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Abstract: Bioluminescence is light emission based on the luciferin–luciferase enzymatic reaction in
living organisms. Optical signals from bioluminescence (BL) reactions are available for bioanalysis
and bioreporters for gene expression, in vitro, in vivo, and ex vivo bioimaging, immunoassay, and
other applications. Although there are numerous bioanalysis methods based on BL signal measure-
ments, the BL signal is measured as a relative value, and not as an absolute value. Recently, some
approaches have been established to completely quantify the BL signal, resulting in, for instance,
the redetermination of the quantum yield of the BL reaction and counting the photon number of
the BL signal at the single-cell level. Reliable and reproducible understanding of biological events
in the bioanalysis and bioreporter fields can be achieved by means of standardized absolute opti-
cal signal measurements, which is described in an International Organization for Standardization
(ISO) document.
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1. Introduction: Why Do We Have to Quantify the Optical Signal?

Optical signals from bioluminescence (BL), chemiluminescence (CL), and fluorescence
have been used in analytical methods to measure biological samples in the fields of life
science and medicine. Components of biological samples or biological parameters, includ-
ing cellular and metabolic activities, and gene expression, are transformed into an “optical
signal”, and the mechanism or function at the cell, tissue, or body levels is investigated. One
of the optical signals is BL, which is based on the chemical oxidation of luciferin catalyzed
by the luciferase enzyme. The intensity of the optical signals on the BL is determined by
the efficiency of the enzymatic reaction and the number of luciferins and cofactors. For
instance, the optical signal of firefly BL is determined by the amount of luciferin, luciferase,
and adenosine triphosphate (ATP), as well as the enzyme efficiency, including the quantum
yield (QY) of the luciferin–luciferase reaction [1,2].

Ten luciferins have been identified in bioluminescent organisms, along with several
corresponding luciferases [3]. Firefly D-luciferin, coelenterazine, Cypridina luciferin, and
their derivatives have been commercialized, and are primarily used in reporter assays,
in vivo and in vitro imaging, and immunoassay [4–9]. Several companies, such as Promega
and Toyobo, have also commercialized luciferase genes.

The firefly luciferin–luciferase reaction has mainly been applied to in vitro gene expres-
sion analysis as a reporter gene assay for screening bioactive compounds or toxicants [10–14].
This reaction has also been used to evaluate in vitro cellular functions as well as in vivo can-
cer growth and tracing [15–18]. Coelenterazine-based luciferase reactions have been used
for gene expression analysis and in vivo imaging [19–23]. Cypridina luciferin–luciferase
reactions have also been used in gene expression analysis, in vivo imaging, and immunoas-
says [24–30].
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We constructed a reporter plasmid vector containing the target promoter and luciferase
gene sequences for the gene expression analysis reporter assay. The promoter region
regulates the expression of the luciferase gene in living cells after transfection of the
plasmid into the target cells. The expressed luciferase protein catalyzes a reaction with
luciferin to produce an optical signal, resulting in the evaluation of changes in promoter
activities influenced by factors such as compounds. Therefore, it is possible to identify
active compounds from natural resources and detect toxicants from chemicals.

The promoter region was found to regulate the expression of luciferase genes in living
cells for in vitro imaging after transfection of a plasmid containing the luciferase gene into
the target cells. For the imaging experiment, luciferin was added to the medium, penetrated
the cells, and reacted with the expressed luciferases to generate light emission, resulting in
the visualization of the events of living cells. For in vivo imaging, after transfection of the
plasmid containing the luciferase gene into target tumor cells, we selected stable cell lines
expressing luciferase, followed by transplantation into model animals. For in vivo imaging
experiments, luciferin was injected into the body after an appropriate period for tumor cell
growth to generate an optical signal. BL signals indicate the location and growth of tumor
cells in the body. BL imaging (BLI) is measured using special equipment and is indicated
by brightness in the image.

Luciferase-fused antibodies are used in sandwich or competitive immunoassays,
the so-called bioluminescent enzyme immunoassay (BLEIA) [31,32]. By constructing a
calibration curve, the target antigen bound to a luciferase-fused antibody can be quantified
with high sensitivity and a large dynamic range.

The optical signals of BL methods are measured by sensitive photodetectors, including
photomultipliers, photodiodes, CCD, and CMOS sensors, and are converted into the
amount of target molecules based on the calibration curve between the light intensity
and the number of target molecules. In particular, immunoassays using BL are highly
quantitative and reliable and have been commercialized by many companies. However,
the measured optical signals are relative values; therefore, the detected optical signals
collected on different days using different equipment or luminescent probes cannot be
compared directly.

BL signals by reporter-gene assays or BL imaging have mainly been shown as intensity
or brightness in relative light units (RLU). However, the relative intensities of the BL signal
cannot be compared quantitatively between blue and red light, because the detection
efficiency of the photodetectors depends on the wavelength of the incident light. To
effectively use BL methods, the BL signal must be measured using a new quantitative
measurement procedure.

2. What Is an Absolute Optical Signal? How Is an Absolute Optical Signal Quantified?

In bioluminescence-based biological analysis methods, optical signals are emitted from
biological samples owing to the BL reactions. The absolute values of the BL signals can be
interpreted as the power of the light flux or the number of quantum photons emitted from
the biological samples. In radiometry, the power of the optical signal is described as the
total radiant flux (W), and the quantum photon flux is the total photon flux (photons s−1).
The energy of a single quantum photon can be described as follows:

E = hν = hc/λ, (1)

where E is the energy of the quantum photon, h is Planck’s constant, ν is the frequency, c
is the velocity of the light, and λ is the wavelength. Thus, spectrometric information is
also mandated with total radiant flux (W) information to provide the total photon flux
(photons s−1).

The responsivity of the photodetectors can be calibrated to measure the absolute optical
signal values of the samples. Here, we define the “responsivity” of the photodetectors as
the sensitivity (e.g., in counts photon−1) to the incident radiant flux or photon flux. The
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responsivity of photodetectors is usually calibrated by manufacturers using the linear flux
of directional monochromatic light sources at each representative wavelength. However, BL
optical signals from biological samples are not directional, but diffusive and non-directional,
unlike lasers. Therefore, the optical signal emitted from a biological sample is partially
detected by the photodetector in the device, which includes a luminometer, plate reader,
and microscope. It is also true that the wavelength spectrum of a BL optical signal is
broad and often consists of multiple spectral components, whereas lasers emit single- and
narrow-wavelength light.

Thus, the absolute responsivity of a device depends on the spatial angular distribution
profiles of the optical signal emission as well as the wavelength spectrum of the optical
signal from the biological sample under examination. Therefore, information on the
absolute responsivity of the photodetector in a device is insufficient to determine the
responsivity of the entire device. The absolute responsivity of the device for measuring the
BL optical signal can be determined using a calibrated reference light source. The reference
light source to be employed should have angular distribution profiles similar to those of the
biological sample under examination as well as a power level within the detection range of
the target device. Spectral matching is also essential when the device is not spectrometric
because its responsivity depends strongly on the spectrum to be measured. The best
reference light source for the absolute calibration of the BL optical signal measurement
device was the same BL sample to be tested with a known calibrated value, referred to as
the “optical reference light source”.

The absolute value, that is, the total radiant flux (W) or total photon flux (photons s−1),
of the optical reference light source can be measured using an integrating sphere spec-
trometer [33], as shown in Figure 1a. An integrating sphere equipped with a spectrometer
can measure the absolute value of light sources with both directional and non-directional
geometries. The absolute responsivity of the integrating sphere spectrometer was calibrated
using a calibrated standard lamp of spectral irradiance (µW cm−2 nm−1), as shown in
Figure 1b. The standard lamp used was traceable to the national standards of photom-
etry and radiometry at the National Metrology Institute of Japan in National Institute
of Advanced Industrial Science & Technology (NMIJ/AIST). The target optical reference
light source was placed in a sphere to measure the spectral total radiant flux (µW nm−1)
(Figure 1c).

An ideal optical reference light source has long-lasting and stable optical signal in-
tensity properties. However, the optical signal intensity from the optical reference light
source tends to be influenced by the quality of the reagents, and hence has poor repro-
ducibility. The reference solution was duplicated by dividing the homogeneous reaction
solution into two test tubes [33]. One of them was set in the integrating sphere system,
and the other was set in the device to be calibrated. By simultaneously measuring the
homogeneous optical reference solution sample in the integrating sphere and the device to
be calibrated, the absolute total radiant flux (µW) determined by the integrating sphere
and the output value (e.g., in counts) measured by the device to be calibrated provide
the absolute responsivity (counts µW−1) of the device. Using Equation (1), spectral total
radiant flux of the optical reference light source can be transferred into the spectral total
photon flux (photons nm−1 s−1), followed by the wavelength integration to give total pho-
ton flux (photons s-1) (Figure 1d). Relations between the total photon flux value and the
output value (count) of a luminometer is the photon number-based absolute responsivity
(counts photon−1).

Thus, a calibrated device is available for absolute measurement as long as the optical
signal of the sample has spectral and spatial properties identical to those of the optical
reference light source. The quantum yield (QY) of the BL reaction can be investigated as an
application of absolute BL measurements using absolutely calibrated luminometers.
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Figure 1. Integrating sphere equipped with a spectrometer to measure the absolute optical signal
value of optical reference light source. (a) Integrating sphere spectrometer with a standard lamp.
(b) Schematic illustration of calibration of the absolute sensitivity of the apparatus based on a
standard lamp whose spectral irradiance value (µW cm−2 nm−1) and aperture area (cm2) are known.
(c) Measurement of spectral radiant flux (µW nm−1) of luminescence solution. (d) Example of the
absolute spectrum of an optical reference light source (bioluminescence reaction solution using native
luciferases from Pyrearinus termitilluminans and Phrixothrix hirtus). Note that the y-axis describes an
absolute value: spectral total radiant flux (µW nm−1). Using the equation E = hν = hc/λ, spectral
total radiant flux can be transferred into spectral total photon flux (photons nm−1 s−1). Wavelength
integration of the spectral total photon flux gives the total photon flux (photons s−1), which can be
applied to calibrate of the absolute responsivity of luminometers.

3. Determination of Quantum Yield on Luminescence Reaction

The QY of the BL reaction, which is defined as the probability of single-photon
production from a single reactant molecule, is a basic characteristic for interpreting the
molecular mechanism of luminescence reactions. To determine the QY of the BL reaction,
the total number of photons emitted diffusively from the reaction solution, or total photon
flux (photons s−1), must be measured. For this purpose, the optical signal measurement
device must be calibrated.

In 1959, Seliger and McElroy reported a value of 0.88 using a North American
Photinus pyralis native luciferase [34]. In 1962, Shimomura and Johnson reported the QY
of Cypridina luciferin–luciferase reaction to be 0.28 [35]. In 1965, Lee and Seliger reported
a QY value of 0.012 for a luminol chemiluminescence reaction [36]. After this report, the
QY value of luminol was re-examined, and it converged to approximately 0.01, which was
used as a reference to validate the optical apparatus for measuring the absolute photon
flux from the luminescence reaction solution [37]. In 1986, Shimomura et al. also reported
the QY of a photoprotein Aequorin to be 0.23 [38,39], but this value was corrected to 0.17
by Shimomura as the molecular weight of the photoprotein was revealed [40]. The QY of
the BL reaction of coelenterazine and Renilla luciferase was reported by Loening et al. to
be 0.069 [41].
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The QY value of 0.88 in the firefly BL reaction reported in 1959 has long been cited
as evidence of the most efficient luminous reaction. However, this report was published
before the chemical structure determination of firefly luciferin molecules, and the synthe-
sized compound was unavailable [42]. Therefore, in 1959, only native luciferin samples
purified and isolated from firefly bodies were available. Notably, firefly luciferin is a chiral
compound, and White et al. reported that a purified native luciferin sample was racem-
ized [43]. This indicates that the QY value of 0.88, reported in 1959, would be corrected
to an impossible value of 1.76, because native racemized luciferin was provided for the
QY measurement, and only one of the optical isomers was active as the bioluminescence
substrate. Nevertheless, the QY value of 0.88 was the only reported value for a long time
that was based on the original experimental data. Therefore, it is important to re-examine
the QY value of P. pyralis luciferase. Furthermore, there are various luminous beetles with
different BL colors despite using identical firefly luciferin substrates [44]. Studies using
luciferases from curious luminous beetles are in strong demand.

Ando et al. reported a re-examination of the firefly bioluminescence reaction quantum
yield in 2008, which was 0.41 [45], differing significantly from the value of 0.88 reported
in 1959. Ando et al. used a multichannel spectrometer whose spectral responsivity was
calibrated in conjunction with a geometric treatment to precisely determine light collection
efficiency [46]. QY values of firefly luciferin analogues were also reported using the same
instrumentation [47].

To crosscheck the calibration system, the luminometers should be calibrated using
an independent calibration system based on different measurement traceability sources.
An integrating sphere spectrometer system was used to calibrate a commercially available
luminometer against the absolute optical signal value of the firefly BL reaction solution [33].
The QY value of the same P. pyralis BL reaction solution was measured using a luminometer
calibrated absolutely using the integrating sphere, and the result was 0.48, which was in
agreement with the value reported by Ando et al. within the uncertainty of the measurements.

We also measured the quantum yields of various beetle BL reactions using the same
method (Table 1) [33,48]. Quantitative analysis of firefly bioluminescence reactions using
various enzymes revealed that the kinetic parameters, such as Km, kcat, and QY, of native
luciferases were comparable. This result indicates that the concentration of the “active”
luciferase enzyme was the most important factor in obtaining high optical signal intensity.
This result suggests that a better result with high optical signal intensity in BL reaction
applications would be obtained by crucial efforts to optimize the reaction conditions for
luciferase enzymes, each of which has different ideal conditions for the BL reaction. It
has also been suggested that more rigid enzymes are more useful for applications because
stable enzymes can maintain enzymatic activity.

Table 1. Luminescence maxima and QYs for beetle luciferases.

Luciferase λMax † (nm) QY ±σ ‡

Pyrearinus termitilluminans, wild type 539 0.61 0.019

Phrixothrix hirtus, wild type 625 0.15 0.017

Pyrocoelia miyako, wild type 554 0.45 0.055

Pyrocoelia miyako, mutant N230S 606 0.21 0.0072

Pyrocoelia miyako, mutant S199T 559 0.48 0.056

Pyrocoelia miyako, mutant S200A 556 0.46 0.036

Photinus pyralis, native § 566 0.48 0.039

Photinus pyralis, recombinant wild type 560 0.45 0.055

All values were measured at 24 ◦C and pH 8.0. The relative standard uncertainty of QY measurements was
approximately 15%. † Maximum of the bioluminescence spectrum. ‡ Standard deviation of QY measurements.
§ Reported in ref. [33]. Others were in ref. [48].
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For comprehensive quantitative understanding of BL reaction efficiency, further in-
vestigations have been conducted, e.g., QY of firefly BL reaction in biomolecular con-
densates [49]. We also investigated the QY using coelenterazine and its derivatives [50].
Notably, the highest QY value, 0.61, was observed when firefly luciferin was used with
luciferase from the Brazilian click beetle Pyrearinus termitillumineans. Although the ex-
tremely high QY value of 0.88 was corrected, the QY value of 0.61 is still the highest
among all luminescence reactions. To date, the firefly BL reaction remains the most efficient
light-production system.

4. Establishing an Ultra-Weak Light Source as an Optical Reference

For QY investigation using absolutely calibrated luminometers, the BL reaction so-
lution was employed as an optical reference light source with spectral and geometrical
properties identical to those of the target BL sample. However, the BL reaction solutions
were not stable or not reproducible. Therefore, they were not suitable optical reference
light sources for general users of biological analysis methods using BL and CL. Ultra-weak
light sources based on light-emitting diodes (LED) are already commercially available as
optical reference light sources for checking the reproducibility and intermediate precision
of BL and CL measurement devices for quality control purposes. Optical references are also
recommended in an international standard document (ISO 24421) to verify the reliability of
biological analysis methods using BL, CL, fluorescence, and absorption [51,52].

Optical reference light sources must only be reproducible in terms of the optical signal
intensity to check the reproducibility of the devices. Therefore, absolute calibration is not
mandatory. However, all devices must always be checked using optical references with
the same optical properties because different references may have different optical signal
intensities. Therefore, absolute optical signal measurements are required to confirm the
uniformity of LED-based optical reference light sources.

An integrating sphere can also be used to measure the absolute value of total radiant
flux (µW cm−2 nm−1) of LED-based optical reference light sources that have a surface
emission geometry (Figure 2). Absolutely calibrated LED-based optical reference light
sources are available not only for quality control purposes, but also for quantitative imag-
ing applications.
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Figure 2. Integrating sphere equipped with a spectrometer to measure the absolute optical signal
value of LED-based optical reference light sources. (a) Calibration of the absolute sensitivity of the
apparatus based on a standard lamp whose spectral irradiance value (µW cm−2 nm−1) and aperture
area (cm2) are known. (b) Measurement of spectral radiant flux (µW nm−1) of LED-based optical
reference light source where wavelength integration of spectral radiant flux (µW nm−1) gives radiant
flux (µW).
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To design a suitable optical reference light source to calibrate the imaging apparatus,
several specifications must be considered: (1) a low-level and wide-range power (µW to
fW) of light; (2) a planar emission surface to be set on the image plane or the sample
position of BL measurement systems; (3) an emission area with sizes comparable to those of
various samples (mm to µm); (4) a simple angular emission pattern, such as Lambertian or
hemispherical; and (5) a long lifetime. Considering the above points, regarding the emission
color or spectrum of BL samples, Yoshita et al. designed and developed planar LED devices,
which were applied as optical reference light sources for quantitative measurements and
analyses of photoluminescence (PL) intensity [53]. They demonstrated and confirmed the
utility and applicability of an LED-based optical reference light source for quantitative
luminescence intensity measurements in Lambertian-type low-level radiation sources.

Based on the concept of an LED-based optical reference light source using low-level
solid radiant sources, ATTO Corporation developed the planar optical reference light source
“KohshiUni [54]”. Figure 3a shows a schematic of KohshiUni, which consists of a small
surface-mounted LED chip, ND filter, and light diffusion plate coated with metal. The
photoetching technique was used to create a 250 µm circular pinhole in the coated metal.
Light was emitted through the pinhole. Figure 3b shows an image of the LED-based optical
reference light source captured using the CCD camera unit. Figure 3c shows the profile
of the optical signal on the surface of the planar optical reference light source, suggesting
a simple uniform emission pattern. For device specifications, the light output power can
be adjusted according to the target by changing the output power of the LED (pW level),
ND filter, and emission area size. Furthermore, this device can be placed on the image
plane or sample position of the BL measurement system. Finally, the absolute photon
flux of this device was 7.18 × 108 photons s1 at 632 nm, as evaluated by the integrated
sphere spectrometer. Based on the relations between the relative conversion efficiency and
wavelength in the CCD camera, detected photon number can be introduced from the values
at 632 nm.
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Figure 3. Construct of the LED-based optical reference light source (ref. [53]). (a) Schematic illus-
tration of the planar light emitting diode (LED) device with a circular aperture in cross-sectional
views. (b) Absolute optical image of the planar LED with an aperture size of 250 µm. This LED
showed an absolute optical signal of 7.18 × 108 photons s−1 at 632 nm. (c) Dispersion profile of
absolute optical signal of the planar LED with an aperture size of 250 µm.

The BL optical signal depends on various systems based on the different colors and QY
of the chemical reaction. However, the number of photons produced by the BL reaction can
be converted into the number of luciferins. An LED-based optical reference light source can
convert the relative light unit to the absolute photon number. When we use an LED-based
optical reference light source in BL measurement, we can directly compare the optical
signals in various BL systems.
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5. Quantification of Bioluminescence Optical Signal from the Living Cells

In 1981, Trube et al. monitored the increase in calcium ions in living muscle tissue using
the calcium-binding photoprotein aequorin [19]. In 2000, Rehemtulla et al. established a
stably expressed firefly luciferase in a 9L cancer cell line and transplanted it into living mice,
demonstrating the possibility of tracing cancer cell growth and evaluating anticancer drugs
in vivo [15]. To date, chronological research using BL optical signals in living cells has been
the most exciting research area. Wilsbacher et al. established the clock gene Per1-promotor
driving optical signals in trans-genetic living mice and visualized the circadian rhythmicity
of the Per1 gene in living tissue over one week [55]. In addition, this group established a
Per1-promoter driving optical signal in Rat-1 cells and visualized circadian rhythmicity at
the single-cell level [56]. Noguchi et al. monitored two clock genes of Per1 and anti-phased
Bmal1 genes by using green- and red-emitting beetle luciferases at the cell population
level [57].

In contrast, the improvement of several types of luciferases, such as color difference
beetle luciferases, secreted-type luciferases, and enhanced Renilla luciferase, has been
used to visualize various cell functions in living cells. The green- and red-emitting beetle
luciferases visualized the circadian rhythmicity of two clock genes, Per1 and Bmal1, in
a single cell [58] and the dynamics of the expression of the two genes at the subcellular
level [59]. Secreted Cypridina luciferase was used to visualize the secretion process of
proteins [25] and evaluate the potential of the signal sequence in the secretion process [60].
Enhanced GFP-fused Renilla luciferase visualizes chromatin movement in living single
cells [22]. Enhanced Nano-lantern luciferase visualizes cell function in living single cells [61].
Gregor et al. established an autonomous bioluminescence mammalian cell using a bacterial
bioluminescence system and visualized cell morphologies at the single-cell level [62]. In
particular, the bioluminescence imaging of the chronological system contributed to the
Nobel Prize in 2017.

We used highly sensitive cooled CCD, EM-CCD, and CMOS cameras to visualize
the light intensity of the optical signal. First, the imaging equipment must be calibrated
with an optical reference light source to quantify the optical signal from several detectors
with varying color sensitivities. Enomoto et al. used an LED-based optical reference light
source with pulse-width modulation (PWM) and a light-emitting aperture at an emission
wavelength of 632 nm, which stabilized the light output over time [63]. It is important
to evaluate the total radiant flux (W) of this light source, which is linked to a national
metrology institute (for instance, NMIJ/AIST of Japan), based on the absolute sphere
method. The procedure is summarized as follows.

Step (1) A schematic example of the calibration of the BLI system of the inverted mi-
croscope based on the LED-based optical reference light source signal is shown in Figure 4a.
The photon flux of the LED-based optical reference light source (7.18 × 104 photons s−1 at
632 nm) was used to calibrate the light scope system, which resulted in one RLU of this
system being determined to be 0.13 photons at 632 nm. Second, the photon number of the
optical signal was converted to 0.122 photons RLU−1 at 538 nm, which was the target color
light output for adjusting the expressed luciferase from blue to red based on the relative
spectral sensitivity of the camera. In this case, the light outputs were assumed to exhibit a
linear relationship within the assumed range.
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Figure 4. Outline of absolute bioluminescence imaging from procedure to results (ref. [63]).
(a) Schematic illustrations of the setup and procedure for the calibration of the spectral response
of the bioluminescence imaging system based on the LED-based optical reference light source:
7.18 × 108 photons s−1 at 632 nm in the photon flux of the LED-based optical reference light source
were detected at a signal of 8.60 × 107 RLU on the CCD camera. Relative spectral response (inside
figure) of the imaging system, normalized with respect to that at 632 nm. (b) Absolute biolumines-
cence imaging of the green-emitting (TK-Eluc) and red-emitting (SV40-SLR) luciferase-expressing
cells. BLI was visualized by the BLI system, having been subjected to exposure for 10 min following
the addition of 0.2 mM firefly luciferin, which was measured under the same conditions as that of the
LED-based optical reference light source. The BLI of the selected cells was determined by the spectral
photon flux (photons s−1 µm−2) as a total absolute optical signal.
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Step (2) Optical images of the BLI of stable cell lines expressing TK-regulated
green-emitting luciferase (TK-Luc) and SV40-regulated red-emitting luciferase (SV40-
SLR) are shown in Figure 4b. For example, the optical signal of 513 RLU s−1 cell−1 in
Cell#1 of TK-Luc was converted to 1.17 ± 0.14 × 104 photons s−1 cell−1 as an absolute
value. The optical signal of 944 RLU s−1 cell−1 in Cell#1 of SV40-Luc was converted to
8.00 ± 0.94 × 103 photons s−1 cell−1 as an absolute value.

Furthermore, the number of luciferase proteins was counted based on the quantum
yield of the luciferin–luciferase reaction. Despite using different color luciferases, the light
signal outputs could directly reflect promoter activities at the single-cell level. This implies
that we can directly compare gene expression in different-colored luciferase-emitting cells
or using different BLI systems.

6. Application of Bioluminescent Immunohistochemistry

Immunohistochemistry (IHC) is an important technique for sensitive detection sys-
tems, including colorogenic substrates, fluorescent probes, and BL probes [64–68]. IHC
detects target molecules in cell or tissue sections using antigen-specific antibodies. However,
IHC images are not yet suitable for quantitative analysis, despite their ability to quantify
the signals of the immune assay. In an immune assay, the calibration curve between the
amount of antigen and the optical signal of the antibody reaction can quantify the target
molecule. For IHC, it is difficult to create a calibration histogram between the amount
of antigen and the optical signal of the imaging. Among several techniques, BL-IHC has
the potential to visualize target antigens quantitatively and rapidly [69]. In this case, it
is important to construct a calibration curve between the amount of antigen and optical
signal of the antibody-fused luciferase–luciferin reaction.

Protein chip technology was used to calibrate the amounts of antigen and optical
imaging signals [70]. Protein microarray was used to spot the target antigen on a suitable
slide using the same IHC procedure. In the microarray experiments, spotted slides were
first incubated with blocking buffer and then with a diluted antibody-fused luciferase
probe. After washing the slide twice or thrice with PBS and adding luciferin, the BLI system
captured the light signal of the luciferin–luciferase reaction, creating a calibration curve
between the antigen and antibody. The calibration curve revealed the amount of antigen in
the BL-IHC images.

Figure 5a shows the procedure of IHC visualization, that is, immunohistochemical
staining of serial paraffin sections using antibody-fused luciferase (B), in comparison with
the peroxidase labeling procedure (A) [71]. The optical signal of BL-IHC can be absolutely
counted by the imaging system, whereas the signal using the indirect secondary labeling
system visualizes antigen distribution. This review also introduces an example of the
calibration process of absolute BLI histochemistry, as follows:

Step (1) The calibration schematic process of the BLI system using the optical signal
of the LED-based optical reference light source, which is characteristic of the total flux
and light distribution on the stage of upright microscopy, is shown in Figure 5b. The
photon flux of the LED-based optical reference light source (3.92 × 108 photons s−1 at
474 nm) was used to calibrate the light scope system using CCD camera, resulting in one
RLU of this system being determined to be 0.398 photons at 474 nm and converted to
2.36 × 108 photons s−1 mm−2).

Step (2) An example of protein-chip imaging and the calibration curve between the
target antigen and antibody-fused luciferase are shown in Figure 5c. The protein mi-
croarray containing the control antigen protein (Carcinoembryonic antigen, CEA protein)
for 0.2–1.0 mg mL−1 per spot (~0.014 mm2) using a Protein Microarrayer Robot. Follow-
ing incubation with blocking buffer, the spotted slides were incubated with antibody-
fused luciferase. Finally, after washing, the antibody-fused luciferase and luciferin re-
action visualized the optical signal of the protein microarray, which was approximately
480–1000 photons s−1 mm−2. The calibration curve between the antigen and photon num-
bers indicates a linear relationship ranging between 1.0 and 4.0 ng mm−2.
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Step (3) Optical images of BL-IHC of colon cancer cells using anti-CEA-fused luciferase
are shown in Figure 5d. Based on the calibration curve, the RLU image was changed to an
absolute light signal in the BLI image and was converted to the target antigen. For example,
as an absolute value, the optical signal of 1,624 RLU s−1 mm−2 in ROI 1 of cancer tissue
was converted to 6.24 ± 0.78 × 102 photons s−1 mm−2. Based on the calibration curve
shown in Figure 5c, the amount of CEA in ROI 1 was estimated to be approximately 1.8 µg.

The optical signal of BL-IHC can be used to directly count the amount of the target
antigen in the selected area using an optical reference light source. We can evaluate
cancer stages absolutely if there is a relationship between the number of antigens and
the cancer stage. This approach could pave the way for new avenues in quantitative
diagnostic pathology.
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Figure 5. Outline of bioluminescence immunohistochemistry from procedure to results (refs. [69,71]).
(a) Procedure for immunohistochemical staining of serial paraffin sections using indirect peroxidase
labeling methods (A) and direct antibody-fused luciferase labeling (B). (b) Schematic illustrations of
the setup and procedure for calibrating the bioluminescence imaging system based on the LED-based
optical reference light source. At 474 nm, the photon flux of the LED-based optical reference light
source contained 2.36 × 108 photons s−1, corresponding to 4.98 × 106 RLU on the CCD camera.
(c) Calibration curve between antigen count and photon numbers in the antigen-dotted protein
microarray. (d) Absolute bioluminescence imaging immunohistochemistry of surgical pathological
specimens and light imaging (inside photo). Antigen distribution and determination of photon
number of three randomly selected spots in the colon cancer (shown in white).
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7. Closing Remark: Open to Quantitative Biology by Quantifying the Optical
Light Signal

Scientists have been content with the qualitative analysis of biological phenomes.
However, they aim to determine the number of receptor proteins on the cell membrane
or the number of ATP molecules in living cells. The light output can be converted into
an absolute photon number based on an optical reference light source. The light output
of the firefly luciferin–luciferase reaction is proportional to the amount of ATP in excess
of luciferin and luciferase, allowing us to count the number of ATP molecules based on
the QY of this reaction. Using antibody-fused luciferase, the light output depends on the
amount of target antigen based on the calibration, resulting in counting of the number
of target molecules. Furthermore, the absolute photon number can be used to count the
number of molecules by using the QY of the luciferin–luciferase reaction. In conclusion, the
absolute number of biological molecules can open up to the current quantitative biology
and progress in understanding biological functions in vitro and in vivo.
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