortisol and are the most
frequently used methods for determining cortisol in routine clinical practice. Cortisol
immunoassays include radioimmunoassays and ELISAs [12], as well as chemiluminescent
immunoassays, electrochemiluminescence immunoassays, and fluorescence immunoas-
says [2,7]. In most cases, immunoassays are the current method of choice to determine
total (bound and unbound) cortisol in serum/plasma as a fast and reproducible approach
to estimate cortisol status; however, immunochemical determination of total cortisol in
serum/plasma samples may be affected by changes in CBP and/or albumin levels [1,30].
Immunoassays are also the most frequently used method for determining urine free (un-
conjugated) cortisol (UFC) in clinical laboratories. Moreover, immunoassays have been
widely applied to the determination of salivary cortisol, since they can provide the low
detection limits required to quantitate the hormone present in the salivary samples, even at
the nadir of the diurnal rhythm [1].

Despite their wide use, the analytical specificity of cortisol immunoassays may be
limited by antibody cross-reactivity with other steroids present in the sample, while pre-
analytical interferences may also occur [15]. On the other hand, LC-MS/MS methods
are characterized by high specificity and are progressively more and more often used in
clinical laboratories [1], especially when interferences are suspected to occur [9]. Neverthe-
less, immunoassays are still preferred for cortisol determination and are considered the
method of choice for assessing serum/plasma cortisol levels as a fast screening, especially
in emergency cases.

Immunosensors are advanced analytical platforms, which—similarly to conventional
immunoassays—are based on antibodies recognizing the analyte of interest [31]. Im-
munosensors exhibit a series of advantages in comparison with immunoassays, such as
simple and fast assay protocols, which can be performed by nonexperts, as well as small
detection modules, which allow their broader application, i.e., even outside the lab. Thus,
the development of antibody-based sensors, especially at the point of care, and/or wearable
sensors that would allow real-time cortisol monitoring in different body fluids, including
sweat [32], has been receiving increasing attention as a powerful alternative to conventional
immunoanalytical methods. Due to the continuously growing interest in the field, we con-
sidered it worthwhile presenting an updated review on reported cortisol immunosensors
for the analysis of different biological samples.
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2. Immunosensors for Detecting Cortisol in Biological Samples

Cortisol immunosensors were first reported in the mid-1990s. One of the first cortisol
immunosensors was a noninvasive, reusable amperometric immunosensor, which was
based on an anti-cortisol antibody for biorecognition and horseradish peroxidase (HRP)
for signal generation. The antibody and the enzyme were co-immobilized on a chemically
activated membrane, which had been mounted around the tip of an oxygen electrode.
The assay principle was that the current created in the presence of the enzyme substrate
was reduced upon binding of the antigen to the co-immobilized antibody [33]. At about
the same time, the development of an invasive cortisol immunosensor was reported [34].
That sensor employed an HRP-labeled cortisol conjugate and an anti-cortisol antibody
immobilized on the surface of a platinum electrode (working electrode). The platinum
electrode was inserted into commercially available microdialysis probes and the probes
were modified so as to bear the reference (Ag/Cl) and counter (Ag) electrodes on their top
and then implanted in the jugular vein and used for real-time determination of cortisol
in conscious animals, by monitoring peroxidase activity [34]. Since then, many cortisol
immunosensors—mostly noninvasive—have been reported in the literature. Cortisol
immunosensors reported thus far are mainly electrochemical and optical, while one of the
first immunosensors described for cortisol was piezoelectric [35].

Two previous review articles have provided accumulated information on immunosen-
sors, both electrochemical and optical ones, for determining cortisol—usually among other
health biomarkers—focusing on the analysis of saliva samples [28,36]. An informative table
summarizing reports on various cortisol sensors based on different detection techniques
was included in a recent article [37]. However, the information currently available in the
literature might be considered, at least in our opinion, somewhat “fragmented.”

2.1. Electrochemical Cortisol Immunosensors

The first cortisol immunosensors, reported in the mid-1990s [33,34] as already men-
tioned, were electrochemical. In the meantime, many more electrochemical immunosensors
for cortisol have been described in the literature, while some recent review articles have
provided accumulative information on cortisol electrochemical sensors [10,38].

During the last decade, various wearable electrochemical sensing platforms, which in
general are considered ideal for analyzing sweat samples [39], have been developed and ap-
plied to the immunodetection of cortisol in sweat, as critically presented in previous review
papers [18,40]. Several electrochemical cortisol immunosensors for sweat analysis have
been described in the literature during the last couple of years (2020–2022) [41–46]. Tear
analysis by means of electrochemical cortisol immunosensing has also been reported [47].

In this work, we present most of the articles published in recent decades regarding the
development of electrochemical immunosensors for the detection of cortisol in a variety of
samples, ranging from plain buffer solutions [33,48,49] to complex biological specimens. As
shown in Table 1, electrochemical cortisol immunosensors have been mainly applied to the
analysis of saliva samples [37,50–63], and to a lesser extent blood plasma or serum [64–70],
interstitial fluid [63,71], buffer solutions of rat adrenal gland acute slices [58], and whole-
body zebra fish [51]. Early electrochemical immunosensors applied to detect cortisol in vivo
in dialysates of the extracellular fluid of animal brain (amygdala region) or in dialysates
of circulating blood in conscious animals are also listed in Table 1 [34,72]. Moreover, as
mentioned, cortisol electrochemical immunosensors have been employed as a means to
analyze human/artificial sweat samples [41–44,56,73–76]. The underlying immunoassay
principle and the electrochemical detection/signal principle of each sensor have been
included in Table 1, while cortisol concentrations corresponding to the working range
and/or limit of detection (LOD) have been listed as well.
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Table 1. Electrochemical cortisol immunosensors.

Immunoassay Principle Signal Transduction
Principle Biological Sample Range/LoD Reference

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab 1, immobilized onto

gold microelectrodes)
Cyclic voltammetry Buffer 10 pM–500 nM/

1 pM [48]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab, immobilized onto

silver/silver oxide (Ag/AgO)—polyaniline nanocomposites)
Cyclic voltammetry Buffer 1 pM–1 µM

0.64 pM [49]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab co-immobilized with

HRP on the sensor electrode)
Amperometry Buffer 10−7–10−5 M [33]

Competitive
(Competition between free cortisol and a BSA-cortisol conjugate

immobilized onto magnetic beads for binding to an anti-cortisol Ab
labeled with silver nanoclusters (AgNCs)

Photoelectrochemistry Saliva 0.0001–100 ng/mL/
0.06 pg/mL [50]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on

polyaniline-modified graphene electrodes)

Electrochemical
impedance

spectroscopy
Saliva (canine) 0.0005–50 µg/mL/

3.57 fg/mL [37]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab labeled with

ferrocene-tags and immobilized on a modified tin-doped indium oxide
electrode)

Cyclic voltammetry;
square wave
voltammetry

artificial saliva and
zebrafish whole-body

0.001–50 ng/mL/
1.03 pg/mL [51]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on a

AuNP/MoS2/AuNP–modified screen-printed electrode)

Differential pulse
voltammetry Saliva 0.5–200 nM/

0.11 nM [52]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab covalently immobilized

on NiO thin film/ITO 2 electrodes)

Cyclic voltammetry,
Differential pulse

voltammetry
Saliva

1 pg/mL–10
µg/mL/

0.32 pg/mL
[53]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab covalently immobilized

onto micro-Au electrodes)

Electrochemical
impedance

spectroscopy
Saliva

1 pg/mL–10
ng/mL/

0.87 ± 0.12 pg/mL
[54]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab co-immobilized with

BSA on glassy carbon electrodes that had been coated with tin disulfide
nanoflakes)

Cyclic voltammetry,
differential pulse

voltammetry
Saliva 100 pM–100 µM/

100 pM [55]

Competitive
(Competition between an ALP-labeled cortisol conjugate and free

cortisol for binding to an anti-cortisol Ab indirectly immobilized on
disposable graphite screen-printed electrodes)

Square wave
voltammetry Saliva 0.5–55.1 ng/mL/

1.7 ng/mL [57]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on

electroreduced graphene oxide deposited on screen-printed electrodes)

Electrochemical
chronoamperometry Saliva, sweat 0.1 ng/mL [56]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab covalently immobilized

on reduced graphene oxide channels between two planar electrodes)
Resistance

Human saliva and
buffer solution of rat
adrenal gland acute

slices

10 pg/mL [58]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on

Au-substrates modified with ZnO nanostructures (1D nanorods, 2D
nanoflakes))

Cyclic voltammetry Saliva 1 pM [59]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab covalently immobilized

on microfabricated interdigitated microelectrodes)
Cyclic voltammetry Saliva

10 pg/mL–100
ng/mL/

10 pg/mL
[60]

Competitive
(Competition between a GOD 3–cortisol conjugate and free cortisol for

binding to an anti-cortisol Ab immobilized on platinum electrodes;
lateral and vertical fluid control mechanisms were integrated in the

sensor)

Amperometry Saliva 0.1–10 ng/mL [61]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on gold

microelectrode arrays)

Electrochemical
impedance

spectroscopy

Saliva and interstitial
fluid 1 pM–100 nM [63]

Competitive
(Competition between free cortisol and a cortisol analog covalently

immobilized on single-walled carbon nanotubes and free cortisol for
binding to an anti-cortisol Ab)

Resistance/conductance Saliva
1 pg/mL–10

ng/mL/
1 pg/mL

[62]

Competitive
(Competition between cortisol immobilized on naflon pretreated glassy

carbon electrodes and free cortisol for binding to a biotinylated
anti-cortisol Ab; detection was performed via reaction with

HRP–streptavidin)

Electrochemical
impedance

spectroscopy, cyclic
voltammetry

Plasma 0.1–1000 ng/mL/
0.05 ng/mL [65]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab co-immobilized with

GOD on gold electrodes)
Amperometry Plasma

(fish) 1.25–200 ng/mL [66]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab, immobilized on

interdigitated gold microelectrodes)
Cyclic voltammetry Plasma

10 pg/mL–500
ng/mL/

10 pg/mL
[67]

Competitive
(Competition between an ALP-labeled cortisol conjugate and free

cortisol for binding to an anti-cortisol Ab covalently immobilized on
gold electrodes.

Amperometry Serum 0–250 ng/mL/
13.4 ng/mL [64]
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Table 1. Cont.

Immunoassay Principle Signal Transduction
Principle Biological Sample Range/LoD Reference

Competitive
(Competition between an ALP-labeled cortisol conjugate and free

cortisol for binding to an anti-cortisol Ab immobilized through protein
A on magnetic particles; the immunocomplexes formed were trapped
on the surface of screen-printed electrodes with a small magnet and

ALP activity was monitored)

Differential pulse
voltammetry Serum

5 × 10−3–150
ng/mL/

3.5 pg/mL
[69]

Competitive
(Competition between an HRP-labeled cortisol conjugate and free

cortisol for binding to an anti-cortisol Ab immobilized on gold
electrodes functionalized with a AuNP–protein G–DTBP 4 scaffold)

Square wave
voltammetry Buffer, Serum 50–2,500 pg/mL/

16 pg/mL [68]

Noncompetitive
(Direct binding of cortisol and cortisone (transformed into cortisol via
the enzyme 3α-hydroxysteroid dehydrogenase) to an anti-cortisol Ab

immobilized on gold nanowires/working electrodes)

Square wave
voltammetry Buffer, Serum 10–80 µM [70]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on L-cys

5–AuNPs–MXene-modified electrodes)
Amperometry Artificial Sweat 5–180 ng/mL/

0.54 ng/mL [41]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on the

surface of flexible screen-printed electrodes coated with AuNPs)

Differential pulse
voltammetry Sweat 7.47 nM [42]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab, immobilized on a
flexible electrode prepared on polydimethylsiloxane modified with

multiwalled carbon nanotubes and AuNPs)

Cyclic voltammetry,
differential pulse

voltammetry
Sweat 1 fg/mL–1 µg/mL/

0.3 fg/mL [43]

Competitive
(Competition between an HRP–cortisol conjugate and free cortisol for
binding to an anti-cortisol antibody immobilized on graphene-based

electrode)

Amperometry Sweat 0.43–50.2 ng/mL [44]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol antibody immobilized on a
conductive carbon yarn functionalized with ellipsoidal Fe2O3 particles)

Cyclic voltammetry Sweat 1 fg/mL–1 µg/mL/
0.005 fg/mL [73]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on MoS2

sheets integrated into a nanoporous flexible electrode system)

Electrochemical
impedance

spectroscopy
Sweat 1–500 ng/mL/

1 ng/mL [74]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on ZnO
thin film deposited on a flexible nanoporous polyamide membrane;
room temperature ionic liquids were employed to enhance sensor

stability)

Electrochemical
impedance

spectroscopy
Sweat 10–200 ng/mL/

10 ng/mL [75]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on a ZnO

thin film deposited on a flexible nanoporous polyamide membrane)

Electrochemical
impedance

spectroscopy
Sweat 10–200 ng/mL/

1 ng/mL [76]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab, covalently immobilized

on a gold microelectrode array)

Electrochemical
impedance

spectroscopy
Interstitial fluid 1 pM–100 nM [71]

Competitive
(Competition between free cortisol and an HRP–cortisol conjugate for

binding to an anti-cortisol antibody immobilized on a platinum
electrode)

Amperometry

Dialysates of
extracellular fluid of

animal brain,
amygdala region

(sheep)

0–100 ng/mL
(in vitro

measurement)
[72]

Competitive
(Competition between HRP–cortisol conjugate and free cortisol for

binding to an anti-cortisol antibody immobilized on platinum
electrodes)

Potentiometry
Dialysates of animal

circulating blood
(sheep, cattle, rat)

0.3 µg/100 mL [34]

1 Ab: antibody. 2 ITO: indium tin oxide. 3 GOD: glucose oxidase. 4 DTBP: dimethyl 3,3′-dithiobispropionimidate.2HCl.
5 L-cys: L-cysteine.

Among the most recently reported electrochemical cortisol immunosensors are the
following (Table 1): (a) an electrochemical immunosensor for sweat cortisol based on an
L-cys/-gold nanoparticles/-MXene(titanium carbide)–modified thread electrode [41]; (b) a
photoelectrochemical immunosensor for salivary cortisol based on the competition be-
tween free cortisol and a bovine serum albumin (BSA)–cortisol conjugate immobilized onto
magnetic beads for binding to an anti-cortisol antibody labeled with silver nanoclusters
(AgNCs); after formation of the immunocomplexes, the magnetic beads were separated, the
AgNCs were dissolved in nitric acid and the silver ions produced were transferred to the
sensor electrode for ion exchange with cadmium sulfide (CdS) quantum dots, which led to
a decrease in the photocurrent intensity [50]; (c) a battery-free, wireless and flexible electro-
chemical patch-type immunosensor for sweat cortisol determination employing near-field
communication with a smartphone (Figure 1); the sensor employed an anti-cortisol anti-
body covalently immobilized on screen-printed electrodes, coated with gold nanoparticles
(AuNPs) through a bifunctional polyethylene glycol (PEG) derivative [42]; (d) an electro-
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chemical immunosensor for sweat cortisol based on a flexible electrode that was developed
by transferring a multiwalled carbon nanotube (MWCNT) film on a polydimethylsiloxane
substrate and subsequently depositing gold nanoparticles on the MWCNT surface [43];
(e) an electrochemical impedance spectroscopy immunosensor for detecting cortisol as a
stress marker in saliva of trainee guide dogs during the training process [37]; (f) an im-
munosensor for salivary cortisol based on a gold nanoparticle–molybdenum disulfide–gold
nanoparticles scaffold as transducer combined with a smartphone-operated point-of-care
miniaturized differential pulse voltammetry system [52]; (g) an immunosensor employing
a modified tin-doped indium oxide (ITO) electrode, on which an anti-cortisol antibody
labeled with ferrocene tags had been immobilized; a point-of-care electrochemical platform
was thus constructed and applied to determining cortisol in artificial saliva and whole-body
zebrafish with or without extraction [51]; (h) an immunosensor using an integrated wireless
sensing device that was based on laser-engraved graphene electrodes for detecting sweat
cortisol; the cortisol diurnal cycle in human sweat was investigated with that immunosensor
and a strong empirical correlation between serum and sweat cortisol was reported [44]; (i) a
dual amperometric immunosensor microchip for the simultaneous detection of cortisol and
insulin in untreated serum samples; insulin detection was based on a peroxidase-labeled
sandwich assay, and cortisol detection on an alkaline phosphatase-labeled (ALP-labeled)
competitive immunoassay [64].

Biosensors 2023, 13, x FOR PEER REVIEW 9 of 20 
 

1 Ab: antibody. 2 ITO: indium tin oxide. 3 GOD: glucose oxidase. 4 DTBP: dimethyl 3,3′-dithiobispropi-

onimidate.2HCl. 5 L-cys: L-cysteine. 

 

Figure 1. Real-time cortisol detection in human sweat with a wearable electrochemical immunosen-

sor. Data were collected and displayed through a near-field communication–enabled smartphone 

(adopted with permission from [42]). 

Most of the electrochemical cortisol immunosensors are characterized by very good 

analytical features, such as high sensitivity, with LOD values in the range of pg/mL or 

even fg/mL, as shown in Table 1. Immunosensor specificity is mainly dependent on the 

anti-cortisol antibody employed, while other sensor reagents/components along with the 

biological matrix of the sample analyzed may also affect specificity, at least to some extent. 

For several electrochemical immunosensors [41,53,54,57], high reproducibility has been 

reported. However, larger validation studies are required before further sensor exploita-

tion, as we mention in Section 3. 

2.2. Optical Cortisol Immunosensors 

The first optical cortisol immunosensors were developed in the late 2000s (Table 2). 

These sensors, based on the surface plasma resonance (SPR) detection principle [77–79] 

and applied to the detection of salivary cortisol, are mentioned in a recent review article 

concerning analysis of saliva as an ideal “health mirror” sample [80]. Since the late 2000s, 

several other optical cortisol immunosensors have been described in the literature. 

In this work, we present most of the articles published in the last 15 years regarding 

the development of optical immunosensors for detecting cortisol in a variety of matrices, 

from plain buffer solutions [81–83] to complex biological specimens. As shown in Table 2, 

complex biological samples analyzed for cortisol with optical immunosensors include 

mainly saliva [78,79,84–90], as well as blood plasma/serum [91,92] and urine [78]. 

Among the most recently reported (2020–2022) optical cortisol immunosensors are 

the following (Table 2): (a) an optical immunosensor for real-time/continuous monitoring 

of cortisol in human blood plasma obtained after filtration or through microdialysis em-

ploying a complex immunoassay setup for cortisol biosensing through particle mobility 

monitoring with the aid of a microscope [91]; (b) an SPR immunosensor based on D-

shaped optical fibers; the sensor has been applied to determining cortisol in buffer solu-

tions [81]; (c) an SPR immunosensor based on an unclad plastic optical fiber, first coated 

with gold/palladium alloy and subsequently loaded with an anti-cortisol antibody; this 

sensor has also been applied to determining cortisol in buffer solutions [82]; (d) an optical 

immunosensor based on metal (gold)-enhanced time-resolved fluorescence for the contin-

uous real-time monitoring of cortisol in buffer solutions [83]; (e) a paper-based optical 

Figure 1. Real-time cortisol detection in human sweat with a wearable electrochemical immunosen-
sor. Data were collected and displayed through a near-field communication–enabled smartphone
(adopted with permission from [42]).

Most of the electrochemical cortisol immunosensors are characterized by very good
analytical features, such as high sensitivity, with LOD values in the range of pg/mL or
even fg/mL, as shown in Table 1. Immunosensor specificity is mainly dependent on the
anti-cortisol antibody employed, while other sensor reagents/components along with the
biological matrix of the sample analyzed may also affect specificity, at least to some extent.
For several electrochemical immunosensors [41,53,54,57], high reproducibility has been
reported. However, larger validation studies are required before further sensor exploitation,
as we mention in Section 3.

2.2. Optical Cortisol Immunosensors

The first optical cortisol immunosensors were developed in the late 2000s (Table 2).
These sensors, based on the surface plasma resonance (SPR) detection principle [77–79]
and applied to the detection of salivary cortisol, are mentioned in a recent review article
concerning analysis of saliva as an ideal “health mirror” sample [80]. Since the late 2000s,
several other optical cortisol immunosensors have been described in the literature.
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Table 2. Optical cortisol immunosensors.

Immunoassay Principle Signal Transduction
Principle

Biological
Sample Range/LoD Reference

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on

a D-shaped, gold-coated silica optical fiber)

Surface plasmon
resonance (SPR) Buffer 0.01–100 ng/mL/

1.46 ng/mL [81]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab immobilized on

a plastic optical fiber coated with gold–palladium alloy)
SPR Buffer 1 pg/mL [82]

Competitive
(Competition between a fluorescently labeled BSA–cortisol
conjugate and free cortisol for binding to an anti-cortisol Ab

immobilized on glass substrate coated with gold)

Metal-enhanced
fluorescence (MEF) Buffer 0.02 µg/mL [83]

Noncompetitive
(Direct binding between of cortisol to an anti-cortisol Ab or

aptamer, immobilized on quantum dots)
Fluorescence quenching Saliva

1 nM
(aptamer-based)

100 pM
(Ab-based)

[84]

Lateral flow–type
Competitive

(Competition between a BSA–cortisol conjugate immobilized on
the strip and free cortisol for binding to a Cy3-labeled

anti-cortisol Ab)

Fluorescence
(detected with a

smartphone-linked reader)
Saliva 0.1 ng/mL [85]

Competitive
(Competition between an HRP-labeled cortisol conjugate and

free cortisol for binding to an anti-cortisol Ab indirectly
immobilized on PDMS microfluidic channel)

Colorimetry Saliva 0.01–20 ng/mL/
18 pg/mL [86]

Lateral flow–type
Competitive

(Competition between an HRP-labeled cortisol conjugate and
free cortisol for binding to an anti-cortisol Ab immobilized on

the strip)

Chemiluminescence
(detected through a
smartphone camera)

Saliva 0.3–60 ng/mL/
0.3 ng/mL [87]

Lateral flow–type
Competitive

(Based on europium fluorescent particle conjugates)

Fluorescence
(Detected with a cassette

reader transferring results
through a Bluetooth

device, manufactured by
Oasis Diagnostics)

Saliva 0.91 ng/mL [88]

Competitive
(Competition between a cortisol analogue, hydrocortisone

3-(O-carboxymethyl)oxime, covalently immobilized on gold
surface and free cortisol for binding to an anti-cortisol Ab)

SPR Saliva 10 ppt–100 ppb/
38 ppt [89]

Competitive
(Competition between a BSA–cortisol conjugate immobilized on

a disposable disk chip and free cortisol for binding to an
ALP-labeled anti-cortisol Ab)

Chemiluminescence Saliva 0.4–11.3 ng/mL [90]

Competitive
(Competition between an in-house prepared cortisol conjugate

immobilized on a gold sensor surface and free cortisol for
binding to the anti-cortisol Ab; a secondary Ab was used for

signal increase)

SPR Saliva 91–934 pg/mL/
49 pg/mL [79]

Noncompetitive
(Direct binding of cortisol to an anti-cortisol Ab covalently

immobilized on the polycarboxylate hydrogel–coated sensing
surface)

SPR Saliva, urine 3 µg/L [78]

Competitive
(Competition between a BSA–cortisol conjugate immobilized on

the SPR-sensor surface and free cortisol for binding to a
monoclonal anti-cortisol Ab)

SPR Saliva, buffer 1.0 ng/mL [77]

Competitive
(Competition between cortisol analogues, i.e., suitably prepared

cortisol–ssDNA conjugates, and free cortisol for binding to a
biotinylated anti-cortisol Ab immobilized on

streptavidin-coated particles)

Particle mobility (detected
through dark field

microscopy)

Blood plasma
(filtered or

microdialysis-
sampled)

High nM–low µM [91]

Competitive
(Competition between a BSA–cortisol conjugate immobilized on
paper and free cortisol for binding to gold nanoparticles loaded

with the anti-cortisol Ab)

Color Blood serum 21.5 µg/dL [92]
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In this work, we present most of the articles published in the last 15 years regarding
the development of optical immunosensors for detecting cortisol in a variety of matrices,
from plain buffer solutions [81–83] to complex biological specimens. As shown in Table 2,
complex biological samples analyzed for cortisol with optical immunosensors include
mainly saliva [78,79,84–90], as well as blood plasma/serum [91,92] and urine [78].

Among the most recently reported (2020–2022) optical cortisol immunosensors are the
following (Table 2): (a) an optical immunosensor for real-time/continuous monitoring of
cortisol in human blood plasma obtained after filtration or through microdialysis employing
a complex immunoassay setup for cortisol biosensing through particle mobility monitoring
with the aid of a microscope [91]; (b) an SPR immunosensor based on D-shaped optical
fibers; the sensor has been applied to determining cortisol in buffer solutions [81]; (c) an SPR
immunosensor based on an unclad plastic optical fiber, first coated with gold/palladium
alloy and subsequently loaded with an anti-cortisol antibody; this sensor has also been
applied to determining cortisol in buffer solutions [82]; (d) an optical immunosensor
based on metal (gold)-enhanced time-resolved fluorescence for the continuous real-time
monitoring of cortisol in buffer solutions [83]; (e) a paper-based optical immunosensor
for serum cortisol, based on a competitive assay principle and employing an anti-cortisol
antibody labeled with gold nanoparticles (Figure 2) as signal indicator [92]; (f) an optical
immunosensor for salivary cortisol based on fluorescence quenching caused by cortisol
binding to quantum dots loaded with an anti-cortisol antibody (or with an aptamer) [84].
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between cortisol in the sample and BSA–cortisol immobilized on the detection surface of the paper
sensor for binding to an anti-cortisol antibody labeled with gold nanoparticles; (C) collection and
interpretation of the results using image capture/processing programs. (Adopted with permission
from [92]).
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Although optical cortisol immunosensors may be considered less sensitive than elec-
trochemical ones, at least on average, most of them are characterized by adequate sensitivity,
with LOD values mainly in the range of ng/mL, as shown in Table 2. Integration of ad-
vanced nanomaterials, especially during the last few decades, has led to signal enhancement
and contributed to achieving increased analytical sensitivity. Similarly to electrochemical
immunosensors, specificity of the optical cortisol immunosensors is mainly dependent on
the specificity of the primary antibody employed, while it might also be affected by other
reagents/components used for constructing the immunosensing platform and/or matrix
of the biological samples. For some of the optical immunosensors [81], high reproducibility
has been reported. Nevertheless, as in the case of electrochemical sensors, large validation
studies are required before reaching a solid evaluation.

2.3. Cortisol Aptasensors and MIP-Based Biosensors

Aptamer-based biosensors are well-known alternatives to immunosensors and have
been proposed for various applications in biomedical analysis [93,94]. Concerning cortisol,
several biosensors based on a proper aptamer [95], instead of an anti-cortisol antibody, have
been reported in the literature: similar to immunosensors, cortisol aptasensors are mainly
electrochemical [96–101] and optical, including lateral flow–type sensing strips [84,102–104].

Biosensors based on molecularly imprinted polymers (MIP), instead of specific antianalyte
antibodies, are another group of cortisol sensors [105,106]. Mainly electrochemical [107–110]
and optical [111] MIP-based cortisol biosensors have been reported in the literature.

3. Discussion—Future Perspectives

Cortisol homeostasis is essential for human health, and abnormal cortisol levels have
been correlated with and may serve as a valuable biomarker for several disease states.
Thus, it is important to monitor cortisol concentrations in various biological samples by
means of proper analytical methods. Cortisol immunoassays are currently considered the
analytical method of choice for determining cortisol in biological specimens, such as blood
serum/plasma, urine, saliva, or, more recently, hair. Transformation of the conventional
immunoassays to technologically advanced antibody-based assays, which can easily be
accomplished in a short time by unskilled persons and are capable of being “integrated”
into portable devices for point-of-care measurements, has led to the development of sev-
eral cortisol immunosensors during the last three decades. Cortisol immunosensors can
be divided according to the signal transduction principle they rely upon. Most cortisol
immunosensors are electrochemical and rely on signal measurement through cyclic voltam-
metry, impedance spectrometry, and amperometry. On the other hand, several optical
immunosensors, including flow lateral–type strip sensors, have been developed, especially
during the last decade. Besides the usually measured optical signals, e.g., SPR signals,
some of the most recently reported cortisol immunosensors [91] rely on the measurement of
other parameters, e.g., on particle mobility monitoring with the aid of a microscope [112].

Some immunosensors can simultaneously detect cortisol along with another biomarker,
e.g., insulin [64], lactate [56] or IL-6 [75]. This “multianalyte” approach, although techno-
logically difficult to achieve and therefore rarely reported, is highly desirable from a clinical
point of view. Thus, a dual electrochemical immunosensor proposed for the simultaneous
detection of cortisol and insulin at the point of care [64] may eventually offer improved
management of diabetes.

A great number of cortisol immunosensors have been applied to the analysis of saliva
samples and less to urine or blood plasma/serum, while too little information concerning
immunosensors for hair cortisol is currently available, at least to our knowledge. This ten-
dency might be attributed, at least partly, to special requirements for the collection and/or
treatment of the relevant samples, e.g., the requirement of 24 h urine collection renders
urine samples weak candidates for real-time detection of cortisol through a point-of-care
immunosensor device [40]. Other factors supporting this trend may include matrix com-
plexity, the need for careful pH adjustment before sample analysis, etc. On the other hand, a
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special group of electrochemical immunosensors (e.g., miniaturized and flexible/wearable
sensors that are based on new materials, such as two-dimensional nanosheets of MoS2 [74])
have allowed real-time and even continuous monitoring of cortisol in sweat. As reported,
free (protein-unbound) cortisol seems to be present in sweat glands, through a mechanism
resembling transportation of free cortisol by the bloodstream to the salivary glands. From
sweat glands, cortisol is thought to reach sweat by passive transportation through the cell
lipid bilayer membrane [113]. Sweat cortisol concentrations have been reported to range
from 8 to 142 ng/mL [10,18], the highest levels being found in the morning and correlating
with salivary levels [113]. So far, sweat cortisol has not been detected with conventional
methods—at least, not routinely—possibly due to difficulties in collecting and properly
storing the corresponding samples for subsequent laboratory analysis.

At present, routine analysis of biological samples for cortisol monitoring is only per-
formed in lab settings [114]. Further research is needed before cortisol immunosensors have
become fully commercialized and available to clinical and self-monitoring applications. A
first challenge of such efforts would be to perform large validation studies so as to ensure
that the analytical characteristics of the immunosensors developed are of high quality.
Although there is always space for improvement, sensitivity/LOD is usually not a problem,
while specificity and/or simplicity of production and cost-related issues associated with the
anti-cortisol antibodies, which are inherent in all immunochemical analytical techniques,
might be addressed by antibodies’ replacement with aptamers or MIPs. However, spe-
cial attention should be paid to the validation of repeatability/reproducibility [115] as
well as operational stability, especially when complex biological samples, such as blood
plasma/serum are to be analyzed (which may affect integrity and deteriorate functioning of
electrodes in electrochemical immunosensors). Conditions of reusability as well as storage
stability/durability/life span are also issues to be studied. Wearable immunosensors for de-
tection of cortisol, mainly in sweat samples, seem to provide exciting prospects for further
progress in the field, but particular aspects have to be addressed in the years to come [116].
These aspects include accurate sample collection, potential toxicity and biocompatibility of
sensor materials, and appropriate power supply of the flexible electronics these sensors
require, while data processing and communication constitute a separate research field,
which may be further elaborated and improved. Last, but not least, detailed and thorough
knowledge of the biological and chemical characteristics of the samples to be analyzed
along with deep insight in cortisol physiology and partitioning/kinetics/dynamics of the
hormone in different compartments/fluids of the organism in normal and disease states
would nicely supplement research in the field (Figure 3), and relevant studies may be
performed in parallel. To achieve this, close collaboration among clinicians, physicists,
chemists, bioscientists, and engineers is a prerequisite.
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Figure 3. Cortisol has been detected in various biological fluids, and cortisol levels may serve as
a valuable biomarker (e.g., of stress). Cortisol determination has been achieved mainly with ana-
lytical methods based on specific cortisol binders and especially anti-cortisol antibodies. Cortisol
immunosensors based on different signal transduction principles are expected to be eventually com-
mercialized and serve as an easy-to-handle, reliable tool for point-of-care clinical analysis of cortisol.

4. Conclusions

Most reported cortisol immunosensors are currently at the proof-of-concept stage, and
further research is necessary before the most appropriate among them could eventually
become commercially available. Provided that all issues requiring further elucidation and
thorough validation, as discussed in the present work, can be resolved, cortisol immunosen-
sors will be an invaluable analytical tool that will enrich and expand the capabilities of the
existing methodology, thus offering exceptional prospects in the field of clinical analysis
of cortisol.
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