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Abstract: Proteolytic enzymes are one of the important biomarkers that enable the early diagnosis
of several diseases, such as cancers. A specific proteolytic enzyme selectively degrades a certain
sequence of a polypeptide. Therefore, a particular proteolytic enzyme can be selectively quantified
by changing detectable signals causing degradation of the peptide chain. In addition, by combining
polypeptides with various functional nanomaterials, proteolytic enzymes can be measured more
sensitively and rapidly. In this paper, proteolytic enzymes that can be measured using a polypeptide
degradation method are reviewed and recently studied functional nanomaterials-based proteolytic
biosensors are discussed. We anticipate that the proteolytic nanobiosensors addressed in this review
will provide valuable information on physiological changes from a cellular level for individual and
early diagnosis.

Keywords: proteolytic biosensors; enzymatic biosensors; matrix metalloproteinase (MMP); caspase
family; protease

1. Introduction

Accurate and early diagnosis is essential for various diseases to reduce the fatality rate
and increase the recovery rate [1–3]. To this end, there is an urgent need for biosensors that
precisely and sensitively measure potential biomarkers such as proteins or nucleic acids.
In particular, high-performance biosensors have been actively developed to effectively
treat infectious diseases such as SARS-CoV-2 and to help prevent transmission [4–10].
Among various biomarkers, protein could be used as an accurate diagnosis biomarker
since proteins are end products produced by the central dogma process, unlike nucleic acid
biomarkers, which have inaccuracies due to post-transcriptional and post-translational
processes [11,12]. In general, sandwich immunoassay is the most typical protein detection
method using an antigen–antibody binding reaction [13–17]. This immunoassay-based
measurement method, represented by enzyme-linked immunosorbent assays (ELISAs),
has the advantage of being able to selectively detect various proteins, and the results
can be intuitively viewed because the results can be confirmed with the naked eye using
an enzyme-substrate reaction. However, at least two antibodies are required to measure
the target protein, and colorimetric reactions with labeling enzymes are required to confirm
the signal. Due to these disadvantages, there are also severe limitations in that it is cost-
ineffective, labor-intensive, and time-consuming. In addition, the detection accuracy of the
biosensor could be reduced owing to the complicated process.

Among numerous protein biomarkers, there are many enzymatic proteins, including
matrix metalloproteinase (MMP) and the caspase family, with proteolytic prop-
erties [18–23]. Some of the proteolytic enzymes have the particular property of recognizing
and degrading specific peptide sequences. Using this property, many proteolytic biosensors
have been developed without using an antigen–antibody reaction [24–26]. Compared to
immunoassay-based biosensors, proteolytic biosensors have numerous advantages. For
example, since the proteolytic biomarker is measured by a specific peptide degradation

Biosensors 2023, 13, 171. https://doi.org/10.3390/bios13020171 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios13020171
https://doi.org/10.3390/bios13020171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-1632-9586
https://doi.org/10.3390/bios13020171
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13020171?type=check_update&version=3


Biosensors 2023, 13, 171 2 of 17

reaction, there is an advantage in the reduced cost compared to using multi-antibodies,
and the measurement time is shortened because of the simple peptide-cleavage reaction
step. In addition, since the peptide degradation reaction is composed of just one step,
it is easy to induce a reaction at the intracellular level and in vivo system. In particular,
developing nanobiosensors using multifunctional nanomaterials has also been actively
studied [27–31]. Nanomaterials have a wide surface area, high reaction rate, and ease of
immobilizing various biological materials. Therefore, they have a wide range of applica-
tions in the biomedical field, including biosensors. In addition, it is possible to simply
check the diagnosis results by improving the measurement sensitivity by using various
characteristics (optical, electrical, and mechanical properties, etc.) of nanomaterials. In
this review, we will investigate proteolytic biosensors integrated with recently announced
nanotechnology. In addition, we will discuss the prospects and complementary points of
proteolytic biosensors in the field of disease diagnosis.

2. Proteolytic Enzymes
2.1. Serine Proteases

Nearly one-third of all proteases can be classified as serine proteases. Serine proteases
are a large family of protein-degrade enzymes that play a crucial role in processes such
as apoptosis, blood coagulation, and inflammation [32–34]. Serine proteases are broadly
dispersed in nature and found in all cellular metabolisms. Proteases can be grouped into
four major clans, which are the SB clan (subtilisin), the PA clan (chymotrypsin), and SF and
SC clans that contain various proteases. Approximately 75% of human serine proteases are
part of the PA clan. The PA serine proteases can be divided into three subgroups: the trypsin-
like serine proteases, which cleave peptide substrates after positively charged arginine and
lysine residues; chymotrypsin-like serine proteases, which cleave after large hydrophobic
amino acids, including leucine and alanine; elastase-like enzymes, which cleave substrates
after hydrophobic residues. In particular, the neutrophil elastase family, which is related
to the immune response, is part of this subgroup [35]. This serine protease family plays
an important role in the control of intracellular and extracellular activities. For example,
several serine proteases are collected inside granules attached to proteoglycans, avoiding
leakage into the cytoplasm and communicating with their cellular objectives [36]. On the
other hand, serpins, which were first recognized for serine protease inhibition, inhibit their
target protease via a unique suicide mechanism, blocking the protease into an irreversible
state [37]. Generally, serine proteases are endoproteases that degrade polypeptide bonds
by hydrolysis within a polypeptide chain.

2.2. Cysteine Proteases

Cysteine proteases (cathepsins) have been known to be involved in many physiological
processes, such as regulation of proteolytic cascades, cytokine maturation, expression of
proteins, and antigen presentation from the cell surface [38–40]. In addition, cysteine pro-
teases have been understood to be involved in numerous pathologies for a long time [41–43].
Cysteine proteases are synthesized as preproenzymes and produced as lysosomes, where
they provide their function of protein hydrolysis. After the removal of signal peptides,
the molecular mass of these proteases is within the range of 20–35 kDa. Typically, they
are involved in precursor protein activation, such as proenzymes and prohormones, bone
remodeling, MHC-II-mediated antigen presentation, keratinocytes differentiation, and cell
reproduction and apoptosis. In the case of the proteolytic mechanism, Cys25 and His159
form the active site for full catalytic activity. The imidazole group of the histidine polarizes
the SH group of the cysteine and enables deprotonation, and a thiolate–imidazolium ion
pair is produced. The thiolate anion attacks the carbonyl carbon of the peptide bond to be
cleaved, and a tetrahedral intermediate is produced. These cysteine proteases are closely
related to several fetal diseases. For example, cathepsin K could be a major target in bone
syndromes such as osteoporosis [44,45]. In addition, lots of cancers and arthritis correlate to
the expression and activation of cysteine cathepsins [46,47]. Furthermore, the inhibitors of
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cysteine proteases are highly effective and specific molecules that inhibit cancer progression
with fewer adverse effects [48].

2.3. Matrix Metalloproteinase (MMP) Family

Matrix metalloproteases (MMPs) are a zinc-dependent endopeptidases family that has
a similar structure and the capability to decompose every part of the extracellular matrix
(ECM) [49–51]. The MMP enzyme essentially consists of extracellular matrix remodeling
proteases. Using this important physiological role, they have extensive proteolytic activity
and contribute to diverse physiological and pathological processes, such as cancer, chronic
wounds, cardiovascular diseases, chronic inflammation, and others. MMPs are universal
multi-domain enzymes, with 23 MMPs identified in humans (MMPs 1–3, 7–17, 19–21,
23–28) [52–55]. The structure of MMPs composes of a propeptide that keeps the inactive
state (pro-MMPs) by blocking the interaction between the active site and the substrate by
a cysteine switch. The catalytic domain (active site) is characterized by the existence of a Zn-
binding site, where the Zn ion is organized by three histidines and a glutamate, resulting in
a linker peptide of varying lengths and a hemopexin-like domain. Besides the extracellular
matrix (ECM), MMPs are engaged in a number of inter- and intracellular activities and
contribute to functional networks, systematically cooperating with other biomolecules. In
addition, MMPs are implicated in specific pathological processes; this could lead to the
significant application of MMPs as potential biomarkers for the prognosis of disease and
early diagnostic approaches with detailed and useful information for effective therapy.

3. Extracellular Detection of Protease for Diagnosis Using Nanotechnology
3.1. Fluorescence-Based Detection

Proteases released outside the cell can provide important signals that inform the
detailed status of the cell. Thus, extracellular proteases could be one of the important
biomarkers for disease diagnosis, and it is necessary to measure them precisely and rapidly
for effective diagnosis and therapy. Fluorescence-based biosensors using fluorescent materi-
als, including organic dye and fluorescent nanoparticles, have been widely used to measure
extracellular proteases by using the phenomenon in which fluorescence signals are con-
verted by specific reactions between proteases and substrates. Renault et al. showed a novel
protease-sensitive fluorescent probe based on the covalent-assembly approach [56]. The
protease-sensitive fluorescent probe was designed to be degraded by the targeting enzyme
(penicillin G acylase (PGA)) to develop a detectable pyronin fluorescent molecule under
physiological conditions through the in situ structure of unsymmetrical pyronin AR116. In
addition, c-nucleophile (C-Nu) attached to the pyronin precursor can be screened for the op-
timization of fluorescent signal generation for sensitive protease measurement. Zhang et al.
developed an ultrasensitive and rapid thrombin biosensor composed of trifunctional pro-
tein (Figure 1a) [57]. This particular trifunctional protein consists of three functional parts:
a thrombin cleavage site (TCS), far-red fluorescent protein (smURFP), and hydrophobin
(HGFI). HGFI plays a role in attaching the multi-well plate of the trifunctional proteins,
and the TCS is a bridge between the plate and the fluorophore. Once the thrombin cleaves
the TCS, a red fluorescent signal can be measured with proportional signal intensity to the
thrombin concentration. The detection range of this proteolytic biosensor is from 1.02 aM to
0.01 mM, and the limit of detection (LOD) is 0.2 aM within 20 min. Since the above two pro-
teolytic sensors measure biomarkers based on fluorescent emission, the detection results
can be known easily and simply, and the sensitivity is also excellent (aM level). However,
there is a limitation in that the measured biomarkers must have proteolytic properties.

For proteolytic detection, fluorescence resonance energy transfer (FRET) is a repre-
sentative analytical method, which is a distance-dependent fluorescent energy-transfer
phenomenon between the donor and the acceptor [58]. If the distance between the donor
and acceptor is below 10 nm, the FRET will show and the signal from the acceptor is re-
leased, whereas the donor fluorophore is recovered if the distance is above 10 nm. Therefore,
distance is a major factor in regulating the FRET phenomenon. In this FRET system, the
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cleavable peptide sequence, which is a degradable site by a specific protease, can be an es-
sential part of determining the distance between the donor and the acceptor. Zhang et al.
exhibited graphene oxide (GO)-assisted fluorescence biosensors for the detection of the
human immunodeficiency virus (HIV) protease [59]. Fluorescent-labeled peptide molecules
are covalently attached to the surface of GO. Fluorescein is effectively quenched by the
FRET effect on GO. Once the HIV protease cleaves the peptide substrate, the fluorescence
signal is recovered, proportional to the protease level. The authors claimed that HIV-1
protease could be measured at as low as 1.18 ng/mL in a rapid and accurate manner. Brown
et al. revealed a FRET-based biosensor for the detection of the 3-chymotrypsin-like cysteine
protease, which is highly related to SARS-CoV-2 [60]. For the FRET effect, the authors
used an eCFP (Em: 434 nm) and Venus (Em: 528 nm) pair, connected to the cleavable
peptide by a cysteine protease. In addition, it was applied to the high-throughput screening
platform for several new inhibitors of SARS-CoV-2. The screening recognized 65 inhibitors,
with 20 most active inhibitions of SARS-CoV-2. The aforementioned protease biosensors
successfully measured the virus-related protease for the diagnosis of viral infection by
using the FRET effect in a simple and highly sensitive manner. FRET-based biosensors
have the advantage of measuring target proteases simply and sensitively because they
induce changes in fluorescence signals with a single peptide degradation reaction. On the
other hand, in the case of virus diagnosis, since nucleic acid biosensors can show relatively
accurate diagnostic results for viral diseases, protease biosensors are not yet commonly
used diagnostic methods.

Except for virus-related protease detection, other particular proteolytic enzymes,
including the MMP family and trypsin, have been measured by integrating the FRET
phenomenon. Zhang et al. developed a multiplex fluorescence biosensor for the simul-
taneous detection of multiple protease activities, such as MMPs and a disintegrin and
metalloproteinases (ADAMs) (Figure 1b) [61]. Conventional multiplex biosensing plat-
forms consist of an individual array of different biomarkers, whereas the developed multi-
plexed nGO−peptide sequence biosensor was fabricated by multiple fluorophore-labeled
peptides on an nGO sheet. Using this platform, they found the specific combinations of
biomarkers for cancer diagnosis (MMP-9, ADAM-10, and ADAM-17) with joint entropy
and programming. Li et al. displayed a sensitive and simple trypsin assay by using stable
fluorescent polydopamine nanoparticles with the integration of protamine, which induced
the quenching effect (Figure 1c) [62]. Due to the proteolytic effect of trypsin on protamine,
the aggregated polydopamine nanoparticle and protamine were degraded, and the fluo-
rescent signal was recovered. An increase in the fluorescent signal was exhibited with the
concentration of trypsin (0.01 to 0.1 mg/mL). In addition, this biosensing system showed
good practicability in human serum and trypsin inhibitor screening. Xu et al. developed
a FRET-based turn-on fluorescent biosensor for trypsin detection based on carbon dots as
a donor and Au nanoparticles (AuNPs) as an acceptor [63]. Compared with traditional
quantum dots (QDs) and fluorophores, carbon dots have advantages for biosensing applica-
tions, such as high photostability, water solubility, and low toxicity. Trypsin-specific peptide
sequences (Arg-Cys-Phe-Arg-Gly-Gly-Asp-Asp, RCFRGGDD) were covered AuNPs via
the Au-SH bond. Due to the negatively charged ASP-covered AuNPs, the AuNPs were
dispersed, and the carbon dot could not emit the fluorescent signal. In the trypsin-degraded
peptide sequence, the AuNPs were aggregated, and the carbon dots could recover their
fluorescent emission. This system could measure trypsin as low as 0.84 ng/mL with high
selectivity. Bui et al. presented the protease-to-DNA converting biosensor to provide the
protease activity to be transformed to generating specific DNA sequences [64]. Cy3-labeled
peptide-DNAs are attached onto QD donors as the input gate. Once trypsin cleaves the
peptide sequence, the donor QD emits its fluorescent signal and the DNA-Cy3 complex
interacts with a tetrahedral output gate, resulting in Cy5 emission via the FRET effect.
As such, in order to improve the sensitivity and simplicity of the proteolytic biosensor,
the FRET phenomena are applied as a potential sensing strategy. Since the FRET-based
biosensor for measuring proteolytic enzyme can sensitively change the fluorescence signal
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with a simple degradation reaction, it is possible to measure a small amount of proteolytic
enzyme in a time-and cost-effective manner. In contrast, since FRET is only possible when
the donor’s emission wavelength and the acceptor’s excitation wavelength overlap, there is
a limitation to the combination of fluorescent materials. In addition, it may not be suitable
for developing a multiplex biosensor that needs to measure multiple proteases at once for
precise diagnosis.

On the other hand, the combination of fluorescent materials can induce a change in
fluorescence property with plasmonic nanomaterials, whose surface plasmon properties
can transfer absorbed optical energy into the fluorescence emission of proximal fluorescence
molecules. This phenomenon is called metal-enhanced fluorescence (MEF), which substan-
tially boosts the fluorescent signal [65]. This enhancing effect can be applied to proteolytic
biosensors with similar strategies to a FRET-based analytical system. Choi et al. developed
simple MEF-based proteolytic biosensors composed of DNA, peptide sequence bifunc-
tional AuNPs, and fluorophore (fluorescein isothiocyanate; FITC) levels (Figure 1d) [66].
As the optimal distance of the MEF effect is about 8 nm between the AuNP and FITC, the
quenching state is induced as the length of a single-stranded DNA (ssDNA) is 7~8 nm and
the peptide sequence is smaller than the ssDNA. When the peptide sequence is degraded
by caspase-3, the optimal distance of the ssDNA will show the MEF effect corresponding
to the caspase-3 level. Using this biosensing system is possible for the simple (one-step
proteolytic reaction) and rapid (<1 h) detection of caspase-3 as low as 10 pg/mL. This
simple and sensitive detection system can also be applied to measure intracellular caspase-
3. Lucas et al. exhibited MEF-based trypsin biosensors using Ag nanoparticle-modified
nano-slivered 96-well plates and FITC-labeled YeBF protein [67]. The authors claimed up to
11,000× signal enhancement for fluorophores due to the effective coupling or enhancement
volume region of the silver surface. This biosensing system achieved a detection limit of
1.89 ng of enzymes (2.8 mBAEE activity units). In addition, no washing steps were needed
in this MEF system because of the use of the low quantum yield fluorescent label, resulting
in a very low background signal of the detached fluorophore. Compared to FRET-based
proteolytic biosensors, MEF-based biosensors have the advantage of excellent sensitivity
due to the enhanced fluorescent signal. However, it is important to maintain an accurate
distance between the donor and the acceptor (around <10 nm); hence, it is difficult to
induce the MEF effect in proteolytic enzymatic detection.

3.2. Colorimetric Detection

Besides fluorescence-based biosensors, color change is another optical biosensor where
one can observe the target proteolytic protein intuitively and easily with the naked eye. For
example, lots of pregnancy tests and SARS-CoV-2 test strips have been widely used for
simple diagnosis [68–71]. Change in the absorbance peak is one of the distinguished phe-
nomena for color change. For the induction of a significant change in color or absorbance
peak, AuNPs have been utilized because their absorbance property depends on their size
and the degree of aggregation. Specific peptide sequences, which can be dissociated by
proteolytic enzymes, can be applied to the colorimetric biosensor with AuNPs. Liu et al.
developed a colorimetric biosensor for the measurement of protease activity by the growth
of AuNPs [72]. Cleavage of the specific peptide against β-secretase induces the exposure of
an amino-terminal Cu2+- and Ni2+-binding (ATCUN) motif. This ATCUN peptide can seize
Cu2+ and, thus, weaken the oxidation effect of ascorbic acid, which induces the reduction
of HAuCl4 into AuNPs. Using this strategy, β-secretase was measured as low as 0.1 nM by
monitoring the color change of AuNP and ascorbic acid consumption with UV/vis spec-
troscopy. Creyer et al. showed a particular gold−silver core−shell nanoparticle structure
for dramatic color change by the cleavage reaction between the GCGKGCG dithiol peptide
and trypsin (Figure 2a) [73]. As a result, the degree of aggregation and the absorbance
peak shift can be correlated with trypsin concentration with high linearity (R2 = 0.99). The
detection limit of trypsin was 0.47 nM. Liu et al. demonstrated a colorimetric protease
assay using two separate biological reactions based on proteolysis-responsive transcription
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(Figure 2b) [74]. MMP-2-mediated proteolysis triggers the in vitro transcription of RNAs,
which induces the aggregation of DNA-functionalized AuNPs by a complimentary binding
reaction. This proteolysis-responsive transcription sensor showed a sensitive detection
result, as low as 3.3 pM of MMP-2. Moreover, other protease biomarkers, such as thrombin
and the hepatitis C virus, could also be measured with the test strip format for smartphone
analysis. Feng et al. developed a label-free peptide-AuNP biosensor for the measurement
of the SARS-CoV-2 main protease (Mpro), which is one of the potential targets for the
development of drugs [75]. The specific peptide sequence for the SARS-CoV-2 Mpro in-
duces the aggregation of AuNPs by electrostatic interaction. Once the Mpro degrades the
peptide, the AuNPs are dissociated and the absorbance peak is blue-shifted, resulting in
a clear color change. Moreover, the electrode-modified peptide can be aggregated with the
AuNPs, and the proteolytic event can induce a change in the electrochemical signal. In the
colorimetric and electrochemical sensing systems, the detection limits were 10 and 0.1 pM,
respectively. Ling et al. proposed a nanocellulose-based colorimetric biosensor for the
facile detection of human neutrophil elastase [76]. Due to its crystallinity, high surface area,
and biocompatible properties, nanocellulose can be utilized as an efficient sensing trans-
ducer. Through a deep eutectic solvent treatment, cotton cellulose nanocrystals are formed,
and they modify specific peptides for the human neutrophil elastase. The sensitivity of
this colorimetric sensor is around 0.005 U/mL. The authors claimed that it could provide
a sensitive and convenient sensor platform applicable for point-of-care protease detection.
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Figure 1. Fluorescence-based biosensors for extracellular protease detection. (a) Schematic diagram
of the multi-well-plate-based thrombin biosensors composed of trifunctional protein, including
a far-red fluorescent protein smURFP, hydrophobin HGFI, and a thrombin cleavage site. This figure is
adapted with permission from Ref. [57] (© 2020 WILEY-VCH). (b) Schematic diagram of the graphene
oxide-based multiplexing biosensor for multiple proteases, ADAM-10, ADAM-17, and MMP-9. This
figure is adapted with permission from Ref. [61] (© 2020 American Chemical Society). (c) Fluorescent
polydopamine nanoparticles for a sensitive and simple trypsin assay via the hydrolysis of protamine
by trypsin. This figure is adapted with permission from Ref. [62] (© 2021 Elsevier B.V.). (d) MEF-based
DNA detection system using a plasmonic Au-assisted MEF effect by CRISPR-Cas12a reaction. This
figure is adapted with permission from Ref. [66] (© 2021 American Chemical Society).
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3.3. Electrochemical Detection

Besides the optical biosensing approaches for protease biomarker detection, electro-
chemical measurement has been developed using specific peptides and the corresponding
proteases. Xia et al. proposed a novel protease biosensor by altering a homogeneous assay
into a surface-bound electrochemical analysis (Figure 2c) [77]. A streptavidin-covered
electrode functionalizes the biotin-specific peptide–biotin complex for streptavidin–biotin
coupling chemistry. The repeated formation of streptavidin−biotin−GDEVDGK−biotin
aggregates provides an insulating layer, thus reducing the electron transfer of ferricyanide.
If the peptide sequence is cleaved by caspase-3, the resulting products are distributed
into a bulk solution and electron transfer is increased. Therefore, the amplification of the
electrochemical signal is achieved with the simple principle of substrate-induced strep-
tavidin assembly. Zhang et al. developed a thiol-sensitive electrochemical probe for the
measurement of the SARS-CoV-2 main protease, targeted by a short probe mimicking its
substrate [78]. In the probe–protein interaction, a specific fluorescent molecule interacts
with the free thiol groups on the target protein, producing a fluorescence and electro-
chemical signal proportional to the target concentration. The LOD of the SARS-CoV-2
main protease was 1 pM, whereas the clinically required LOD was around 182 pM. The
authors claimed that this analytical method could measure the virus protease in clinical
SARS-CoV-2-infected patient samples in a simple one-step reaction and in a reagent-less
fashion. Shi et al. revealed a label-free electrochemical biosensor for the sensitive detection
of MMP-2, with signal amplification using a proteolysis-triggered transcription method
(Figure 2d) [79]. The authors utilized RNA polymerase to transduce and amplify the
proteolysis reaction by MMP-2 into multiple RNA productions that can be bound by the
complementary DNA probes modified on the Au electrode. By integrating the G4/hemin
complex, this RNA polymerase-assisted electrochemical biosensor facilitates the highly
sensitive detection of MMP-2, with a wide dynamic range from 10 fM to 1.0 nM and 7.1 fM
LOD value. Eissa et al. developed a specific peptide sequence-functionalized magnetic
bead biosensor for the detection of Staphylococcus aureus using dual colorimetric and electro-
chemical analyses [80]. The peptide-magnetic bead complex is immobilized on the screen
printed Au electrode. The protease released from Staphylococcus aureus degrades the specific
peptide, and the color of the Au electrode changes due to the dissociation of the magnetic
bead. In addition, the protease can be detected by monitoring the change in the peak
current of square wave voltammetry within 1 min. The LOD value of this electrochemical
assay was 3 CFU mL−1, and it was tested with a spiked milk and water sample.

3.4. Others

Because the peptide-cleavage reaction can change various output signals, includ-
ing fluorescence and electrochemical readouts, other simple and sensitive biosensing
approaches have also been researched. Among them, bioluminescence resonance energy
transfer (BRET)-based biosensors are similar to the sensing mechanism of FRET. Weihs et al.
developed a red-shifted BRET biosensor for the measurement of plasmin activity [81].
Conventional BRET-based proteolytic biosensors use the blue-shifted BRET system, which
suffers from background signals due to light absorption and scattering in plasma samples.
To overcome this limitation, the authors applied a red-shifted RLuc8.6 luciferase instead
of Renilla luciferase Rluc2. As a result, the proposed biosensor exhibited up to a 5-fold
increase in sensitivity for plasma samples as low as 11.90 nM within 10 min. In addition,
they also presented the real-time-on-chip detection of thrombin activity by integrating the
BRET phenomenon [82]. The real-time-on-chip is composed of a compact microreactor
and a reusable glass chip with a mixer, an incubation channel, and a detection chamber.
This compact chip platform provides a minimum of handling steps, which can reduce the
handling error for the precise measurement of thrombin. This sensitive chip can detect
thrombin as low as 38 µU/µL in human serum within only 5 min, which is 90% faster than
conventional assays.
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Figure 2. Colorimetric- and electrochemical-based biosensors for extracellular protease detection:
(a) schematic diagram of the colorimetric biosensors using a plasmonic gold–silver core–gold nanopar-
ticle aggregate for the measurement of trypsin activity. This figure is adapted with permission from
Ref. [73] (© 2022 American Chemical Society). (b) Schematics of the smartphone-based colorimetric
detection of MMP-2 using a modular combination of proteolysis-responsive transcription and nucleic
acid-modified AuNPs. This figure is adapted with permission from Ref. [74] (© 2021 American
Chemical Society). (c) Schematic diagram of the electrochemical protease biosensor composed of
a streptavidin-modified Au electrode with a biotin–peptide–biotin complex as a caspase-3 substrate.
This figure is adapted with permission from Ref. [77] (© 2021 American Chemical Society). (d) Label-
free electrochemical detection of MMP-2 by proteolysis-triggered transcription strategy on a Au
electrode. This figure is adapted with permission from Ref. [79] (© 2021 Elsevier B.V.).

Surface-enhanced Raman spectroscopy (SERS) could also be a potential sensitive
biosensing method for protease detection. Due to the proportional signal intensity to
the distance between the Raman dye and SERS-active substrates, the peptide-cleavage
event can induce a dramatic change in SERS signals. Choi et al. revealed a SERS-active
platform consisting of an Ag-coated hollow polypyrrole (hPPy) nanohorn with a specific
peptide sequence [83]. To maximize the SERS signal, Ag is electrodeposited on both sides
of the hPPy nanohorn structure. Using this core/double-shell nanohorn substrate, the
Raman signal of the peptide-functionalized AuNPs is significantly improved, and caspase-3
can be sensitively measured, with a wide detection range from 10 pg/mL to 10 µg/mL.
Wei et al. developed O-GlcNAc transferase (OGT) biosensors by integrating SERS tags
and a magnetic bead complex [84]. The SERS tags and magnetic bead complex are linked
to the two ends of the peptide by thiolated and biotin residues. In the presence of OGT,
peptide glycosylation protects the peptide from the cleavage reaction by proteinase K,
resulting in more SERS signals from the left Raman tags on the surface of magnetic beads.
This system can sensitively detect OGT as low as 0.1 nM, ranging from 10−10 to 10−7 M.
Besides optical analytical methods, a giant magnetoresistive spin-valve (GMR SV) sensor
has been developed for the detection of cysteine protease [85]. Magnetic nanoparticles are
immobilized on the surface of GMR SV using a cysteine-protease-specific peptide. This
magnetic field measurement approach can detect papain, one of the cysteine proteases, as
low as 4 nM in only 3.5 min.
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4. Intracellular Detection of Protease for In Situ Monitoring
4.1. In Vitro Proteolytic Analysis at a Cellular Level

As described in Section 3, since extracellularly released proteases can be biomarkers
of specific diseases, the development of sensitive and selective biosensors is necessary for
the accurate and early diagnosis of several diseases. In addition to measuring extracellular
protease in vitro, it is also possible to measure intracellular proteases quantitatively and
qualitatively. As illustrated above, as measuring proteases does not involve complex
reactions such as antigen–antibody reactions, intracellular proteases can be measured in
a simple manner and in real-time. Because intracellular proteases, similar to extracellular
proteases, are important biomarkers for determining the state of cells, many researchers
have studied intracellular protease biosensors using specific peptide degradation.

For the detection of intracellular proteases, fluorescence-based analytical methods have
been mainly utilized using the distance-dependent FRET phenomenon. In particular, there
have been virus-infected cells that are enabled to measure virus-related proteases in real-
time to diagnose viral infection. Guerruiro et al. exhibited a genetically-engineered turn-on
fluorescent biosensor containing a cyclized green fluorescent protein (GFP)-conjugated
cVisensor with a specific peptide sequence for adenoviral protease detection [86]. Structural
distortion of circular permuted superfolder-GFP is cyclized by Nostoc punctiforme DnaE.
This in situ live cell biosensor works to restore the deformation by the peptide-cleavage
reaction and emits the fluorescent signal of GFP. This label-free sensing system can detect
adenovirus 2 days post-infection, faster than conventional plaque-forming assays that
require 14 days. Dey-Rao et al. developed a live cell-based fluorescence biosensor to
evaluate the intracellular function of the SARS-CoV-2 main protease and its inhibitor [87].
The authors designed it to express a red fluorescence protein (RFP) biosensor unless the
SARS-CoV-2 main protease cleaves the peptide and to facilitate the loss of the fluores-
cence emission of RFP. Inhibition of the main protease function provides the synthesis of
working RFP, resulting in the recovery of fluorescence. In addition, GC376, which is the
pan-coronavirus’s main protease inhibitor, shows effective inhibition of the intracellular
CoV2 main protease. The authors claim that this intracellular sensing system can offer
an extremely efficient high-throughput screening system for the SARS-CoV-2 main protease.
Guerreiro et al. developed GFP-based switch-on split fluorescent biosensors to examine vi-
ral infection [88]. Through the protein distortion, which is composed of GFP11 embedment
distortion (SNR 6.0) or GFP11 cyclization (SNR 3.5), GFP is split and cannot be assembled
for the fluorescent emission. Once adenovirus- and lentivirus-promoted proteolysis cleaves
the peptide sequence, this intracellular biosensor shows the fluorescent signal in live cells
after 24 h post-infection with a high signal-to-noise ratio of up to 97. Gerber et al. revealed
a live cell-based luminescent biosensor for the verification of SARS-CoV-2 infection using
recombinant SARS-CoV-2 proteases [89]. This luminescent-based assay applies the cleav-
age of specific peptide linkers, which are degraded by the main protease of SARS-CoV-2,
allowing viral infection to be measured within 24 h in the multi-well plate format for
high-throughput analysis. The authors claim that the developed luminescent SARS-CoV-2
reporter live-cell-based biosensor can demonstrate the comparative quantitation of the
SARS-CoV-2 virus and the titration of neutralizing antibodies.

Besides virus-related protease detection, other intracellular proteases have also been
measured with specific peptide-cleavage reactions in live cells. Luo et al. showed the
highly sensitive and precise detection of MMP-2 activity using a rolling circle transcription
assay-integrated proteolytic reaction (Figure 3a) [90]. The proteolytic reaction induces the
activation of the bacteriophage T7 RNA polymerase (T7 RNAP) and produces long RNA
chains, including tandem G-quadruplexes (G4s). As a result, the activity of MMP-2 can be
transduced into multiple fluorescent signals from G4s RNAs. For verification of the sensing
principle for cell imaging, six distinct cell lines with different MMP-2 expression levels were
employed, and they indicated different signals for the MMP-2 expression levels. Braun et al.
exhibited a cell-surface-displayable biosensor for MMP-14 detection (Figure 3b) [91]. The
cell-surface biosensor consisted of two scFv domains; one was blocked against MG2P fluo-
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rescent dye, and another was scFv, a connected specific MMP-14 cleavable sequence. Once
the cell-surface MMP-14 degrades the peptide bridge, the blocker is dissociated, and the flu-
orogen (MG2P) is bound to the scFv domains. Subsequently, the MMP14–fluorogen (MG2P)
complex is activated, and the fluorescence signal is generated. This switch-on cell-surface
biosensor was enabled to measure the activity of MMP14, as well as location and temporal
dynamics. Xu et al. developed a multi-color fluorescent polydopamine nanobiosensor
for the multiple sensing of cancer-related proteases in living cells, such as urokinase-type
plasminogen activator (uPA), cathepsin B (CTB), matrix metalloproteinase-2, and matrix
metalloproteinase-7 (MMP-7) [92]. The polydopamine nanoprobe is functionalized by the
four different peptide sequences with different fluorescent dyes. Due to the quenching
effect of the polydopamine nanoprobe, the four fluorescent dyes cannot emit a signal. If
the polydopamine nanoprobe is intracellularly delivered into the cancer-related cells, the
intracellular protease can particularly cleave each peptide, allowing the recovery of the
fluorescent signals. Due to the multiplexed intracellular detection, this sensing system
can evaluate the stages of tumor progression and provide early and multiple diagnoses of
cancers. Peyressatre et al. exhibited a cyclin-dependent kinase 5 (CDK5) kinase activity
biosensor for the diagnosis of neurodegenerative pathologies, including glioblastoma and
neuroblastoma [93]. The authors developed a CDK5-specific fluorescent peptide biosensor
through the selection of peptide sequences from the CDK5 substrate. The quantification of
CDK5 kinase activity can be measured on treatment with ATP-competitive inhibitors in
both cell extracts and the living cell environment by time-lapse fluorescence microscopy.
These kinds of intracellular biosensing systems can facilitate the evaluation of the functional
status of intracellular proteases in several cancers and neurodegenerative pathologies by
real-time monitoring. The intracellular biosensing method can also be applied to floating
cells, such as immune cells, for monitoring endogenous metabolic processes during the
immune response. Sun et al. developed a genetically programmed fluorescent itaconate
biosensor (BioITA) for the immediate monitoring of itaconate dynamics, which is an anti-
inflammatory program of the innate immune response in living macrophages [94]. The
authors succeeded in monitoring the itaconate progress by stimulating lipopolysaccha-
rides in living macrophages. In addition, through the BioITA, the response and changing
itaconate level in activated macrophages could be observed by the injection of an adeno-
associated virus (AAV) with spatiotemporal resolution. Hassanzadeh-Barforoushi et al.
utilized microfluidic channels for the measurement of released proteases from single cells
using capillary force-assisted separation (Figure 3c) [95]. For the isolation and easy and
reliable capture of a small number of cells (~500 single cells), the capillary-stoppage method
was applied to the microfluidic channel by shearing with air and sheathing with FC-40
oil. Key parameters, including single-cell encapsulation efficiency (38.8%) and droplet
volume evaporation rate (10%) in 48 h, were achieved in the microfluidic platform, and
the manipulation of droplet composition through controlled gradient generation were
studied. Based on the separation of nanoliters at the single-cell level, the authors employed
a simple FRET-based biosensor for the monitoring of secreted MMP-2 activity. The authors
claim that this microfluidic platform offers a rapid, simple, and single-cell-level detection
method without engineering expertise. Zhong et al. developed an in situ ratiometric
SERS nanoprobe for the intracellular imaging of proteases (MMP-2) in different cancer
cells for sensitive detection (Figure 3d) [96]. Due to the advantages of the SERS analytical
method, such as high sensitivity, resistance to photobleaching and quenching, and trivial
autofluorescence, SERS-based visualization using the 2-naphthalenethiol (NT)-labeled Au
nanoprobe was applied to measure MMP-2 activity in single living cancer cells. Upon the
internalization of the Au nanoprobe into cancer cells, the proteolytic cleavage of the peptide
sequence resulted in the dissociation of the 2-NT molecules, and the Raman signal was
decreased. Live cell imaging results showed that the MMP-responsive nanoprobe differenti-
ated normal breast cells from breast cancer cells and also differentiated two different breast
cancer cell lines with different malignant properties. Cheng et al. developed a selective
in vivo imaging and inhibition system against SARS-CoV-2 infection. This amphiphilic
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assembly system consists of aggregation-induced emission (AIEgen), self-assembly, spacer,
and main protease-responsive and cell-penetrating peptide domains. The degradation of
this amphiphilic assembly by the main protease from SARS-CoV-2 induces aggregation
with increased fluorescence and mitochondrial interference of the infected cells. As a result,
this system can perform the selective bioimaging and treatment of SARS-CoV-2-infected
cells [97].
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Figure 3. In vitro proteolytic analyzing biosensors: (a) Schematic diagram of the proteolysis-
responsive rolling circle transcription assay (PRCTA) by integrating protease-responsive RNA poly-
merases and rolling circle transcription. This figure is adapted with permission from Ref. [90] (© 2020
American Chemical Society). (b) Plasmid-based cell-surface fluorescent biosensor for measurement of
the location and activity of MMP-14. This figure is adapted with permission from Ref. [91] (© 2018
Springer). (c) Microfluidic capillary biosensor for quantifying secreted protease activity at the single
cell level. This figure is adapted with permission from Ref. [95] (© 2020 Elsevier B.V.). (d) SERS
imaging of intracellular MMP-2 activity with the ratiometric SERS Nanoprobe. This figure is adapted
with permission from Ref. [96] (© 2020 Elsevier B.V.).

4.2. In Vivo Proteolytic Analysis for Bioimaging

Proteolytic cleavage-based biosensing strategies can be applied to in vivo imaging
using optical probes such as fluorescent molecules. Yim et al. developed ear inflammatory
biosensors by measuring the short-wave infrared (SWIR) otoscope (Figure 4a) [98]. Cys-
teine cathepsin proteases, which are upregulated in the inflamed state by immune cells,
are released from the otitis media (middle ear infection). The fluorescent probe is linked
to the quencher (6QC-ICG) through the cleavable peptide, and this probe is emitted into
the lysosome by the latent lysosomotropic effect in acute otitis media. As a result, middle
ear infection shows a clear fluorescent emission with a 2.0 signal-to-background ratio.
Moore et al. demonstrated a novel detection method for in vivo periodontal inflammation
by measuring gingipain proteases released by P. gingivalis [99]. For the transduction of
a specific peptide cleavage into the signal, the activatable photoacoustic and fluorescent
molecular probe, which consisted of a dye-conjugated peptide, [Cy5.5]2[APRIK], was uti-
lized as an imaging agent for gingipain proteases. The sensitivity of this in vivo biosensor
showed 5-fold photoacoustic and >100-fold fluorescence enhancement, with 1.1 nM and
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4.4 × 10−4 CFU/mL LOD. In addition, the photoacoustic imaging of the gingipain protease
probe was demonstrated in the subgingival pocket of porcine mandibles and the murine
brain due to the check on the biological relationship between gingipain and Alzheimer’s
disease. Xiang et al. exhibited a DNA/peptide/PNA triblock copolymer for in vitro ATP
imaging and in vivo tumor imaging (Figure 4b) [100]. The sensing system is composed
of a rationally designed peptide nucleic acid (PNA)–peptide–PNA triblock copolymer,
which can be divided by tumor-overexpressed cathepsin B. The cathepsin B-activatable
probe is in double-stranded form, which is the Cy5-labeled DNA aptamer strand and the
quencher (BHQ2)-labeled short complementary DNA strand. The cathepsin B-induced
activation of the probe enables tumor cell-specific molecular imaging by the folding of the
aptamer with binding ATP, and the fluorescence signal is recovered. This ATP sensing-
based fluorescence imaging probe can selectively measure the cathepsin B protease in
tumor cells both in vitro and in vivo. Kang et al. developed a chronic wound evaluation
platform by integrating a fluorophore–peptide quencher into a maleimide-functionalized
polyethylene glycol–diacrylate (PEG-DA) hydrogel [101]. Using the in vivo fluorescence
imaging method, a high level of MMP-2 and MMP-9 was clearly demonstrated on the
chronic wound site. The authors claim that this simple protease sensor can be applied
to indicate the severity of the wound to the surgical doctor and other medical staff by
providing the patch format of a fluorescence sensor. Liu et al. reported a noninvasive
diagnostic platform of common pulmonary diseases by measuring the activation of hu-
man neutrophil elastase (Figure 4c) [102]. This imaging probe consists of a QD–human
neutrophil elastase-specific peptide substrate fluorescent dye for the induction of the FRET
effect. This system showed both the in vitro and in vivo detection of human neutrophil
elastase, with 7.15 pM in aqueous solution, and clear imaging in lung cancer and acute
lung injury mouse models. Using this sensor could differentiate pulmonary patients from
the healthy with the minimization of environmental interference of the fluorescence.
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Figure 4. In vivo proteolytic analysis of intracellular proteases for bioimaging: (a) Schematics of the
fluorescence-guided detection of otitis media (OM) using a protease-cleavable biosensor. This figure
is adapted with permission from Ref. [98] (© 2020 American Chemical Society). (b) PNA-assisted
DNA aptamer sensor with peptide for cathepsin B-activatable ATP detection. This figure is adapted
with permission from Ref. [100] (© 2021 Wiley-VCH). (c) FRET-based neutrophil elastase biosensor
for in vitro detection and in vivo imaging using the peptide substrate, QDs, and organic dyes. This
figure is adapted with permission from Ref. [102] (© 2020 American Chemical Society).
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5. Outlook and Conclusions

In this review, proteolytic enzymes that can be used as biomarkers for diagnosing
various diseases have been briefly demonstrated, with the latest research trends showing
the integration of functional nanomaterials. As mentioned above, proteolytic enzymatic
biosensors have various advantages over immunoassays represented by ELISA. First,
the measurement process of proteolytic biosensors is simpler than ELISA. Compared to
multiple antigen–antibody reactions (two or more separated reactions), proteolytic enzymes
can be measured using only a peptide degradation reaction. In addition, it is cost-effective
and time-saving as the complexity of the measurement can be reduced. Unlike ELISA,
one of the advantages is that the additional labeling step of the signaling molecule is
not required after the biological reaction (i.e., antigen–antibody reaction) of the target
biomarker. Finally, false-negative and false-positive signals caused by antibody instability
can also be reduced. However, while most proteins have their specific antibodies, there
is a limitation that only proteolytic biomarkers with specific enzymatic properties can be
measured. This is a major disadvantage that reduces the versatility of the sensor.

Recently, CRISPR-based DNA and RNA biosensors have been actively studied for
sensitive and simple detection. These analytical methods are based on random single
nucleic acid degradation reactions if the target DNA/RNA lets the CRISPR complex acti-
vate, similar to the strategies of proteolytic enzymatic biosensors. Since the decomposition
reactions of peptides and nucleic acids are irreversible, these kinds of sensors cannot be
reused. Paradoxically, the non-reusability of the biosensor could be an advantage, namely,
as a disposable sensor, because it can improve accuracy by reducing errors due to the
reduction of biological reactions due to the regeneration of sensors. In addition, a system
for measuring multiple biomarkers is essential for the accurate and early diagnosis of
diseases. From this point of view, the proteolytic sensor can easily apply a multiplex system
because the peptides that each proteolytic enzyme degrades are different. Furthermore,
integration with the CRISPR sensor enables the simultaneous measurement of various types
of biomarkers, such as DNA, RNA, and other proteins, on one platform. This will provide
not only the accurate diagnosis of the disease mentioned above but also detailed disease
information, for example, the progress of the disease and the prognosis after treatment.

Studies measuring the activity of proteolytic enzymes can be applied to various
biomedical fields besides in vitro diagnosis. For example, it can be used for real-time
in vivo imaging using intracellular and extracellular proteolytic enzymes. In addition,
when proteolytic enzymes are used with therapeutic drugs and nanoparticles, they can be
used for the development of nanotheragnosis, which can be treated and diagnosed at the
same time. For instance, since the MMP family are typically highly expressed in various
cancers, it will be possible to develop nanotherapeutics with high potential by inducing
drug release through peptide degradation events while detecting them in the body. In this
way, it is believed that in combination with various nanotechnology, it will be possible to
secure a platform technology that can simultaneously perform various functions while
improving measurement sensitivity. In addition, proteolytic biosensors could be applied to
toxicological and pharmacological screening systems. For example, sentrin-specific pro-
tease 1, which is related to many diseases, including cancers and cardiovascular diseases, is
measured for the identification of anti-cancer agents that have toxic effects [103]. Another
example is the SARS-CoV-2 main protease inhibitors screened using a proteolytic-based
biochemical high-throughput screening (HTS) system. These screening platforms are feasi-
ble for simple and sensitive tests for drug screening and pharmacological applications [104].
Proteolytic enzymatic biosensors are expected to be used more actively in the field of early
diagnosis of diseases in the future, and it is expected to be widely used for basic biological
research, in vitro model systems with sensitive analysis platforms at the cell level, and
other biomedical fields such as drug delivery and in vivo imaging.
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