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Abstract: The hollow-core fiber-based sensor has garnered high interest due to its simple structure
and low transmission loss. A new hollow-core negative-curvature fiber (HC-NCF) sensor based on
the surface plasmon resonance (SPR) technique is proposed in this work. The cladding region is
composed of six circular silica tubes and two elliptical silica tubes to reduce fabrication complexity.
Chemically stable gold is used as a plasmonic material on the inner wall of the sensor structure
to induce the SPR effect. The proposed sensor detects a minor variation in the refractive indices
(RIs) of the analyte placed in the hollow core. Numerical investigations are carried out using the
finite element method (FEM). Through the optimization of structural parameters, the maximum
wavelength sensitivity of 6000 nm/RIU and the highest resolution of 2.5 × 10−5 RIU are achieved
in the RI range of 1.31 to 1.36. In addition, an improved figure of merit (FOM) of 2000 RIU−1 for
Y-polarization and 857.1 RIU−1 for X-polarization is obtained. Because of its simple structure, high
sensitivity, high FOM, and low transmission loss, the proposed sensor can be used as a temperature
sensor, a chemical sensor, and a biosensor.

Keywords: photonic crystal fibers; hollow core; negative curvature; surface plasmon resonance;
gold; sensitivity

1. Introduction

In recent years, the optical fiber has emerged as a feasible option for sensing applica-
tions because of its small size, precision, remote sensing, and high sensitivity [1]. There are
numerous versions of optical fibers, including single-mode fibers [2], multimode fibers [3],
and micro- and nanostructured fibers [4]. Different types of sensing approaches are used in
an optical fiber, including Bragg gratings, long-period gratings, interferometers, surface
plasmon resonance (SPR), and fluorescence [5]. Yang et al., developed a long-period fiber
grating (LPFG) sensor for the rapid detection of Staphylococcus aureus bacteria. Bacterial
adhesion and sensitivity are enhanced by poly-electrolyte coatings. This sensor has ob-
tained a sensitivity of 0.478 ± 0.005 nm/log (colony-forming unit/mL) at a short detection
time of 30 min [6]. Ivanov et al., proposed a thin-core optical fiber sensor coated with
polymer monolayers. When the layer thickness increased, the resonance frequency shifted,
and this structure has been used as a chemical sensor to measure the pH level [7].

The SPR-based optical fiber sensing approach is more feasible than other conventional
prism-based sensing methods due to their small size, real-time sensing, high sensitivity,
and high accuracy [8,9]. A surface plasmon is produced when guided light of a specific
wavelength interacts with a metal surface. As a result, the core develops a leaky mode
that transfers the partial energy from core mode to plasmon mode. That particular wave-
length is called the resonance wavelength, and this state is known as the phase-matching
condition [10]. This SPR technique detects the minute RI variation near the metal surface.
Different types of metallic coatings are used in SPR-based sensors. In optical-fiber-based
sensors, noble metals are coated on the lateral surface of the fiber to realize the SPR ef-
fect [11], while in nanostructured fibers, metallic arrays are developed in the fiber tip, which
enhances the sensor performance by improving the light–matter interaction [12].
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The performance of the sensor is strongly influenced by the SPR effect when plasmonic
materials are used. In general, the SPR effect is induced by coating or filling the sensor
structure with noble metals. Gold [13] and silver [14] are the two common noble metals
that are most frequently used in SPR sensors because of their sharp resonance peak, low
material loss, and excellent sensitivity. Many researchers prefer gold over silver due to its
higher chemical stability and biocompatibility. The two basic types of sensing techniques
that can be used to find RI variations are internal and external sensing techniques. In the
external sensing method, the analyte is placed on the outer surface of the sensor structure,
which leads high transmission loss. To overcome this issue, the internal sensing method is
used, in which the analyte is infiltered inside a hollow-core fiber, and this method reduces
transmission loss and improves sensitivity by having light pass through the hollow core.

The photonic crystal fiber (PCF) is another form of optical fiber. Unlike conventional
fibers, the PCF has unique properties, such as a flexible structure, strong nonlinearity, high
birefringence, low transmission loss, and control sensing [15]. The limitations of conven-
tional fiber sensors are overcome by combining PCFs with SPR techniques. Compactness
and performance tuning using structural parameters of the PCF are the key benefits of
SPR-based PCF sensors [16]. Depending on the guiding mechanism, the PCF has been
categorized into two major types: solid-core PCF and hollow-core PCF. In solid-core fibers,
light is guided by a total internal reflection method and the hollow-core fiber (HCF) drives
the light inside the air core using the photonic bandgap method [17].

In an HCF, lights are guided inside the hollow core, which reduces transmission loss,
which provides better accuracy and a wide transmission band [18]. In an HCF, the central
air core is encased by air tubes of varying wall thicknesses. Momota et al. designed a
circular-lattice hollow-core SPR-based refractive index sensor in which silver was used
as a plasmonic material to induce the SPR effect, and it was placed on the outer surface
of the structure. The highest wavelength sensitivity of 4200 nm/RIU was obtained for
analyte RI value ranges between 1.33 and 1.37 [19]. Nazeri et al., developed a hollow-
core photonic crystal fiber sensor for gas detection. This sensor obtained a maximum
wavelength sensitivity of 4629 nm/RIU for the RI range of 1.0000347–1.000436 [20].

Hollow-core negative-curvature fibers (HC-NCFs) are another form of HCFs with a
simple cladding region consisting of a single layer of circular or elliptical air tubes [21]. In
HC-NCFs, the surface normal to the boundary is in the opposite direction from the core,
which minimizes the coupling between core and cladding, which results in minimal trans-
mission loss [22]. This type of fiber is used in remote sensing, chemical applications [23],
and biosensing applications [24]. The HC-NCF has many advantages over the HCF, which
include low transmission loss, a simple structure, and a large bandwidth.

Qiu et al., proposed a hollow-core negative-curvature fiber based on the surface
plasmon resonance method for refractive index sensing. The cladding region was composed
of eight circular silica tubes, two of which were filled with gold to produce the SPR effect.
The optimum wavelength sensitivity of 5700 nm/RIU was achieved for analytes with RI
values between 1.2 and 1.34 [25].

In this paper, a new HC-NCF sensor based on the SPR technique is proposed. A
minimal number of silica tubes, such as six circular and two elliptical silica tubes, were
preferred in the cladding region, which minimized fabrication complexity. Gold was
used as a plasmonic material to realize the SPR effect. The proposed sensor is capable of
detecting the RI variation in the substance present in the hollow-core region. Numerical
analyses were carried out using the finite element method (FEM) in the frequency domain,
and the confinement loss obtained for the proposed SPR sensor was 279.69 dB/cm and
376.83 dB/cm for X-polarization and Y-polarization, respectively. For the RI range of 1.31 to
1.36, a measured wavelength sensitivity of 6000 nm/RIU and a resolution of 2.5 × 10−5 RIU
were obtained by the optimization of structural parameters. The proposed sensor can be
used as a temperature sensor, a chemical sensor, a biosensor, and a gas sensor due to its
simple structure, high sensitivity, high FOM, and low transmission loss.
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2. Materials and Methods

The graphical representation of the proposed SPR-based HC-NCF sensor structure
is illustrated in Figure 1a. The cladding region was composed of six circular silica tubes
and two elliptical silica tubes to reduce fabrication complexity. A higher birefringence was
generated by using elliptical tubes; their sensing capabilities outperform those of circular
ones [26]. This birefringence concept facilitates the fiber to function as a polarization filter.
The analyte was filled in that structure, and it was used as a sensor to realize the resonance
shift of X- and Y-polarization in different wavelengths. To generate birefringence, circular
silica tubes with two different diameters, such as d1 of 3.4 µm and d2 of 1 µm, and an
elliptical silica tube with major (a) and minor (b) axis diameters of 3.4 µm and 2.8 µm were
used. The significant birefringence of the core separates the X- and Y-polarized modes [27].
For all circular and elliptical silica tubes, the same 0.1 µm thickness (tsilica) was maintained.
A 0.2-µm-thick (tgold) gold layer was coated on the inner wall of the structure to induce
the SPR effect, because gold is chemically balanced and biocompatible. The outer diameter
of the sensor structure was 9.8 µm, with a 0.1 µm thickness. The length of the fiber sensor
was taken as 1 mm, because in photonics, the coupling length between two modes is
below 6 mm [28]. The fabrication of HC-NCFs is similar to that of conventional PCFs.
The two-stage stack-and-draw technique [29] was used to fabricate the proposed sensor.
In the first stage, capillaries and spacing elements were stacked into a small jacket tube
to create a preform, which was then pulled into canes. The second stage preform was
made by inserting the cane into a large tube with an outer diameter of 9.8 µm. Different
gas pressures were used in the preform to obtain a different size of hollow tubes. After
assembling the fiber framework, a 0.2-µm-thick layer of gold was deposited on the inner
wall of the fiber using the electroless plating technique [30] or the high-pressure chemical
vapor deposition method [31]. The analyte was injected into the sensor using an infiltration
method [32].
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Figure 1. (a) Graphical representation of the proposed HC-NCF sensor. (b) Dispersion relations of
the core-guided mode as a function of wavelength. Electric field distribution of (c) X-polarized mode,
(d) Y-polarized mode, and (e) plasmon mode.
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Numerical analyses were carried out using the finite element method (FEM) in the
frequency domain. The amount of energy reflected was further decreased by applying a
scattering boundary condition to the outer surface of the structure.

The dispersion relationship between the real and the imaginary part of the effective
mode index (neff) with respect to the wavelength is shown in Figure 1b. The effective index
of the real part decreased when the wavelength increased. A sharp drop in the real part of
X- and Y-polarization indicates that light in the core mode is coupled to the plasmon mode.
The resonance peak is the point at which the effective index of imaginary value reaches
its highest value. Y-polarization reached its resonance peak at a wavelength of 1.42 µm,
whereas X-polarization was minimal at this time, which shows that only Y-polarization
propagated at this time, while X-polarization diminished. X-polarization reached its
maximum at 1.44 µm; however, Y-polarization was attenuated in this situation. Figure 1c–e
represents the electric field distribution of the X-polarized mode, the Y-polarized mode, and
the plasmon mode, where incident light was guided via the core. The maximum amount
of energy was transferred from core mode to plasmon mode when the phase-matching
condition was achieved.

The proposed HC-NCF sensor was made up of pure silica, and the RI of pure silica
was obtained using the Sellmeier equation [10]:

n(λ)2 = 1 +
A1λ2

λ2 − λ2
1
+

A2λ2

λ2 − λ2
2
+

A3λ2

λ2 − λ2
3

(1)

where A1 = 0.6961663, A2 = 0.4079426, A3 = 0.897479, λ1 = 0.068404, λ2 = 0.1162414, and λ3
= 9.896161 are the Sellmeier constants and λ is the operating wavelength.

The Drude model was used to estimate the wavelength-dependent dispersion phe-
nomenon of gold [10] and is expressed by

ε = 1 −
ω 2

P
ω2 + iωΓP

(2)

where the plasma frequency ωP = 9.06 eV and the damping rate ΓP = 0.07 eV.
The confinement loss refers the amount of light that leaks when light is guided in the

core region [33]. The following equation is used to calculate the confinement loss:

Confinement loss = 8.686 × 2Π
λ

× Im(neff)× 104(dB/cm), (3)

where Im (neff) is the imaginary part of the effective mode index and λ is the
operating wavelength.

3. Results

The performance if the proposed SPR-based HC-NCF sensor was evaluated by opti-
mizing geometrical parameters, such as the gold layer thickness and the diameter of the
circular and elliptical silica tubes. The sensor’s performance was enhanced when these
parameters were optimized. The impact of each parameter was investigated by individually
varying it, while maintaining the other structural elements constant, and a constant RI
value of 1.33 was used for the analyte throughout the optimization procedure.

The gold layer thickness, as well as the resonance wavelength, had a substantial
impact on the sensor’s performance. The effects of various gold layer thicknesses, including
0.15 µm, 0.2 µm, and 0.25 µm, were analyzed, Figure 2a,b shows the confinement loss
spectrum for X-polarization and Y-polarization. The resonance peak shifted to shorter
wavelengths when the gold layer thickness increased. The best sensitivity was obtained
by using the strongest resonance peak, which could be seen at a thickness of 0.2 µm. The
effectiveness of a sensor is dependent on its sensitivity. The following expression can be
used to calculate the sensor’s wavelength sensitivity [10]:
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sλ =
∆λPeak

∆na
(nm/RIU) (4)
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Figure 2. Confinement loss characteristics for different gold layer thicknesses for (a) X-polarization
and (b) Y-polarization.

The circular and elliptical silica tube diameter plays a vital role in the sensor’s sensing
performance because these silica tubes create the path between core and analyte. In the
cladding region, elliptical as well as circular silica tubes combine to form an anisotropic
shape. An anisotropic shape provides a strong negative curvature and a node-free anti-
resonance element [34], and this structure also enhances sensor performance. Figure 3a,b
depicts the loss spectrum for different values of d1 for X-polarization and Y-polarization.
The core effective area decreased as the silica tube radius increased, which in turn decreased
the core strength. This shows that as the silica tube diameter increases, the resonance peak
shifts to longer wavelengths. At a diameter of 3.4 µm, a sharp peak was obtained for both
polarizations and was used for further analysis.
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Figure 3. Confinement loss characteristics for different values of d1 for (a) X-polarization and
(b) Y-polarization.
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The loss spectrum for various major and minor axes of the elliptical tube for X-
polarization and Y-polarization is shown in Figure 4a,b. The core effective area decreased
as the elliptical tube’s major axis increased, which in turn decreased the core strength. This
shows that as the elliptical tube major and minor axes increase, the resonance peak shifts to
longer wavelengths. A sharp loss peak was observed for both polarizations at 3.4 µm for
the major and 2.8 µm for the minor axis.
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Figure 4. Confinement loss characteristics of different major and minor axes for (a) X-polarization
and (b) Y-polarization.

To evaluate the proposed sensor, the confinement loss properties of various analytes,
which had a range of 1.31 to 1.36 with a step value of 0.01, were analyzed. Figure 5a,b depicts
the loss spectrum for various analyte RI values for X-polarization and Y-polarization.
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Figure 5. Confinement loss characteristics with respect to wavelength for RI ranges of 1.31–1.36 for
(a) X-polarization and (b) Y-polarization.

As shown in Figure 5a,b, the resonance peak moved to longer wavelengths as the RI
value increased. For various RI values, Y-polarization also exhibited greater confinement
loss. The maximum confinement loss of 376.83 dB/cm was found for an analyte RI value
of 1.32 at a resonance wavelength of 1.36 µm. In contrast to Y-polarization, X-polarization
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experienced less confinement loss. The maximum confinement loss of 279.69 dB/cm was
observed at a resonance wavelength 1.38 µm, where the RI value was 1.32. Table 1 shows
the performance analysis results of the proposed sensor for different analyte RI values for
X- and Y-polarization.

The proposed sensor’s resolution was a measurement of its capacity to identify even
the slightest fluctuations in the analyte RI. The following expression can be used to calculate
the resolution of the sensor [10]:

Resolution = ∆na ×
∆λmin
∆λPeak

(RIU) (5)

where ∆λmin represents the minimum spectral resolution, and this was taken as 0.1 nm.
∆λpeak is the peak wavelength shift, and ∆na is the change of the analyte RI. The highest
resolution measured using this sensor was 2.5 × 10−5 RIU.

The figure of merit (FOM) is another significant sensor characteristic. This is a
wavelength-dependent parameter, and it is defined as the ratio between the sensitiv-
ity and the full width half maximum (FWHM), which was obtained from the following
equation [10]:

FOM =
S (nm/RIU)

FWHM (nm)
(RIU−1) (6)

Table 1. Sensitivity analysis for different analyte RI values.

Refractive
Index

X-Polarization Y-Polarization Refractive
Index

Resolution
(RIU)

Sensitivity
(nm/RIU)

Resonance
Wavelength

(µm)

Confinement
Loss

(dB/cm)
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FOM

(RIU−1)
Resonance

Wavelength
(µm)

Confinement
Loss

(dB/cm)
FWHM

(nm)
FOM

(RIU−1)

1.31 1.34 169.34 12 - 1.32 283.07 04 - 2.5 × 10−5 -
1.32 1.38 279.69 05 800 1.36 376.83 02 2000 1.67 × 10−5 4000
1.33 1.44 276.90 09 666.7 1.42 366.07 03 2000 1.67 × 10−5 6000
1.34 1.5 270.94 08 750 1.48 292.27 05 1200 1.67 × 10−5 6000
1.35 1.56 274.13 07 857 1.54 266.36 05 1200 1.67 × 10−5 6000
1.36 1.62 262.97 09 666.7 1.6 250.58 07 857.1 - 6000

The sensitivity of the proposed sensor for X- and Y-polarization is depicted in Figure 6.
It shows that a maximal sensitivity of 6000 nm/RIU was obtained in the RI range of 1.31 to
1.36. The proposed sensor performed better than those described in the recent literature.
Table 2 shows a performance comparison between the proposed sensor and the most
recent publications.
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Table 2. Comparative study of the sensor’s performance and sensors in other recent published work.

Ref. Structures Material Used Sensitivity (nm/RIU) RI Range

[19] Hollow-core PCF Silver 4200 1.33–1.37
[20] Hollow-core PCF - 4629 1.000034–1.000449
[25] Hollow-core NCF Gold 5700 1.2–1.34
[35] Hollow-core graded-index fiber Silver 4350 1.38–1.49
[36] Hollow-core micro-structured fiber - 3000 1.325–1.36
[37] Negative-curvature HC fiber - 4411 1.33–1.39

Proposed work Hollow-core NCF Gold 6000 1.31–1.36

Comparing the obtained result with experimentally investigated HCF-based sen-
sors, the proposed sensor performed better than previously reported sensors in terms of
sensitivity, FOM, resolution, and confinement loss [38,39].

4. Conclusions

A new SPR-based hollow-core negative-curvature fiber (HC-NCF) sensor was pro-
posed. The cladding region was formed by six circular silica tubes and two elliptical
silica tubes to reduce fabrication complexity. Both elliptical and circular silica tubes were
combined to generate an anisotropic shape, which outperformed an isotropic sensor in
terms of performance. A high birefringence was created using two different sizes of circular
silica tubes. Chemically stable gold was used as a plasmonic material on the inner wall
of the sensor structure to induce the SPR effect. The proposed sensor detected the minor
variation in the RI of the analytes placed in the hollow core. Numerical analyses were
carried out using the FEM in the frequency domain, and the confinement loss obtained
for the proposed SPR sensor was 279.69 dB/cm for X-polarization and 376.83 dB/cm for
Y-polarization. The highest resolution of 2.5 × 10−5 RIU and the maximum wavelength
sensitivity of 6000 nm/RIU were accomplished in the RI range of 1.31 to 1.36 through
the optimization of structural parameters. In addition, a FOM value of 2000 RIU−1 for
Y-polarization and 857.1 RIU−1 for X-polarization was realized. Due to high confinement
loss and FOM, Y-polarization was used for better performance of the proposed sensor.
Because of its simple structure, high sensitivity, high FOM, and low transmission loss, this
sensor can be used as a temperature sensor, a chemical sensor, and a biosensor.
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