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Abstract: Food safety is facing great challenges in preventing foodborne diseases caused by pathogenic
pollution, especially in resource-limited areas. The rapid detection technique of microorganisms, such
as immunological methods and molecular biological methods, plays a crucial key in timely bioanalysis
and disease treatment strategies. However, it is difficult for these methods to simultaneously meet
the criteria of simple operation, high specificity, and sensitivity, as well as low cost. Coconut water is
known as the “water of life” in Hainan. It is a refreshing and nutritious beverage which is widely
consumed due to its beneficial properties to health. Coconut water processing is an important pillar
industry in Hainan. The detection of pathogenic microorganisms, such as Escherichia coli, in coconut
water has become an important factor which has restricted the upgrading and development of this
industry. Based on the needs of industrial development, we developed a microbial photoelectric
detection system which was composed of a fluorescent probe detection reagent and a photoelectric
sensor detection device. This system combined microbial enzyme targets, selective fluorescent
substrate metabolism characteristics, and a photoelectric sensor signal transduction mechanism,
which produce a strong signal with a high signal-to-noise ratio. The microbial detection system
developed here has a simple structure, simple and convenient operation, short detecting time (≥2 h),
and high sensitivity (1 CFU/mL). This system may also enable early warning and monitoring
programs for other pathogenic microorganisms in order to promote the overall competitiveness of
the Hainan coconut water industry.

Keywords: Escherichia coli; fluorescent probe; photoelectric analysis; microbial photoelectric detection
system; Hainan coconut water

1. Introduction

Pathogenic microorganisms, such as parasites, bacteria, or viruses, pose a significant
threat by transmission to the public through contaminated meat, vegetables, or bever-
ages [1]. Common foodborne pathogens, including Escherichia coli, Staphylococcus aureus,
Bacillus, Listeria monocytogenes, Salmonella, Yersinia pseudotuberculosis, Campylobac-
ter, and so on [2,3], cause huge economic losses. For instance, it has been estimated that
there are 700,000 diseases in the Netherlands each year, of which the burden of foodborne
diseases kills at least 3800 disability-adjusted lives and leads to EUR 65 million in costs
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per year [4]. In addition, there are an estimated 1,500,000 foodborne diseases caused by
known/unknown pathogens in the UK each year according to the statistics [5,6]. Therefore,
it is urgent to develop a sensitive signal reporter with a one-step procedure that can be
employed in pathogen diagnosis [7].

Escherichia coli is one of the most well-adapted and pathogenically versatile bacterial
organisms. It causes a variety of human infections, including gastrointestinal illnesses and
extraintestinal infections. It is also part of the intestinal commensal flora of humans and
other mammals. The presence of E. coli not only affects the quality and taste of coconut
water but may also become a threat to human health [8–10].

At present, methods for the detection of pathogens mainly include microbial cul-
ture [11,12], immunological detection [13–15], molecular biological-based techniques [15–17],
metabolomics technology [15,18,19], and the use of biosensors [15,20]. Among them, the
methods based on microbial cultivation rely on the physical and chemical characteristics
of each bacterium. This method displays a low number of false positives, and it is simple
and easy to observe, but it is time-consuming and has low efficiency [12]. Immunology
methods are based on a specific recognition between antigen and antibody, and they are
the most widely used methods in food pathogen detection. This method is economical
and practical, but it has a high degree of cross-reaction [13]. Molecular biological methods
include nucleic acid hybridization, gene recombination, PCR technology, etc., which are
often suitable for the detection of uncommon or new pathogenic microorganisms. These
methods are rapid, sensitive, and specific, but they require a high level of experimental de-
sign or complicated operational procedures [16,21–24]. Metabolomics is a high-resolution
analytical method that obtains detailed information on various metabolites produced in
biological systems. However, significant consideration is needed for the selectivity and
sensitivity of this approach, and aspects such as metabolite recognition and annotation
often remain a challenge [18,25,26].

Biosensor methods based on small-molecule fluorescent probes are of interest because
of their high sensitivity and selectivity, as well as their potential for automated detection.
Fluorescent probes are useful in targeting particular enzymes of interest, such as proteases
and caspases [27,28]. Fluorescent probes targeting enzymes are small molecular com-
pounds that can react with specific enzymes and emit fluorescence. These compounds can
accurately and rapidly bind or react with specific regions of the targeted enzymes [29–32].

In addition, photoelectric biosensors—devices that can sense and convert various
measured signals—have been developed and improved for over a decade [33]. Due to
their small size, high sensitivity, and high precision, nanosensors have attracted extensive
attention in recent years [34,35], and they are used in numerous fields, especially for the
detection of pathogenic microorganisms [1,36–39].

In this study, we created a microbial photoelectric detection system that combines a
fluorescent probe with a photon-sensing technology to monitor Escherichia coli via fluores-
cence and color changes caused by microbial metabolism using a fluorescence photoelectric
detection system. The instrument is suitable for the detection of E. coli, Salmonella, and
other pathogenic microorganisms. The system was developed to analyze data in real time
and provide an early warning for the control of pathogenic microorganisms.

2. Materials and Methods
2.1. Materials and Chemicals

The strains used in the experiment were purchased from the National Culture Preserva-
tion Center: Escherichia coli (CICC 10389), Staphylococcus aureus (CICC 10384), Salmonella typhi
(CICC 21484), and Pseudomonas aeruginosa (CICC 21625). The coconut water samples were ob-
tained from Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences.

2.2. Microbial Photoelectric Detection System

The microbial photoelectric detection system is an analytical instrument that integrates
microbial culture medium and detection system. The microbial photoelectric detection
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system consists of four modules based on different hardware functions (Figure 1), including
a main control module, light source module, temperature control module, and detection
module. The temperature control module provides the most suitable incubation temper-
ature for the microbial tube. Fluorescence or colorimetric detection is then performed
based on the metabolic characteristics of microorganisms during their growth and the
corresponding signaling molecules. After the microbial photoelectric detection system is
assembled, accuracy verification is performed between different channels of the instrument
and between different instruments to ensure the accuracy of the instrument.
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Figure 1. Overall design block diagram of microbial photoelectric detection system.

2.3. Optimization Method

A series of experiments were used to optimize the type and concentration of inhibitors
in the medium formulation to improve the specificity of the method. Firstly, by comparing
the inhibitory ability of multiple inhibitors on different strains, suitable inhibitors were
screened. The concentration of each component in the medium was then determined using
orthogonal experiments. At the same time, the plate method was used to confirm the culture
concentration in each experiment to ensure the suitability of the medium formulation.

2.4. Bacterial Detection with Microbial Photoelectric Detection System

Different coconut water samples containing 0–106 CFU/mL of bacteria were pre-
pared. The coconut water samples were obtained from Coconut Research Institute, Chinese
Academy of Tropical Agricultural Sciences. The bacterial detection method was as follows:
First, the initial bacterial solution was prepared, and then the bacterial solution was gradi-
ent diluted with sterilized coconut water. Then, 1 mL of sample was injected into the tube
with a sterile syringe, shaken well, placed in a microbial photoelectric detection system,
and programmed to 37 ◦C for 16 h (Figure 2). At the same time, 1 mL of samples of each
concentration was taken and plate-coated. Each test was performed in parallel and was
repeated twice.
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Figure 2. Detection process and principle schematic diagram of the microbial photoelectric
detection system.

3. Results and Discussion
3.1. Verification of the Microbial Photoelectric Detection System

The microbial photoelectric detection system quantifies microorganisms by detecting
the light signal generated by the measured sample during growth. In this study, we aimed
to develop a multichannel biosensor for the simple, rapid, and highly sensitive detection of
Escherichia coli.

The working principle of the microbial photoelectric detection system can be summa-
rized as follows: After culturing for a period of time in the microbial photoelectric detection
system, the glucuronidase produced by Escherichia coli will hydrolyze the β-uronic acid
bond of 4-methylumbellifery-β-D-glucuronide (MUG), which releases 4-methylumbelliferone
to produce blue-white fluorescence under a 365 nm ultraviolet lamp (Figure 2) [40,41].
Theoretically, the higher the concentration of the pathogen of interest in the sample, the
shorter the time to detect the fluorescence. Finally, the inflection point time of detected
fluorescence and the corresponding amount of bacteria are measured to quantitatively
detect Escherichia coli.

As the microbial photoelectric detection system consists of 16 channels, we tested
and compared the light source consistency of each channel to ensure the accuracy and
repeatability of the test results. As shown in Figure 3A, we tested different channels of the
instrument using the same concentration of E. coli solution of 103 CFU/mL, and a good
consistency was obtained between the different channels. As there was more than one
microbial photoelectric detection system used in the experiment, we selected three of them
for comparison, as shown in Figure 3B, and although there were slightly different outputs,
all were within acceptable limits.

3.2. Optimization Results

In this study, we optimized components in the medium to ensure the specificity of
the method. First, we searched for selected inhibitors, including sodium deoxycholate,
bovine bile powder, and neomycin [42–44]. It was found that sodium deoxycholate could
inhibit miscellaneous bacteria well and had the weakest inhibitory effect on the target strain
(Figure 4A). In the next step, we optimized certain experimental conditions, including the
concentration of sodium deoxycholate. In this regard, different concentrations of sodium
deoxycholate were used in the media formulations, and the experimental results showed
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that there was no curve growth in the blank test without E. coli, and the shape of the growth
curve of E. coli was the best when the concentration of sodium deoxycholate was 1.1 g/L
(Figure 4B). The best combination in these tests was determined to be the final formulation
of Escherichia coli.
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Figure 4. Optimization of media formulations. (A) shows that sodium deoxycholate works best.
(B) shows that sodium deoxycholate had the lowest inhibitory effect on E. coli at 1.1 g/L.

We tested the performance of this formulation using the microbial photoelectric detec-
tion system. As shown in Figure 5A, E. coli showed a strong fluorescence signal compared
to S. aureus, S. typhi, and P. aeruginosa, while the other three bacteria had little to no ob-
servable fluorescence signal, indicating good specificity of the assay. To further verify the
anti-interference properties of the modified formulation, E. coli was mixed with S. aureus
and S. typhi. As shown in Figure 5B, the other bacteria did not interfere, which again indi-
cates that the assay has good specificity. As shown in Figure 5C, the minimum detection
limit of E. coli reached 1 CFU/mL, indicating the high sensitivity of this detection method.

3.3. Evaluation of the Microbial Photoelectric Detection System Technology

In order to obtain the standard curve equation for the detection of E. coli in coconut
water, we selected a bacterial solution with an E. coli concentration of 106–10−1 CFU/mL
after dilution to conduct the experiment. The data obtained from the above tests were
plotted with the time (h) as the horizon coordinate and the logarithm of bacterial count
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(CFU/mL) −lg CFU/mL as the vertical coordinate, and the generated standard curve
equation was lg C = −0.8460 t + 8.6711 (lg C is lg CFU/mL). The R2 of the standard curve
equation is 0.9856 (Figure 6), which is close to 1, indicating that the linear fitting of the
equation is good, and it can be used as the standard equation.
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Under optimized conditions, the ultra-sensitive and quantitative detection capabili-
ties were verified. Two sets of E. coli solutions of different concentrations were prepared
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using the gradient dilution method, and for comparison, two sets of experiments were
evaluated according to the national standards [45,46]. In addition, samples in both groups
used two instruments to evaluate the consistency and reproducibility of the method. The
results obtained using the national standard method for gradient dilution and our mi-
crobial photoelectric detection system, shown in Table 1 (the acceptance criteria are re-
ferring to GB/T 6379, ISO16140, and AOAC), demonstrated that both methods meet the
acceptance standard.

Table 1. Acceptance results of two groups obtained using national standard method and microbial
photoelectric detection system.

Parameters Acceptance Standard Group 1
Acceptance Results Group 1 Conclusions Group 2

Acceptance Results Group 2 Conclusions

accuracy ≥95% 100% qualified 100% qualified
sensitivity ≥95% 100% qualified 100% qualified
specificity ≥98% 100% qualified 100% qualified

false negative <5% 0% qualified 0% qualified
false positive <0% 0% qualified 0% qualified

In addition, we conducted a linear comparison on the bacterial counts measured by
the two methods. As addressed in Figure 7A,B, the specific linear relationship showed
that both of the correlation coefficients were 0.999. This results, once again, validated that
the microbial photoelectric detection system measurements meet the national standard.
The instrument consistency measurement with different microbial photoelectric detection
systems was also assessed (Figure 7C,D), and a desired result was achieved. We also
observed a good reproducibility result, as shown in Figure 7E,F. Thus, we can conclude that
the microbial photoelectric detection systems show good consistency and reproducibility
at low and high concentrations, which make them suitable for the detection of E. coli in
coconut water.

At the same time, we compared the microbial photoelectric detection system with the
standard plate counting method in aspects including the detection time, assay procedure,
flux, and cost (Table 2). A comprehensive analysis shows that the microbial photoelectric
detection system has obvious advantages in all aspects of performance.

Table 2. Performance comparison between microbial photoelectric detection system and standard
plate count method.

Methods Detection Time Assay Procedure Assay Flux Test Cost (RMB)

microbial photoelectric detection system ≥2 h one-step 16 samples 6
standard plate count method ≥24 h multi-step 1 sample 2–3

3.4. Method Assessment in Real Sample

We validated the ability of the microbial photoelectric detection system to detect E.
coli in coconut water using 19 real samples. As shown in Figure 8, samples 1, 2, 8, and 16
are positive, while the rest of the samples are negative. At the same time, the number of E.
coli colonies obtained using plate count when diluting the actual sample (Table S1 in the
Supplementary Material) was 106 CFU/mL, which is in the same order of magnitude as
from the microbial photoelectric detection system method. Therefore, it can be concluded
that the microbial photoelectric detection system can be used to, in fact, detect E. coli in
coconut water.
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4. Conclusions

In this study, we developed a microbial photoelectric detection system to detect
Escherichia coli in coconut water. The standard curve was established according to the
plate counting method, which was performed in accordance with the national standard.

The standard curve lgC = −0.8460 t + 8.6711 was established and verified through a
series of experiments. The results showed that the national standard method for coating
plate detection and the microbial photoelectric detection system were consistent, suggesting
a high accuracy rate of this method. In addition, when different instruments were used
for testing, good consistency and reproducibility were achieved. The results of specificity
testing showed that Escherichia coli could be detected in coconut water without interfer-
ence when it was mixed with other bacteria (Staphylococcus aureus, Salmonella typhi, and
Pseudomonas aeruginosa). Moreover, the instrument was highly sensitive, with a LOD of
1 CFU/mL achieved. When a real coconut water sample was used, the detection capac-
ity of the microbial photoelectric detection system was in the same order of magnitude
as the result calculated from the MUG plate count, indicating that the microbial photo-
electric detection system can precisely detect Escherichia coli in coconut water with high
reference significance.

Comparing four commonly used microbial detection technologies, Multiskan™ FC,
QPCR, ATP Portable Fluorescent Biochemical Rapid Analyzer, and Easicult Combi, the mi-
crobial photoelectric detection system achieved higher sensitivity than the ATP Portable Flu-
orescent Biochemical Rapid Analyzer (100 CFU/mL) and Easicult Combi (1000 CFU/mL).
Despite the current detection throughput being less than that of QPCR (96 samples) and
Multiskan™ FC (96 samples),we will continue to optimize according to market demand. It
is worth mentioning that this system has a significant advantage in terms of detection cost.

Therefore, we can conclude that the microbial photoelectric detection system can
be applied to detect the presence and content of Escherichia coli in coconut water with
a simpler and faster procedure than the traditional detection methods; it also showed
excellent performance in accuracy, repeatability, specificity, and sensitivity. This method
can be tuned to enable early warning and monitoring programs for other pathogenic
microorganisms in order to promote the overall competitiveness of the Hainan coconut
water industry. In the future, we will develop detection systems for Pseudomonas aeruginosa,
Salmonella, and Clostridium perfringens to expand the detection range of pathogenic bacteria.

In the future, we will continue to improve and optimize the microbial photoelectric
detection system according to market demand, so that it can play a valuable role in mi-
crobial detection, including food safety, human public health, nutrition, and health and
disease prevention.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13020150/s1, Table S1: Method Assessment in Real
Sample between Instrument detection and Flat panel detection.
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