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Abstract: The measurement of volatile fatty acids (VFAs) is of great importance in the fields of food
and agriculture. There are various methods to measure VFAs, but most methods require specific
equipment, making on-site measurements difficult. In this work, we demonstrate the measure-
ments of VFAs in a model sample, silage, through its vapor using an array of nanomechanical
sensors—Membrane-type Surface stress Sensors (MSS). Focusing on relatively slow desorption be-
haviors of VFAs predicted with the sorption kinetics of nanomechanical sensing and the dissociation
nature of VFAs, the VFAs can be efficiently measured by using features extracted from the decay
curves of the sensing response, resulting in sufficient discrimination of the silage samples. Since the
present sensing system does not require expensive, bulky setup and pre-treatment of samples, it has
a great potential for practical applications including on-site measurements.

Keywords: volatile fatty acids (VFAs); nanomechanical sensors; Membrane-type Surface stress Sensor
(MSS); electronic nose (e-nose); silage

1. Introduction

Silage is a type of roughage, which is made of fermented grass or crops to enable long-
term storage and a stable supply of feed. The fermentation quality of silage affects not only
the feeding system and milk production but also diseases in dairy cows [1]. For example,
butyric acid, which is mainly produced by aerobic fermentation, can cause reduced dry
matter intake [2], leading to energy metabolism disorder, such as ketosis [3,4]. Therefore,
examining the fermentation quality of silage is of great importance to determine whether
and how to feed silage. There are two major approaches to examining the quality of silage
fermentation: with chemical analysis and with sensory evaluation using human olfaction.
Although the sensory evaluation can be performed in the field, its accuracy is limited.
Chemical analysis, on the other hand, generally provides high accuracy by quantifying
the fermentation products. However, chemical analysis requires expensive instruments
and pretreatment procedures, resulting in time consumption and delayed results [5]. In
addition, in the case of wrapped silage, the aerobic fermentation proceeds from the moment
that the wrap is opened. Therefore, there is a demand for a method to measure the quality
of silage fermentation accurately on site.
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As sensory evaluations are made on odors of silage, odor is one of the important
aspects to determine the quality of silage fermentation. To measure such odors, gas
chromatography (GC) is the most common approach, while it also has limitations for
on-site measurements. The concept of artificial olfaction—also known as electronic nose
(e-nose)—has been proposed using an array of chemical sensors [6] consisting of multiple
sensors with different chemical properties. Using this artificial olfaction, a wide range
of studies have been reported on the identification, discrimination, and quantification of
target odors. Since the size reduction of sensing elements through recent nanotechnology
has made the artificial olfaction system small and mobile, potential applications including
on-site measurements have been proposed in various fields, such as food, agriculture,
environment, medicine, and healthcare [7–14].

In this study, we demonstrate that a nanomechanical sensor array can be utilized for
differentiating the silage samples through their odors, especially volatile fatty acids (VFAs),
which are one of the key indicators for the silage quality [15]. We used a nanomechanical
Membrane-type Surface stress Sensor (MSS) as a platform of artificial olfaction [14,16,17].
By focusing on the relatively slow desorption behaviors of VFAs predicted according to the
sorption kinetics of nanomechanical sensing [18,19] and dissociation nature of VFAs, we
found that the trends of VFAs in moisture-rich odors can be clearly seen in the decay curve
of the signals, regardless of the hydrophilicity or hydrophobicity of the receptor materials.
Since the MSS array has various advantages on the on-site measurement [14], MSS-based
artificial olfaction provides a promising evaluation platform for the silage quality.

2. Materials and Methods
2.1. Materials

Polystyrene (PS), polymethyl methacrylate (PMMA), and poly(2,6-diphenyl-1,4-pheny-
lene oxide) (known as Tenax) were purchased from Sigma-Aldrich Inc. and GL Science and
used for receptor materials. N,N-dimethylformamide (DMF) was purchased from Kanto
Chemical Co., Inc. and used as a solvent to prepare solutions of receptor materials for inkjet
spotting. Acetic acid (ethanoic acid), propionic acid (propanoic acid), butyric acid (butanoic
acid), valeric acid (pentanoic acid), and caproic acid (hexanoic acid) were purchased from
Sigma-Aldrich Inc. (Tokyo, Japan), Tokyo Chemical Industry (Tokyo, Japan), FUJIFILM
Wako Pure Chemical Corporation (Osaka, Japan), Kanto Chemical Co., Inc. (Tokyo, Japan).
All chemicals were used as received. MilliQ water (Merck MilliPore, Tokyo, Japan) was
used as water vapor.

2.2. Plant Materials and Preparation of Silage

The whole-plant corn (Zea mays L.) at the yellow ripe stage, grown in a field at the
National Institute of Livestock and Grassland Science (Nasushiobara, Tochigi, Japan), were
harvested and chopped into a 32 mm theoretical length size using a forage harvester
(Model-790MD; New Holland, New Holland, PA). The plant material was then ensiled in
an underground silo. After ensiling, the silage samples with different fermentation quality
were chosen and designated as S1-1, S1-2, and S1-3 (the upper part of the silo) and S2-1,
S2-2, and S2-3 (the bottom part of the silo), respectively.

2.3. Chemical Analysis of Silage Samples

Silage homogenates were prepared as previously described [20] with some modifica-
tions. Briefly, 100 mL of distilled water was added to 10 g (fresh weight) of silage material.
The resulting solution was homogenized by using a laboratory homogenizer (Pro·media
SH-IIM, Elmex). After 5 min of extraction, the sample was filtered through 5A filter pa-
per (Advantec). The resulting eluate was treated with Amberlite (Amberlite IR120H+,
Tokyo Chemical Industry) and centrifuged at 20,000 × g for 5 min. The supernatant was
filtered through a membrane filter (pore size 0.45 µm; Advantec) and analyzed with a high-
performance liquid chromatograph (HPLC; JASCO Corporation) equipped with Shodex
Raspak KC-811 column (8 mm × 300 mm; Showa Denko) and a UV spectrometer (detection
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wavelength was 450 nm). The column was maintained at 60 ◦C. The flow rate of the mobile
phase (3 mmol L−1 of HClO4 aq.) was 1.2 mL min−1. BTB solution (0.2 mmol L−1 of
bromothymol blue, 8 mmol L−1 of Na2HPO4, and 2 mmol L−1 of NaOH) was used as the
reaction mixture.

The water content is 100 less the proportion of dry matter content (%). Dry matter
weight of silage was determined with heating material at 60 ◦C for 48 h. The pH values of
the silage extract were determined using a pH meter (Seven Excellence; Mettler-Toledo)
attached to an electrode (InLab Expert Pro-ISM; Mettler-Toledo).

2.4. Fabrication of MSS

The construction of the MSS chip and its working principle has been previously
reported (Figure 1a) [16,17]. Briefly, MSS consists of a silicon membrane suspended by
four bridges, composing a full Wheatstone bridge (Figure 1a). In each bridge, piezore-
sistors were embedded through boron doping. Receptor materials (i.e., PS, PMMA, and
Tenax) were coated on each membrane. When the target gas is introduced to MSS, the
receptor layer deforms from sorption of target analytes, such as VFAs, generating surface
stress [14]. The surface stress on the membrane is transduced to the four piezoresistive
bridges as amplified uniaxial stress, resulting in the changes in the electrical resistance
of the piezoresistors embedded in the bridges. The MSS chips used in this study were
purchased from NanoWorld AG, Switzerland and provided from Asahi Kasei Co., Ltd.
Each receptor material was deposited directly on the membrane of MSS by using inkjet
spotter (LaboJet-500SP, MICROJET Corporation, Nagano, Japan) with a nozzle (IJHBS-300,
MICROJET Corporation). In the present study, we used commercially available polymers
as receptor materials, which exhibit different chemical selectivity. Each receptor material
was dissolved in DMF (1 mg mL−1), and the solutions were deposited onto each channel of
the MSS. A stage of the inkjet spotter was heated at 80 ◦C during the deposition to promote
evaporation of DMF.
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Figure 1. Schematic illustrations of the MSS and its sensing system. (a) Configuration of the MSS.
(b) Schematic illustration of the measurement system.

2.5. Sensing

To estimate the diffusion time constant τs of each receptor material to each solvent
vapor, we used a sensing measurement system according to our previous work [19] as
shown in Figure 1b. The coated MSS chips were placed in a Teflon chamber, which was
placed in an incubator with a controlled temperature of 30.00 ± 0.02 ◦C. The chamber was
connected to a gas flow system: a purging line, an injection line, a mixing chamber, two
mass flow controllers (MFCs), and a vial for solutions of VFAs (Figure 1b). The vapor of
VFAs was produced by bubbling carrier gas. As carrier and purging gases, pure nitrogen
gas was used. The duration and the concentrations of the five different VFA vapors were
precisely controlled using MFC-1 (injection line) at Pa/Po of 0.1, where Pa and Po denote
the partial vapor pressure and saturated vapor pressure of the VFAs, respectively. Before
measuring MSS signals, pure nitrogen gas was introduced into the chamber for at least
1 min to promote the desorption of molecules adsorbed in the previous measurement.
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Subsequently, MFC-1 was switched on/off every 10 s with a controlled total flow rate of
100 mL min−1 using MFC-2 (purging line) for four injection-purge cycles. Sensing signals
of MSS were measured with a bridge voltage of –1.0 V and recorded with a sampling rate
of 20 Hz. The data collection program was designed using LabVIEW (NI Corporation).

To measure the silage samples, we used the MSS Standard Measurement module [21]
produced by the industry–academia–government collaboration framework called “MSS
Alliance” and “MSS Forum” [22–24]. The coated MSS chips were placed in a Teflon chamber
in the MSS module. The chamber was connected to a gas flow system: a switching valve
connected with injection and purging gas lines, a flow meter, and an aspiration pump.
The sample and purge gas flows were controlled by the pump with a flow rate adjusted
to 30 mL min−1. Each silage sample was placed in 20 mL vial and was connected to the
injection line. Before measuring MSS signals, pure nitrogen gas was introduced into the
MSS module for at least 2 min. Subsequently, the switching valve was switched to the
sampling line for 2 min and then switched back to the purging line for 8 min. Sensing
signals of MSS were measured at the bridge voltage of –1.0 V and recorded at a sampling
rate of 100 Hz.

2.6. VFA Profile in Headspace Gas

To measure the VFAs in the headspace gases of silage samples and aqueous solutions
of VFAs, PTR-TOF-MS (PTR-TOF 6000 X2, Ionicon Analytik GmbH) equipped with Static
Headspace Autosampler was used. The measurement setup was set according to the manu-
facture’s protocol. The ion source of PTR was operated at a current of 4 mA and a voltage of
145 V with the source-out voltage maintained at 78.56 V. The source valve operating was set
at 51%. The voltage, pressure, and temperature of drift tube were maintained at 557 V, 2.8
mbar, and 70 ◦C, respectively. The E/N value, where E and N are the applied electric field
and the number density of the gas in the drift tube (1 Td = 10−17 V cm2), respectively [25],
was approximately 101 Td. The mass spectrum was recorded in the mass range of m/z
9–400, and mass calibration was performed using two ion peaks, which are known exact
masses, i.e., hydronium ion isotope (H3

18O+; m/z = 21.022) and diiodobenzene fragment
(C6H4IH+; m/z = 203.943). The count rate of primary ion H3O+, which is calculated from
the count rate at m/z = 21.022 multiplied by 500, was ca. 1.0 × 108 count per second (cps) in
this work. The raw mass spectrum obtained from PTR-MS was analyzed using the PTR-MS
Viewer ver. 3.3.9.1.

2.7. Curve Fitting of the Signal Response

To estimate the diffusion time constant τs, we used an analytical solution of nanome-
chanical sensing based on the sorption kinetics and viscoelastic behaviors as follows [19]:

σ(t) =
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t−t0

τs

2(n−1)
∑

i=0

(
−e

T
τs

)i
+ σsat.(1 − α)e−

t−t0
τr

2(n−1)
∑

i=0

(
−e−

T
τr

)i
, t0 + 2(n − 1)T ≤ t < t0 + (2n − 1)T

σsat.αe−
t−t0

τs
2n−1

∑
i=0

(
−e

T
τs

)i
+ σsat.(1 − α)e−
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, (1)

where σsat. and α denote the amplitude of the signal and fitting parameter (see Ref. [19]
for more detail); τr is the time constant of the stress relaxation for viscoelastic behaviors
of receptor materials; T and n are the duration and the number of injection/purge cycles.
The analytical solution derived for multiple injection/purge cycles (Equation (1)) allows us
to extract fitting parameters of the current measurements more accurately than previous
single injection–purge model [18,19]. To extract values of receptor material properties and
diffusion time constant of gases from the experimental data, we used least squares methods
with trust region reflective algorithm using Python 3 with SciPy module according to
our previous work [19]; σsat., τs, τr, EU/ER, and t0 were extracted using Equation (1) (see
Ref. [19] for more detail).
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2.8. Pattern Recognition Analysis

To discriminate the silage samples, principal component analysis (PCA) was used for
reducing dimensionality of the dataset. By projecting the data onto a lower-dimensional
space, one can visually recognize each silage sample according to the cluster separation.
The following parameters Sij were extracted from each MSS response as features for PCA:

Sij = Sj(ti) - Sj(t0) with i = 1, 2, 3, 4, 5 (2)

where Sj(t) and t0 denote a signal output of the jth receptor material at time t and the time
when the signal response starts to rise (Figure 2). In this study, we chose four time points
for ti; t1 = t0 + 2 [s], t2 = t0 + 10 [s], t3 = t0 + 120 [s], t4 = t3 + 2 [s], and t5 = t3 + 10 [s]. Three
sets of the five parameters were extracted. PCA was adopted using scikit-learn packages
for Python.
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3. Results
3.1. Silage Samples Preparation and Their Headspace Gas Concentrations

During silage fermentation, several compounds are produced such as VFAs and
non-volatile lactic acid [1,2]. VFAs, such as acetic acid and butyric acid, are one of the
key indicators to determine the fermentation quality of silage [2]; in general, anaerobic
lactic acid fermentation results in good fermentation quality, whereas aerobic butyric
acid fermentation (alteration) results in poor fermentation quality. To demonstrate the
identification of silage with different fermentation qualities with an MSS array, we prepared
corn silage in a silo and collected three silage samples from two different positions: the
upper and the bottom. The results of the chemical analysis are listed in Table S1. Various
VFAs including propionic acid were measured, while valeric acid was not detected with
chemical analysis. The concentrations of VFAs in the headspace gas of each silage sample
were measured with PTR-TOF-MS (Table 1). The headspace gases of silage samples used
in the present study contained not only acetic acid, propionic acid, and butyric acid but
also trace amount of valeric acid. Comparing the two different silage samples, the silage
collected from the bottom (S2) yields higher VFAs than the silage collected from the upper
(S1). Specifically, for the major VFAs in silage such as acetic acid and butyric acid, the
concentrations in S2 were approximately 4.2 and 1.7 times higher than those in S1. These
silage samples, in addition to water vapor, were used for the discrimination of silage
samples through their odors using an MSS array.

3.2. MSS Responses to Headspace Gases of Silage Samples

To investigate the response patterns to the VFA-rich silage samples, we prepared
an MSS array coated with three different receptor materials: PS (hydrophobic material),
PMMA (hydrophilic material, sensitive to water), and Tenax (hydrophobic material, widely
used as a trapping material) [14,19,21]. Using the MSS array, two sets of silage samples were
measured. Each silage sample was measured three times. All signal responses are shown in
Figure 2 (see also Figure S1). As can be seen from Figure 2 and Figure S1, signal responses
obtained from each sample are highly reproducible. The MSS coated with the hydrophilic
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receptor, i.e., PMMA, results in similar responses for all silage samples because of the
dominant influences of water vapor on the sensing signals, since the major component in
silage headspace gases is water vapor. In contrast, the MSS coated with the hydrophobic
materials, i.e., PS and Tenax, yielded different signal patterns for each silage sample owing
to its low affinity to water vapor. In the cases of PS- and Tenax-coated MSS (Figure 3a,c),
the rising curves just after the sample gas injection at 0 s showed similar trends for all
samples, while significant differences were observed for each sample from about 10 s after
the injection. Unlike the hydrophobic receptors, PMMA-coated MSS showed no significant
differences in the rising curve (Figure 3b). In contrast to the rising curves, significant
differences are observed in the decay curves not only for the hydrophobic receptors but
also for the hydrophilic receptor (Figure 3).

Table 1. Organic acids in silage samples examined with chemical analysis and their vapor con-
centrations measured with PTR-TOF-MS. Vapor concentrations are shown in the unit of parts per
million (ppm).

Silage Plant Acetic Acid Propionic Acid Butyric Acid Valeric Acid

S1-1 Corn
(Upper) a

15.5 ± 4.4 3.72 ± 0.42 9.84 ± 1.11 0.64 ± 0.05
S1-2 31.7 ± 3.2 5.97 ± 0.41 8.78 ± 0.69 0.64 ± 0.01
S1-3 26.1 ± 2.0 5.75 ± 0.42 9.27 ± 0.53 0.74 ± 0.05

S2-1 Corn
(Bottom) a

108 ± 5 8.89 ± 0.60 16.8 ± 0.9 2.09 ± 0.12
S2-2 103 ± 11 7.21 ± 0.66 15.2 ± 1.2 1.56 ± 0.14
S2-3 98.8 ± 7.6 7.27 ± 0.49 15.4 ± 1.2 1.66 ± 0.11

a Sampling position of silo.

From each response curve shown in Figure 3, five output values at t1 to t5 were
extracted as the features of the sensing signals (Figure 2). The extracted features are
summarized in Tables S2–S4. As can be seen in Figure 4, the values extracted at t2 to t5
for PS and Tenax and the values extracted at t4 and t5 for PMMA yield clear differences
for each sample. Although other values are rather scattered, the relative deviations of all
signal outputs obtained from each sample compared to the signal intensity (i.e., output
value at t = t3) were less than 1% as summarized in Tables S2–S4, indicating that each
receptor shows high stability and reproducibility. Using the feature set in Figure 4, PCA
was conducted as shown in Figure 5. Scree plots are shown in Figure 4c. Each silage
sample and the water vapor are clearly distinguished with well-separated clusters in the
principal component space (Figure 5a,b). It should be noted that PC 2 does not contribute
to identifying the silage samples. This may reflect a baseline drift of the sensing responses
with time, as features with small differences, such as the rising curve of PMMA, contribute
more significantly because of the standardization of the feature set.

3.3. MSS Responses to Each VFA Vapor

To investigate the detailed mechanism of the responses of each receptor material
to VFAs, we measured MSS responses to the vapors of the aqueous solutions of VFAs.
Figures S2–S4 show the signal responses to the series of VFAs with different concentrations
in water, which cover the vapor concentrations of VFAs in silage samples (see also Figure
S5 for the vapor concentrations measured with PTR-TOF-MS). From the signal responses
to aqueous VFAs, the corresponding signal outputs at different time points ti (i = 1–5)
were plotted as a function of the VFA concentrations in water (Figure 6). On the one hand,
outputs at t2 to t5 of hydrophobic PS increase monotonically with increasing concentrations
of VFAs, while the outputs at the beginning of the rising curves (i.e., t = t1) show a
decreasing trend with respect to the concentrations of VFAs (Figure 5a). On the other
hand, most of the outputs during rising curves of hydrophilic PMMA (i.e., t = t1, t2, and
t3) decrease with increasing VFA concentrations (Figure 6b). This trend probably reflects
the decrease of water vapor according to Raoult’s law—the decrease in the mole fraction
of water associated with the increase in the concentration of VFAs in water. Compared to
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the rising curves, the outputs of all receptor materials in the decay curves at t = t4 and t5
exhibit a linear correlation with the VFA concentrations.
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Figure 3. Signal responses to silage samples. Each panel from the top to the bottom shows the signal
response measured with MSS coated with PS (a), PMMA (b), and Tenax (c), respectively. Magnified
signal responses around t0 = 0 [s], t1 = 2 [s], t2 = 10 [s], t3 = 120 [s], t4 = 122 [s], and t5 = 130 [s]
are shown on the right. Red, blue, and black lines correspond to silage 1 (S1), silage 2 (S2), and
water, respectively.

One of the important aspects for explaining such complicated responses is the absorp-
tion/desorption behaviors of the target gases. In nanomechanical sensing, an analytical
solution was derived based on the first-order sorption kinetics with viscoelastic behaviors
of receptor materials in the form of Equation (1) [18,19]. According to the models, one of the
parameters (i.e., diffusion time constant τs) reflects the absorption/desorption behaviors
of the target analyte in nanomechanical sensing [18,19,26]. Considering the first-order
sorption kinetics of the single injection–purge model (n = 1), the concentration of the target
analyte in a receptor layer C(t) is given with [19]

C(t) =


0 , t < t0

KpCg

(
1 − e−

t−t0
τs

)
, t0 ≤ t < t3

KpCg

(
1 − e−

T
τs

)
e−

t−t3
τs , t3 ≤ t

, (3)
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where Kp and Cg are the partition coefficient and gas concentration of the target analyte.
When the diffusion time constant τs is relatively small and/or the duration T is long enough,
e−T/τs in Equation (3) becomes approximately 0, resulting in the symmetric response
between the rising and decay curves.
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t3 = t0 + 120 [s], t4 = t3 + 2 [s], and t5 = t3 + 10 [s], respectively.
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To estimate the diffusion time constants τs of VFAs and water, we measured the pure
vapors of VFAs (i.e., acetic acid, propionic acid, butyric acid, valeric acid, and caproic acid)
as well as water. Figure S6 shows the signal responses to the pure vapors of VFAs diluted
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with pure nitrogen without water vapor. The signal responses to water vapor are also
presented in Figure S6 for comparison. Using these signal responses, we apply the fitting
of Equation (1) to each response and obtain the diffusion time constant τs of the series of
VFAs as shown in Figure 7. Some of the diffusion time constants τs of VFAs are larger
than that of water, indicating the slow desorption of VFAs. In such VFA vapors (e.g., acetic
acid), asymmetric behavior is observed between the rising and decay curves, which can be
explained by Equation (3), resulting that each cycle of the injection and purge gradually
increases (Figure S6). It indicates that a part of the absorbed VFAs remains in the receptor
layer during the purge process because the slow desorption requires more time than the
purging period (10 s).
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Figure 6. Signal output at ti of each receptor material to VFAs as a function of VFA concentration in
water. (a) PS; (b) PMMA; (c) Tenax. Acetic acid (blue), propionic acid (red), butyric acid (green), valeric
acid (purple), and caproic acid (orange) are shown. Each panel from the top to the bottom shows the
outputs at t1 = t0 + 2 [s], t2 = t0 + 10 [s], t3 = t0 + 120 [s], t4 = t3 + 2 [s], and t5 = t3 + 10 [s], respectively.
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4. Discussion

In the present study, we demonstrated the discrimination of different silage samples
through their odors (i.e., headspace gases) measured with a nanomechanical sensor array.
We focused on VFAs, such as acetic acid and butyric acid, produced during silage fermen-
tation because these VFAs are one of the key indicators to assess the fermentation quality
of silage [2]. In the silage samples used in the present study, the series of VFAs, including
propionic acid and valeric acid, were detected in their odors with PTR-TOF-MS (Table 1),
although valeric acid was not detected through chemical analysis (Table S1). The concentra-
tions of VFAs in the odors of one silage group were significantly different from those in the
other group of silage, while the concentrations of VFAs in the same group were at similar
levels. When these silage samples including water vapor were measured with an MSS array
coated with hydrophobic PS, hydrophilic PMMA, and popular trapping material Tenax,
the signal responses showed different trends (Figures 3 and 4). By extracting five features
from the responses of the MSS coated with each receptor material, the silage samples and
water were clearly discriminated with PCA (Figure 5).

In the field of artificial olfaction including MSS-based systems, various feature ex-
traction methods have been proposed [27,28]. We have also reported that it is possible to
identify and quantify various analytes using features extracted from their outputs within
a couple of seconds of the rising and decay curves [28–31]. In the present silage samples,
however, the features extracted from the beginning of the rising curves (e.g., at 2 s after
sample injection, t1) cannot be effectively used for the discrimination of samples proba-
bly because of less correlation with their concentrations of VFAs (Figure 4). In contrast
to the rising curves, the features extracted from the decay curves (i.e., t4 and t5) clearly
show the significant differences reflecting their concentrations of VFAs in silage samples
(Figure 4). While the hydrophobic receptors (i.e., PS and Tenax) yield clear differences at
t2–t5 (Figure 4a,c), the hydrophilic PMMA does not show the significant differences during
the sampling process (i.e., rising curve at t1–t3) (Figure 4b). Since the major component of
the silage headspace gases is water vapor, it is suggested that the rising curves of PMMA
are strongly influenced by the water vapor concentrations rather than the differences in the
concentrations of VFAs in silage vapors.

To evaluate the trends of silage odors in the signal responses, we also measured the
signal responses of aqueous solutions of VFAs varying their concentrations. It is noteworthy
that the output of PS at t1 and the outputs of PMMA at t1–t3 tend to be negatively correlated
with their concentrations (Figure 6a,b), probably reflecting the decrease in water vapor
with increasing VFAs in water, according to Raoult’s law. This trend was also observed
in the signal responses of silage samples although it was not a linear correlation with the
concentrations of VFAs because mole fraction of water in the silage samples can be varied
by not only VFAs but also non-volatile compounds such as non-volatile lactic acid. In
contrast to the sample injection period (i.e., rising curve), the outputs at t4 and t5 showed
strong correlation with each VFA concentration (Figure 6). The reason for the different
output trends in the rising and decay curves in Figure 6 can be attributed partially to the
slow desorption of VFAs. According to the estimated diffusion time constant τs (Figure 7),
some of the VFAs obtained relatively large time constants than that of water, resulting in
the asymmetric responses of slow desorption VFAs.

In contrast to the above-mentioned VFAs, other VFA vapors obtained relatively small
τs (Figure 7), resulting in the symmetric responses (Figure S6). However, the responses to
the aqueous solutions of these VFAs also exhibit asymmetric behavior (Figure 6). Since the
asymmetric responses occur only in the presence of water vapor, VFAs in the receptor layer
would dissociate into ionic forms in the presence of water. The sensing responses to VFAs
in the presence of water can include the following reactions:

H2O (g) � H2O (s), (4)

R–CO2H (g) � R–CO2H (s), (5)
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R–CO2H (s) + H2O (s) � R–CO−
2 (s) + H3O+ (s), (6)

where g and s in parenthesis denote the molecule in the gas phase and in the solid phase
(i.e., in the receptor layer), respectively. The potential scheme is as follows (Figure 8):
(i) during injection process, the sorption of water and VFAs represented by Equations (4)
and (5) contributes to the deformation of a receptor layer, while the dissociation process
in Equation (6) does not affect the deformation (i.e., does not affect the signal response);
(ii) during the purge process, the concentrations of VFAs and water in the receptor layer
decrease because of the dissociation process in Equation (6), resulting in the slow desorption
of water and VFAs, i.e., a delay in the desorption.

In conclusion, we have demonstrated that an MSS array can discriminate silage
samples through their odors in terms of VFAs as indicators. Focusing on the relatively
slow desorption behaviors and dissociation nature of VFAs, the resultant large diffusion
time constants can be effectively utilized for the discrimination of silage samples. In other
words, we have shown that the sensing signal outputs of MSS in the relatively late period
in the purge process can be utilized for detecting, identifying, and monitoring various
targets in complex mixtures of odors, such as VFAs in silage. This approach should be
applicable to other targets such as agricultural and biological aqueous samples because
such samples tend to contain gas species with relatively slow desorption behavior. Further,
since nanomechanical sensors including MSS can utilize almost any material as a receptor
layer, one can select/design/synthesize receptor materials that exhibit distinct features in a
certain period during adsorption and/or desorption.
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Although the precise determination of the fermentation quality of silage requires not
only VFAs but also non-volatile lactic acid, total nitrogen, volatile basic nitrogen, and water
content [2], the amounts of VFAs in silage can provide additional information on feed
design to maintain the conditions of dairy cows; the amount of butyric acid is related
to the probability of ketosis occurrence as well as the activity of Clostridium. Moreover,
using precisely selected receptor materials, it has a possibility to measure the volatile basic
nitrogen through their odors. The decrease of moisture according to Raoult’s law can
also be detected by using hydrophilic receptors, as can be seen in Figure 4b. Therefore,
the artificial olfaction system may allow us to evaluate non-volatile components such as
lactic acid indirectly by measuring water contents. Machine learning may also support
such approaches by highlighting subtle features that may not necessarily appear at specific
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time points. It should be emphasized that the artificial olfaction system does not require
expensive instruments and pre-treatment, such as water extraction, which are used for the
conventional chemical analysis, and hence, it has a great potential for on-site evaluation of
silage fermentation quality.
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