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Abstract: Accurate and efficient classification and quantification of CD34+ cells are essential for the
diagnosis and monitoring of leukemia. Current methods, such as flow cytometry, are complex, time-
consuming, and require specialized expertise and equipment. This study proposes a novel approach
for the label-free identification of CD34+ cells using a deep learning model and lens-free shadow
imaging technology (LSIT). LSIT is a portable and user-friendly technique that eliminates the need
for cell staining, enhances accessibility to nonexperts, and reduces the risk of sample degradation.
The study involved three phases: sample preparation, dataset generation, and data analysis. Bone
marrow and peripheral blood samples were collected from leukemia patients, and mononuclear
cells were isolated using Ficoll density gradient centrifugation. The samples were then injected
into a cell chip and analyzed using a proprietary LSIT-based device (Cellytics). A robust dataset
was generated, and a custom AlexNet deep learning model was meticulously trained to distinguish
CD34+ from non-CD34+ cells using the dataset. The model achieved a high accuracy in identifying
CD34+ cells from 1929 bone marrow cell images, with training and validation accuracies of 97.3%
and 96.2%, respectively. The customized AlexNet model outperformed the Vgg16 and ResNet50
models. It also demonstrated a strong correlation with the standard fluorescence-activated cell
sorting (FACS) technique for quantifying CD34+ cells across 13 patient samples, yielding a coefficient
of determination of 0.81. Bland–Altman analysis confirmed the model’s reliability, with a mean
bias of −2.29 and 95% limits of agreement between 18.49 and −23.07. This deep-learning-powered
LSIT offers a groundbreaking approach to detecting CD34+ cells without the need for cell staining,
facilitating rapid CD34+ cell classification, even by individuals without prior expertise.

Keywords: CD34+ classification; lens-free shadow imaging; Cellytics; artificial intelligence; deep
learning; label-free cytometry; leukemia diagnosis; point-of-care diagnosis

1. Introduction

Cell markers are proteins, glycosylations, or other biological components essential for
the identification and classification of different cell types [1,2]. Interactions between cell
surface epitopes and receptors or ligands can be used to confirm infection states or diagnose
diseases by measuring the expression of specific markers [3]. Among these markers, the
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cluster of differentiation (CD) marker CD34 is employed to identify hematopoietic stem
cells [4]. Stem cells in the bone marrow can develop into red blood cells, white blood
cells, or platelets. CD34, a glycoprotein, is primarily expressed in hematopoietic stem
cells, constituting 1–3% of normal bone marrow and 0.01–0.1% of white blood cells in the
peripheral blood [5]. CD34 is expressed primarily in the earliest stages of hematopoietic
stem cell development, and its expression decreases as the cells mature [6]. Detection of
CD34+ cells, cells expressing CD34, is crucial for monitoring diseases such as leukemia and
hematopoietic stem cell transplantation [4,7,8]. Dysregulated proliferation at any stage of
hematopoietic cell differentiation can lead to the abnormal accumulation of CD34+ cells in
the bone marrow or peripheral blood, making these markers particularly significant for the
diagnosis of diseases such as leukemia, characterized by abnormal growth [9].

The CD34+ cell classification is important for the diagnosis of leukemia for several
reasons. First, it serves as a valuable tool for distinguishing between various leukemia types,
including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Second, it
provides critical insights into the prognosis of leukemia patients, with higher percentages
of CD34+ cells in AML patients correlating with poorer outcomes than those with lower
percentages [10]. Thirdly, CD34+ cell classification plays a pivotal role in monitoring the
response of leukemia patients to treatment [11].

Leukemia is diagnosed when more than 20% of immature cells (blasts) in the bone
marrow contain the CD34+ marker [12–14]. The percentage of CD34+ cells exhibits notable
variation, ranging from 40 to 60% in AML and 70% or more in pediatric B-cell precursor
acute lymphoblastic leukemia (ALL) to approximately 0–46% in T-cell acute lymphoblastic
leukemia [10,15,16]. Moreover, CD34+ is a crucial indicator for determining the timing of
hematopoietic stem cell collection for leukemia treatment [17–21]. Treatment strategies
for patients with leukemia rely on multiple factors, including the disease subtype, overall
patient health, and donor availability. Hematopoietic stem cells, sourced from either a
donor or the patient’s peripheral blood or bone marrow, are harvested and subsequently
transplanted. Given the low concentration of these cells in the source material, drugs such
as granulocyte colony-stimulating factor (G-CSF or GM-CSF) are administered to stimulate
their proliferation over 3 to 5 days [22,23]. The stem cells are then harvested via a central
venous catheter or a large arm vein over a span of 2 to 3 days. Successful transplantation
mandates a minimum count of 2 × 106/kg hematopoietic stem cells [24]. Therefore,
continuous cell counting using flow cytometry is performed to assess the suitability of the
samples for transplantation. To accurately determine the number of hematopoietic stem
cells, the number of cells expressing CD34+ must be assessed. As a result, continuous
cell counting using flow cytometry is conducted to assess the suitability of the sample
for transplantation. Therefore, the precise quantification of CD34+ cells is of the utmost
importance for the diagnosis and treatment of leukemia.

Flow cytometry is the gold standard method for CD34+ cell measurement, which uti-
lizes lasers to assess cell characteristics using scattering and fluorescent antibodies [25–27].
Typically, this technique involves the binding of specific fluorescent markers to cells to
quantify the desired cell population [28,29]. Effective implementation of flow cytometry
requires a comprehensive understanding of cell surface antigens, antibody responses, and
fluorescent conjugate synthesis, all of which require specialized knowledge of advanced
fluorescent staining techniques. To ensure sample reliability, the analysis is conducted
on individual cells surpassing a predefined threshold, contributing to the time-intensive
nature of the preparation and measurement processes. Flow cytometry is a complex tech-
nique requiring trained personnel and calibrated equipment. Qualified individuals are
essential for supervising the various stages of the instrument’s operation, and discrepancies
in the interpretation of results between different laboratories are often observed [30,31].
Furthermore, the flow cytometry instruments are bulky and expensive.

Various compact devices have been developed to overcome these limitations and offer
innovative solutions. For example, NanoEntek introduced ADAM2, which uses a cell chip
to measure CD34+ cells [32,33]. ADAM2 uses an imaging camera to count CD34+ cells
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and determine their concentrations in a given sample. This device has the advantages of
reduced cost and enhanced accessibility to non-experts. Nevertheless, this method still
relies on fluorescent staining for selective counting of CD34+ cells in a sample [34]. This
staining approach has limitations, particularly when dealing with samples from medical
facilities such as hospitals, which necessitates advanced knowledge of fluorescent staining
and specific handling conditions to prevent extinction. These limitations contribute to the
risk of sample deterioration over time. Therefore, there is a pressing need to develop a
portable and user-friendly technique for quantifying CD34+ levels without the requirement
for separate fluorescent staining, thus minimizing the risk of sample degradation.

Lens-free shadow imaging technology (LSIT) is a well-established method for charac-
terizing microparticles and biological cells [35]. In LSIT, the diffraction pattern produced
by an object is directly recorded using CCD/CMOS technology, thereby avoiding the use of
lens elements and offering a broad field of view [36,37]. LSIT is known for its simplicity and
cost-effectiveness, making it a popular choice for diverse low-cost applications, including
the automated analysis of a complete blood count, cell morphology, microalgae toxicity,
and cell viability, all without the need for staining [38–43].

In LSIT, cell properties are assessed by examining the diffraction pattern of light
emitted from individual cells, eliminating the need for additional procedures such as
staining for measurement. Images obtained using LSIT are analyzed using statistically
derived parameters, such as the central maxima value (CMV), peak-to-peak distance (PPD),
maxima-to-minima distance (MMD), and standard deviation of MMD (SMD) [36,44,45].
These parameters facilitate the analysis of various cellular attributes including cell viability,
morphology, size, and type. Furthermore, there is an opportunity to enhance the accuracy
and precision of LSIT using advanced techniques such as deep learning (DL), which has
garnered considerable attention in recent years [35].

DL is a branch of machine learning (ML) and artificial intelligence (AI) that uses
multiple layers of neural networks to learn from data [46–48]. DL plays a pivotal role in
the Fourth Industrial Revolution and has applications across diverse domains including
healthcare, visual recognition, natural language processing, and cybersecurity [49–51].
Many sophisticated models have emerged within the DL domain, including AlexNet ar-
tificial neural networks (ANN), convolutional neural networks (CNN), recurrent neural
networks (RNN), and graph neural networks (GAN) [47,52]. These models are engineered
to autonomously recognize complex patterns in various data types ranging from images
to text and audio, effectively surmounting the limitations of traditional rule-based al-
gorithms [53–58]. Consequently, the utilization of DL techniques for analyzing images
obtained through LSIT has the potential to substantially enhance the existing statistical
parameters and even create entirely novel methods for characterizing and assessing cell
structures.

In this study, we analyzed the images of blood samples obtained by LSIT using a
customized AlexNet DL model to selectively identify and quantify CD34+ cells in the
samples, obviating the requirement for fluorescent staining. Blood samples were collected
from the bone marrow of individuals with suspected or confirmed diagnosis of leukemia.
Peripheral blood samples were collected from the selected patients. The mononuclear cells
(MNC) obtained underwent a purity assessment via fluorescence-activated cell sorting
(FACS) and were subsequently analyzed using our proprietary LSIT-based device, Cellytics.
The cell images were categorized into CD34+ cells and other residual cells to generate
a labeled training dataset. This dataset, comprising 10,000 training images, was used to
train the custom AlexNet model to distinguish CD34+ cells from residual cells without
staining. The performance of the DL model was assessed using fresh blood samples from
13 patients, with these same samples subjected to FACS analysis for validation. Our custom
AlexNet model exhibited an impressive 97.32% accuracy in distinguishing CD34+ cells
and demonstrated an average difference of 8.99% compared to FACS, with a coefficient
of determination of R2 = 0.81. This DL-based approach eliminates the need for separate
staining procedures, enabling the rapid and precise detection of CD34+ cells, thereby
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proving invaluable in leukemia diagnosis, hematopoietic stem cell transplant monitoring,
and similar research applications.

2. Materials and Methods
2.1. Analysis Procedure

This study primarily focused on the detection of CD34+ markers within immature
leukemia cells (blasts) present in blood samples acquired from the bone marrow and
peripheral blood of patients. Figure 1 provides a comprehensive depiction of the sample
preparation and workflow employed for CD34+ cell identification. The collected samples
were separated to isolate mononuclear cells (MNC) and peripheral blood mononuclear cells
(PBMC) by Ficoll density gradient centrifugation (Figure 1a). Subsequently, Ficoll-separated
samples containing various cell types, including lymphocytes, monocytes, granulocytes,
and blasts, were directly introduced into a cell chip without any additional treatment
(Figure 1b,c). The cell chip, constructed from optically transparent polycarbonate, featured
two chambers, each capable of holding 10 µL of the sample. The cell chip was then inserted
into the Cellytics device, which captured diffraction images of the cells in the sample
(Figure 1d). Cellytics can identify and distinguish CD34+ cells from shadow images of
samples with diverse cell types (Figure 1e). This selective identification allowed for the
determination of the CD34+ cell percentage in the sample.
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Figure 1. (a) Blood samples from the bone marrow and peripheral blood were collected and separated
using Ficoll density gradient centrifugation. (b) Mononuclear cell samples were separated from
various cell types, including blasts. (c) Ficoll-separated samples were injected directly into a cell chip.
(d) The cell chip was inserted into the Cellytics device, which recorded shadow images of the cells.
(e) Cellytics rapidly classifies only cells in samples using a CD34+ marker. The identified CD34+ cells
within the red circle is illustrated in the magnified yellow box.

The research process was divided into three main phases: sample preparation, dataset
generation, and data analysis (Figure 2). During the initial sample preparation phase,
bone marrow samples were sourced from hospitalized patients and served as the primary
material for this study. These samples were meticulously separated into mononuclear cells
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(MNCs) using Ficoll density gradient centrifugation. The isolated MNCs were subsequently
subjected to magnetic-activated cell sorting (MACS), which effectively classifies CD34+
and residual CD34 cells according to the established MACS protocol. The purity of the
CD34+ cells was rigorously checked using FACS, ensuring a minimum purity of 70%.
Samples with purity above this threshold were further processed using Cellytics to obtain
a comprehensive collection of CD34+ cell images. In contrast, the remaining cells were
directly processed with Cellytics without the requirement for separate purity confirmation,
ultimately yielding extensive compilation of CD34 cell images.
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preparation, dataset generation, and data analysis.

The second phase, the generation of a robust dataset from the acquired CD34+/CD34
cell images, involved several crucial steps. First, background noise was efficiently removed
by computing the average pixel values across the entire image. Next, the remaining pixels
were meticulously scrutinized to pinpoint individual cell centers, clearly demarcated with
red boxes measuring 30 × 30 pixels each. These regions were then cropped to form the
fundamental training dataset, thereby ensuring a consistent image size for the training data.
However, because of the origin of CD34+ training data from samples with a minimum
purity of 70%, a selection process was necessary. For this selection, the PPD parameter
was employed, with only the training data falling within the PPD range of 40 to 60, which
was categorized as CD34+. In this study, a total of 10,000 CD34+ and residual cell training
images were compiled [59].

In the final phase, a customized version of the AlexNet architecture called customized
AlexNet was used as the DL model. The hyperparameters of this model were systemati-
cally fine-tuned, and the validation accuracy and loss were closely monitored, leading to
the derivation of optimized weights. Using these optimized weights, the percentage of
CD34+ cells in patient samples was assessed and the results were compared with FACS
measurements, serving as the performance benchmark for comparison.
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2.2. Sample Preparation

This study was approved by the Institutional Review Board (IRB:2021AN0040) of the
Anam Hospital of Korea University. A total of 18 outpatients with suspected or diagnosed
leukemia contributed to this research. Bone marrow and peripheral blood samples were
collected and stored in anticoagulant tubes at 4 ◦C until utilization. Five patients, meeting
a minimum CD34+ purity threshold of 70%, were the source of training data for the
customized AlexNet model, whereas the remaining 13 blinded samples (comprising 10 bone
marrow samples and 3 peripheral blood samples) were employed to validate the model’s
performance. The buffer solution used for the blood experiments consisted of Dulbecco’s
phosphate-buffered saline (DPBS; Merck KGaA, Darmstadt, Germany) supplemented with
0.5% bovine serum albumin (BSA; Bovogen Biologicals, Keilor East, VIC, Australia) and
2 mM ethylenediaminetetraacetic acid (EDTA; LPS Solution, Daejeon, Republic of Korea).

2.3. Separation of CD34+ to Build Training Data
2.3.1. Extraction of MNCs from Bone Marrow Blood

To isolate mononuclear cells (MNCs) from the obtained bone marrow aspirates, a
density gradient centrifugation method employing Ficoll-Paque was used. The samples
were initially diluted in a 1:1 ratio with phosphate-buffered saline (PBS). Subsequently, these
diluted samples were meticulously layered on Ficoll-PaqueTM Premium 1.084 medium
(GE Healthcare Life Sciences, Uppsala, Sweden) and centrifuged at 445× g for 30 min at
25 ◦C. Following centrifugation, the MNC layer was carefully collected in a 15 mL conical
tube. To cleanse the collected MNCs, 10 mL of PBS was introduced, and the cells were
gently mixed and centrifugated once more at 400× g for 10 min at 25 ◦C, ensuring thorough
removal of the supernatant.

2.3.2. Isolation of CD34+ Cells from MNCs

In this study, MACS was used to isolate CD34+ cells from the MNCs. MNCs were
labeled with CD34 magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). The
labeled sample was introduced into a magnetic column, where cells other than CD34+
cells traversed the column and were subsequently extracted. The magnetic field was then
disengaged from the column to collect CD34+ cells. The protocol used for this procedure
was performed according to the manufacturer’s instructions [60].

2.3.3. Purity Check of Extracted CD34+ Cells

The purity of the CD34+ cells derived from the bone marrow was evaluated using
flow cytometry. CD34+ cells were conjugated with anti-human CD34-FITC (Miltenyi
Bio-tec, Bergisch Gladbach, Germany), and FACSCantoIITM (Becton Dickinson, CA, USA)
was used for the analysis. This process was performed according to the manufacturer’s
guidelines [61]. The purity of isolated CD34+ cells was at least 70%.

2.4. Building the Training Dataset
2.4.1. Cell Image Acquisition

To create a training dataset, an array of cell images was acquired using the Cellytics
system. Cellytics has dimensions of 100 × 120 × 80 mm3 and weighs 550 g. It utilizes a
470 ± 5 nm blue LED (LB W5SM-FZHX-35, Osram, Munich, Germany) as the point light
source and incorporates a 300 µm pinhole for the generation of semi-coherent light. The
interaction of this semi-coherent light with the sample produces diffraction patterns arising
from the interference between the light traversing the sample and light refracted within
the sample. The resulting diffraction patterns were captured using a CMOS image sensor
(MT9P031I12STM- DP, ON Semiconductor, Phoenix, AZ, USA) and stored as images with
dimensions of 2592 × 1944 pixels. The captured cell images were subsequently divided
into two classes: CD34+ and CD34−.
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2.4.2. Building the Dataset

To construct the dataset for deep learning analysis, individual cell images of a stan-
dardized size were generated from a substantial collection of cell images captured by
Cellytics facilitated by an object recognition algorithm. The algorithm first removed the
background by averaging the pixel values of the entire image. Subsequently, pixel by pixel,
the entire image was scrutinized for pixels with a value of 1. Upon identifying such pixels,
the algorithm detected adjacent pixels and altered the intermediate pixels to a value of 1 if
the neighboring pixels also possessed a value of 1. The algorithm then calculated the center
of the modified image and generated a red rectangle measuring 30 × 30 pixels around the
center. The data located within this created rectangle in the original image were cropped
and saved as a single object, serving as training data. An image transformed to a value
of 1 was recognized as a cell if its width and height fell within the range of 8 to 40 pixels
or beyond. The object recognition algorithm was instrumental in producing single-cell
images, each sized at 30 × 30 pixels, which were subsequently employed as training data.

2.5. Cell Analysis

The DL training and performance analysis in this study were conducted using the
PyTorch library in Python. The hardware for the experiment execution was a Dell Inspiron
15 Gaming i15-7567 notebook, 8 GB of 2133 MHz DDR4 RAM Memory, a 7th Generation
Intel Core i5-7300HQ Quad Core processor (with 6MB Cache, up to 3.5 GHz), a 1 TB
5400 rpm HD with 8 GB cache, and an NVIDIA GeForce RTX 3080ti GPU (Dell, Round
Rock, TX, USA).

The deep learning model used in this study was AlexNet, which is a well-established
CNN model. Our customized AlexNet featured eight convolutional layers, five max-
pooling layers, and three fully linked layers. The activation function employed was the
scaled exponential linear unit (SELU), represented mathematically as

SELU (x) = λ

{
αex − α if x < 0

x if x ≥ 0
(1)

Here, the SELU parameters were set to the commonly used values of λ = 1.0507 and
α = 1.6732. Figure 3 shows the customized AlexNet model employed in this study. We
selected AlexNet because of its simplicity and capability to capture spatial features relevant
to cell-shape analysis.
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The 30 × 30 pixels object images were resized to 50 × 50 pixels (as shown in Figure 3a)
and processed through eight convolutional layers. During this process, resizing was
accomplished through max pooling in Conv1, Conv2, Conv4, Conv6, and Conv8 (Figure 3b).
Finally, the images were passed through three fully connected (FC) layers to complete the
learning process. A summary of the settings employed to train the customized AlexNet
model is shown in Figure 3c.

The dataset, consisting of 20,000 images, was randomly divided into training, valida-
tion, and test groups at an 8:1:1 ratio. The images were labeled as either CD34+ or residual
cells. The network underwent training for 500 epochs with a batch size of 16 and a learning
rate of 0.0005. The performance of the model was compared to that of two other pre-trained
CNN models: Visual Geometry Group 16 (VGG16) and ResNet50.

2.6. Performance Verification

To evaluate the performance of our DL model for CD34+ cell analysis, bone marrow
samples from 10 patients and peripheral samples from 3 patients were used. These blinded
validation samples underwent processing to isolate mononuclear cells (MNCs) and pe-
ripheral blood mononuclear cells (PBMCs). Subsequently, these samples were subjected to
analysis using FACS, the current gold standard technique, and our customized AlexNet
model.

FACS involves fluorescently staining the samples and analyzing approximately
10,000 cells to determine the percentage of CD34+ cells among the measured cells. In
contrast, our custom AlexNet model analyzed unlabeled cell samples with a concentration
of approximately 105 cells, all without the need for fluorescent staining, to ascertain the
CD34+ percentage. The results obtained from these two methods were then compared
using regression analysis to compute the coefficient of determination (R-squared value)
and were visualized with a Bland–Altman plot.

3. Results and Discussion

The samples used to generate individual cell images had a CD34+ cell purity of 70%.
However, to account for potential errors stemming from the presence of 30% residual cells,
a data selection process was implemented. Gradient-weighted class activation mapping
(Grad-CAM) was applied for localizing the CD34+ cells within the images. Grad-CAM is
an algorithm that visualizes the regions considered important for discriminating CD34+
images from residual cell images, providing insight into the crucial areas within each
image [62,63].

In Figure 4a, the region between the bright central point and the first dark ring
encircling the center of the image is highlighted in red. Analysis of pixel values in this
area could allow the classification of images as CD34+ or CD34–− Previous studies have
introduced statistical parameters for the analysis of diffraction patterns [38]. In this study,
the parameter for the highlighted area was designated as PPD. PPD quantifies the difference
between the pixel value at the center of the image and the lowest value of the first dark
concentric ring, and it is closely related to the size and shape of the cells [44].

Figure 4b,c shows representative shadow images of CD34+ cells and residual cells,
respectively, with their corresponding pixel values. The CD34+ cell (Figure 4b) had a
central pixel value of 156.8 and the lowest pixel value of the dark concentric ring was 112.5,
resulting in a PPD of 44.3. In contrast, the residual cells (Figure 4c) had a PPD of 96.3,
representing a difference of 52.0 compared to the CD34+ cells.

Figure 4d shows the PPD distribution for 1929 bone marrow cells analyzed to generate
the training dataset. Notably, 95% of the cells fell within the PPD range of 20 to 80 with
66.3% of them falling within the PPD range of 40 to 60. This distribution provides valuable
insights into the characteristics of the CD34+ and residual cells in the dataset.
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Figure 4. (a) Shadow image and corresponding gradient-weighted class activation mapping (Grad-
CAM) heatmap of CD34+ cells. (b) Shadow image of a CD34+ cell with a PPD of 44.3. (c) Shadow
image of a residual cell with a PPD of 96.3. (d) PPD distribution of 1929 bone marrow cells used to
generate the training dataset. (e) Boxplot of PPD distribution of CD34+ cells.

Figure 4e shows a boxplot based on the data from Figure 4d. After calculating the
interquartile range (IQR) and removing outliers, it was found that cells with the CD34+
marker exhibited a PPD distribution within the range of 43.5 to 58, encompassing 50% of
the distribution. To further confirm the PPD range of CD34+ cells, blood samples from
the bone marrow of four patients were analyzed. It was observed that 50% of the cells in
these samples fell within the following PPD ranges: 44 < PPD < 58, 37.84 < PPD < 52.25,
43 < PPD < 58.5, and 42.6 < PPD < 53.5. Since the PPD ranges overlapped across mul-
tiple patient samples, images with PPD values between 40 and 60 were selected and
labeled as CD34+ to train the deep learning model. This approach aimed to enhance the
accuracy of identifying cells expressing the CD34+ marker while accommodating the vari-
ability between patient samples and ensuring the creation of a robust training dataset for
classification.

The hyperparameters of the custom AlexNet model were systematically optimized
by varying the batch size (8, 16, 32), learning rate (0.0001, 0.0005, 0.001), and the number



Biosensors 2023, 13, 993 10 of 15

of epochs (300, 500, 800, 100). The most favorable results were achieved with a batch size
of 16, a learning rate of 0.0005, and an epoch number of 500. With these hyperparameters,
the custom AlexNet model demonstrated training and validation accuracies of 97.3% and
96.2%, respectively, while maintaining a loss of 0.121 (refer to Figure 5a,b).
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In Figure 5c, the evaluation results of the custom AlexNet model on a test set com-
prising 2000 data points are presented. The confusion matrix reveals a precision of 99.2%
and a recall of 98.4%. Figure 5d displays the outcomes of training the custom AlexNet,
Vgg16, and ResNet50 models using the same images over 500 epochs. Notably, Vgg16
(fine-tuning) achieved a validation accuracy of 91.67% with a loss of 0.46, while ResNet50
(fine-tuning) recorded a validation accuracy of 89.6% and a loss of 0.31. These accuracy
and loss results highlight the superior performance of the custom AlexNet model over
Vgg16 and ResNet50. The custom AlexNet’s enhanced performance can be attributed to
its simpler architecture, better suited for the relatively small and monochrome diffraction
pattern images employed in this study. Additionally, the utilization of the SELU activation
function, as opposed to the ReLU activation function, may have contributed to the model’s
improved performance on monochrome images. SELU enables weights to be derived as
nonzero values rather than negative values, potentially enhancing the model’s ability to
learn from these images. Overall, the custom AlexNet model demonstrated outstanding
performance in classifying CD34+ and residual cells from diffraction pattern images.

In Figure 6a, the performance comparison between FACS and the customized AlexNet
model is presented using blood samples from 13 patients. The x-axis represents the per-
centage of CD34+ cells measured by FACS, while the y-axis represents the percentage of
CD34+ cells measured by the customized AlexNet. CD34+ percentages of 22.4 to 85.2%
(bone marrow) and 7.7 to 50.5% (peripheral blood) were measured with FACS, while 34.4
to 79.1% (bone marrow) and 7.65 to 52.83% (peripheral blood) were measured with the cus-
tomized AlexNet based on a concentration of 105 cells. The coefficient of determination (R2)
between the two was 0.81, with an average F-difference of 8.99%. This demonstrates the
strong agreement between the customized AlexNet model and FACS in quantifying CD34+
cells, highlighting the model’s accuracy and potential for clinical applications. Figure 6b
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presents a Bland−Altman plot with a base bias of −2.29 and 95% limits of agreement of
18.49 and −23.07. This further underscores the strong agreement between the standard
FACS technique and the customized AlexNet model in quantifying CD34+ cells in patient
samples, highlighting the model’s reliability and potential for clinical use.
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The findings of this study present a significant advancement in leukemia diagnosis,
specifically in the context of CD34+ cell classification, with several noteworthy implications:

1. Compact, low-cost LSIT-based device: The Cellytics device, in conjunction with the
customized deep learning model, offers a cost-effective and portable solution for
CD34+ cell detection. This compact and user-friendly device eliminates the need for
complex sample preparation and dedicated facilities, making it suitable for point-of-
care applications in clinical settings and resource-limited environments.

2. Enhanced accuracy and efficiency: The customized deep learning model demonstrates
high accuracy in classifying CD34+ cells, outperforming other models. The validation
of its performance in patient samples indicates its potential to improve the precision
of leukemia diagnoses, allowing healthcare professionals to make informed decisions
more reliably.

3. Streamlined diagnostic process: By eliminating the need for labor-intensive and
expertise-dependent techniques, such as flow cytometry, this approach simplifies the
diagnostic process. The combination of the Cellytics device and deep learning model
may reduce the time and resources required for diagnosis.

4. Potential for clinical applications: Beyond leukemia diagnosis, this technology holds
promise for various clinical applications, including hematopoietic stem cell trans-
plantation monitoring. Accurate quantification of CD34+ cells can inform treatment
decisions and enhance patient outcomes. To realize its potential, integration into
clinical workflows would necessitate validation, standardization, regulatory approval,
and data integration.

While this study has achieved significant progress in CD34+ cell classification for
leukemia diagnosis, there are several limitations and avenues for future research to con-
sider. Our model exhibited high accuracy; nonetheless, it is important to acknowledge
that no diagnostic test is infallible, and false positives or negatives may still occur. This
study included a relatively small number of patients, and further validation using larger
and diverse patient cohorts across different populations and disease conditions is neces-
sary to establish the robustness and generalizability of the approach. Furthermore, our
study primarily focuses on identifying CD34+ cells in the context of leukemia. We rec-
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ognize the importance of considering additional markers, such as CD33 and CD38, for a
comprehensive characterization of leukemic blasts. In future research, we aim to expand
our methodology to encompass a broader range of markers to provide a more complete
phenotypic profile of haematopoietic cells, which would improve its clinical utility for
leukemia characterization. In comparison to traditional methods like flow cytometry, the
proposed approach offers several advantages as discussed above. However, it is important
to note that flow cytometry remains the gold standard method for CD34+ cell quantifica-
tion, and further validation and comparison studies are needed to establish the full utility
and reliability of the proposed approach. Additional work is also needed to integrate
automated sample loading and analysis capabilities into the Cellytics device to enable true
sample-to-result functionality suitable for nonexpert use.

4. Conclusions

In this study, we developed a customized AlexNet deep learning model designed for
the classification of CD34+ and residual cells from shadow images obtained through an
LSIT-based device known as Cellytics. The use of LSIT eliminates the necessity for cell
staining, resulting in significantly reduced analysis time and resource requirements (approx-
imately 15 min). The model exhibited exceptional performance when trained on a dataset
comprising 20,000 bone marrow cell images, achieving a training/validation accuracy of
97.3/96.2% with a loss of 0.121. Furthermore, our customized AlexNet outperformed estab-
lished models such as VGG16 and ResNet50. Validation using samples from 13 leukemia
patients demonstrated a high level of agreement with flow cytometry in quantifying CD34+
cells. This innovative technique allows for marker detection without the need for staining,
offering several key advantages over traditional methods. The customized AlexNet’s ability
to analyze images with enhanced accuracy and efficiency contributes to reduced diagnostic
time and resource utilization. It also exhibits reduced dependency on human expertise,
resulting in improved reproducibility and reliability. Additionally, the model can handle
images from diverse sample sources, including bone marrow and blood. In summary, the
customized AlexNet represents a promising tool for the classification of CD34+ cells from
diffraction images acquired using Cellytics (MetaImmuneTech Inc., Sejong, Korea). Future
development efforts will aim to expand the dataset, conduct validation studies, optimize
the model’s integration into clinical practice, apply this approach to various cell types and
diseases, and explore its integration with diagnostic tools like flow cytometry. This study
underlines the feasibility of a machine-learning-based solution for quantitative cell analysis
using label-free diffraction imaging.
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