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Abstract: The current attempt was made to detect the amino acid homocysteine (HMC) using an
electrochemical aptasensor. A high-specificity HMC aptamer was used to fabricate an Au nanos-
tructured/carbon paste electrode (Au-NS/CPE). HMC at high blood concentration (hyperhomo-
cysteinemia) can be associated with endothelial cell damage leading to blood vessel inflammation,
thereby possibly resulting in atherogenesis leading to ischemic damage. Our proposed protocol was
to selectively immobilize the aptamer on the gate electrode with a high affinity to the HMC. The
absence of a clear alteration in the current due to common interferants (methionine (Met) and cysteine
(Cys)) indicated the high specificity of the sensor. The aptasensor was successful in sensing HMC
ranging between 0.1 and 30 µM, with a narrow limit of detection (LOD) as low as 0.03 µM.

Keywords: aptasensor; homocysteine; Au nanostructured; differential pulse voltammetry; carbon
paste electrode

1. Introduction

Homocysteine, 2-amino-4-sulfanylbutanoic acid, or HMC is found in human blood as
an essential amino acid that is not introduced via food sources but originates from methio-
nine, where the Met present in food is converted to cysteine (Cys) through homocysteine
(HMC). The reaction can reverse from HMC to Met; if the reaction stops at HMC, it cannot
proceed to Cys and Met, so that the HMC concentration in biological systems may rise
above the normal dose of 5–16 µM, which is called hyperhomocysteinemia. As a result, this
phenomenon can be associated with many health risks, such as heart attack, osteoporosis,
and pregnancy complications [1–4].

Various techniques were previously used to quantify HMC, some of which are HPLC,
GC-MS, capillary electrophoresis, two-photon fluorescent chemosensors, LC-ESI-MS/MS,
and LC/MS/MS [5–10]. This issue highlights the importance of biomolecule measurement.
Therefore, much attention has been drawn to sensors and biosensors based on electrochemi-
cal approaches with praiseworthy features in terms of selectivity, sensitivity, portability, and
reliability [11–38]. Accordingly, it seems necessary to develop biosensors for quantitative
determination of HMC in terms of avoiding health conditions.

There is evidence for the use of electrochemical approaches to determine HMC [39,40].
The result of such research in the last decade has been to reach an electrochemical detec-
tion platform based on aptamers (aptasensors). Reportedly, such a sensing system is an
approach for the analysis of water and food specimens due to merits like low cost, green
nature, and ease of use. For multiple electrochemical aptasensors, a structural alteration
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in the immobilized aptamer can occur due to interaction with the desired analytes, which
changes the resistance of electron transfer between the electrode surface and redox active
species. The sensors based on the electrochemical aptamer (EA), according to the molecular
pathway of target-induced strand displacement (TISD), exhibit facile and effective systems
in electrochemical platforms. The detection analytes used by such TISD-supported EA
sensors are duplex probes consisting of electrode-immobilized aptamer-cDNA matrices.
Hybridization of an aptamer sequence with its complementary DNA (cDNA) was engi-
neered to obtain a duplex probe. When target molecules are present, the aptamer forms
an aptamer-target complex, and the complementary strand of the aptamer-cDNA duplex
is displaced, resulting in the TISD reaction at the sensor interface. On the one hand, it is
possible to engineer duplex aptamer-cDNA probes based on facile base-pairing protocols
for all aptamers. On the other hand, TISD detection can follow diverse electrochemical
approaches for signal transduction. Therefore, TISD-supported EA sensors are developed
to detect various targets, such as proteins, metal ions, and small organic substances [41–46].

The present attempt was made to integrate the merits of the above-mentioned sub-
stances and approaches to construct ultra-sensitive electrochemical sensors based on the
modification of gold nanoparticles/carbon paste electrode surfaces with aptamers (AP/Au-
NS/CPE). Based on the evidence, a facile fabrication of AP/Au-NS/CPE was successful in
electrochemically biosensing the HMC. The suggested system is appreciable and reliable
for electrochemically biosensing the HMC.

2. Experimental Procedure
2.1. Chemicals

The sequences of utilized oligonucleotides (Bio Basic Inc., Markham, ON, Canada)
consisted of DNA, 5′SH-(CH2)6 ACCA GCAC ATTC GATT ATAC CAGC TTAT TCAA
TTCA CAGC TATG TCCT ATAC CAGC TTAT TCAATT−3′ [47]. Citric acid, sodium
hydroxide, acetic acid, phosphoric acid, acetone, and ethanol belonged to Merck. The
6-mercapto 1-hexanol and DL-homocysteine were from Sigma-Aldrich. The remaining
chemicals were of reagent grade.

2.2. Equipment

The voltammetric analysis was performed by PGSTAT 302N Autolab potentiostat/
galvanostat (the Netherlands). The conventional three-cell electrode system used contained
a CPE work electrode, an Ag/AgCl reference electrode, and a platinum wire counter
electrode. A Metrohm 713 pH meter was employed to measure pH values using a glass-
reference electrode. To do DPVs, the CPE was placed in a constant concentration of HMC
(5 mL) and 0.1 M PBS (0.1 M Na2HPO4–NaH2PO4 embarrassing 0.1 M NaCl, pH = 7.0)
while stirring at ambient conditions. Following the PBS washing process, the CPE was
positioned in a three-electrode system. The DPV determinations were performed in 0.1 M
PBS (25 mL, pH 7.0) at ambient conditions.

2.3. Fabrication of CPE

To construct the CPE, graphite powder (0.5 g) was blended with nujol oil (0.3 mL) in a
glassy mortar. After preparing the carbon paste, it was placed inside the electrode hole and
smoothed with a filter paper to obtain a shiny appearance.

2.4. Modification of CPE Surface

The CPE surface was modified with Au-NS by immersing the electrode inside the
gold solution (6 mM AuCl4 + 0.1 M KNO3) at −400 mV for 400 s (Au-NS/CPE). The
Au-NS/CPE surface was coated with a 4.5 µM aptamer solution (5 µL). The electrode was
subsequently kept vertically in a moist chamber overnight for self-assembly. As-prepared
Au-NS/CPE was positioned in 1 mM 6-mercapto 1-hexanol within 60 min after washing
with 0.1 M PBS (pH = 7.0) to limit common sites and to obtain the aptamer strands in
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straight coordination. The washing process for the electrode in each step was performed
via PBS (25 mM, pH = 7.0).

2.5. Construction of Electrochemical Aptasensor

The label-free aptasensor developed to detect HMC contained a thiolated aptamer
as its capture probe. Thus, the modification of rinsed Au-NS/CPE was performed by
the thiolated aptamer through self-assembly. Subsequently, the electrode modified with
aptamer was transferred into a 1 mM 6-mercapto 1-hexanol solution for 60 min. Now, the
assembly interface was able to sense the HMC.

2.6. Homocysteine Determination

To this end, the aptamer-modified CPE (AP/CPE) was immersed in the HMC solu-
tion (2 mL) with variable PBS concentrations (0.1 M PB, 0.1 M NaCl, and pH = 7.0) for
60 min. After washing, the electrochemical detection was applied to agglomerated HMC
in a 25 mL buffer (0.1 M PB, 0.1 M NaCl, and pH 7.0), exploiting the differential pulse
voltammetry (DPV).

3. Results and Discussion
3.1. Structure and Morphology

The FE-SEM images of Au-NS modified CPE at different magnifications are shown
in Figure 1.
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Figure 1. FE-SEM images of Au-NS modified CPE at different magnifications.

3.2. Experimental Optimization

The AP/Au-NS/CPE sensor was examined for its behaviors in terms of buffer concen-
tration, aptamer concentration, type of buffer, and time of interaction, followed by their
optimization in a solution containing HMC (0.1 µM).

Figure 2 illustrates that the current (0.1 µM HMC spiked in 0.1 M PBS (pH = 7.0))
increased along with the Apt concentration and arrived at a bottleneck at 4.5µM, indicating
that the aptasensor was approaching its saturation limit for the Apt concentration. Also,
increasing aptamers further could lead to an increase in steric hindrance [48]. Thus, an Apt
concentration of 4.5µM was set as the optimal value.
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trations ((a) 0.5, (b) 1.5, (c) 2.5, (d) 3.5, (e) 4.5, (f) 5.5, and (g) 6.5 µM of aptamer). Inset: plot of peak
current versus aptamer concentration, which ranged from 0.5 to 6.5 µM.

Figure 3 shows the effect of interaction time (ranging from 25 to 105 min) on the HMC
electrochemical signal (0.1 µM HMC spiked in 0.1 M PBS (pH = 7.0)). As shown in Figure 3,
the current increased with the increasing of interaction time and reached the maximum
current at 65 min. Therefore, 65 min was selected as the optimal interaction time. This trend
indicated that the binding sites between aptamer and HMC were approximately saturated
after 65 min [49].

In Figure 4, the impact of buffer type (citrate, phosphate, and acetate) on HMC
detection was explored in solutions carrying 0.1 µM HMC. A sharp increase could be seen
in the response of the electrode at 0.1 M PBS (pH = 7.0). Therefore, PBS was selected as the
optimal buffer type.
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The impact of PBS concentration (ranging from 0.02 to 0.2 M) on HMC detection was
explored in solutions carrying 0.1 µM HMC spiked in PBS, the results of which are shown
in Figure 5. A sharp increase could be seen in the electrode response at 0.1 M PBS. In
fact, the concentration of electrolyte can affect the interaction of the aptamer and HMC,
resulting in enhancement or reduction of the electrostatic interaction between the aptamer
and HMC [49].
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Under the optimized circumstances, the best accumulation time, the best buffer, and
the best buffer concentration were selected to be 65 min, phosphate buffer, and 0.1 M
phosphate buffer for future research.

3.3. Standard Curve and Limit of Detection

The standard curve of HMC determination was plotted using as-obtained AP/Au-
NS/CPE under optimal circumstances. The solution HMC was detected by its oxidation
peak on the modified electrode. Thus, the DPV was recorded for variable HMC concen-
trations (Figure 6). The peak currents of HMC oxidation on the modified electrode had a
linear relationship with HMC concentrations that ranged between 0.1 and 30 µM. The limit
of detection (LOD = 3σ) was estimated at 0.03 µM for HMC.
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3.4. Real Sample Determination

The practical applicability of an aptasensor was explored by sensing HMC in real
specimens of human urine and serum samples in accordance with the standard addition
method. The preparation of biological specimens was carried out according to previous
reports [50]. The results of the real sample analysis will be accurate when each sample is
quickly centrifuged and refrigerated otherwise, glycolysis will increase the HMC content at
ambient temperature. Therefore, human serum (1 mL) involves different levels of HMC
after isolation of deposited proteins and filtering using a 0.45 µm Millipore filter and diluted
with 1 mL of PBS (0.2 M PB, 0.2 M NaCl, pH = 7). Additionally, urine sample (1 mL) was
dissolved in 1 mL of PBS for dilution. The urine specimens were refrigerated at 4 ◦C.
Table 1 presents the results of real-sample analysis. Accordingly, the recovery rates were
significantly acceptable for the spiked HMC detection, suggesting the appropriateness of
the HMC aptasensor for sensing the HMC in biomatrices.
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Table 1. Homocysteine detection in human urine and serum matrices (n = 5 (the measurement of
each concentration was repeated five times.)); all concentrations are in µM.

Sample Spiked Found Recovery (%) R.S.D. (%)

Urine
0 0.7 (±0.02) - 3.2

6.0 6.6 (±0.1) 98.5 2.2
8.0 8.8 (±0.1) 101.1 1.8

Human serum
0 4.1 (±0.1) - 2.6

4.0 8.4 (±0.1) 103.7 1.9
5.0 9.0 (±0.3) 98.9 3.2

3.5. Comparison of As-Developed Homocysteine Aptasensor with Other Previously Introduced
Electrochemical Approaches

A comparison was made for the HMC aptasensor components, by using available
electrochemical approaches in terms of accuracy and validation. Clearly, the LOD ranges
are better or more linearly proportional to those listed in Table 2. Further, the application of
aptamers in the fabrication of the electrode simplifies the detection of the selectivity of the
proposed protocol compared to the previous methods (Table 2).

Table 2. Comparing the homocysteine aptasensor with existing electrochemical approaches previ-
ously reported for homocysteine detection.

Method Limit of
Detection (LOD)

linear Dynamic
Range (LDR) Ref.

Voltammetry/Square
wave voltammetry 0.08 µM 0.1–210.0 µM [51]

Voltammetry/Linear
sweep voltammograms 3.3 µM 5.0–800.0 µM [52]

Voltammetry/Differential
pulse voltammetry 0.89 µM 2.5–1000.0 µM [53]

Voltammetry/Differential
pulse voltammetry 0.15 µM 0.5–900.0 µM [54]

Voltammetry/Differential
pulse voltammetry 1.0 µM 1.0–100.0 µM [55]

Voltammetry/Differential
pulse voltammetry 0.03 µM 0.1–30.0 µM This work

4. Conclusions

The current attempt was made to detect the amino acid homocysteine (HMC) using an
electrochemical sensor functionalized with aptamers (aptasensor). The proposed aptasen-
sor was examined for its analytical performance under optimized circumstances. It was
easy to use and cost-effective. We explored the influences of the concentration of buffer,
concentration of aptamer, type of buffer, and time of interaction. The linear dynamic range
at a working potential of 520 mV (versus Ag/AgCl) was from 0.1 to 30.0 µM under the opti-
mized circumstances, with the limit of detection as narrow as 0.03 µM. Further, the practical
applicability of the sensor was confirmed by sensing HMC in real biological specimens.
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