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Wearable biosensors offer noninvasive, real-time, and continuous monitoring of di-
verse human health data, making them invaluable for remote patient tracking, early diagno-
sis, and personalized medicine. Breakthroughs in biosensing technologies have made it pos-
sible to detect both biophysical parameters, such as heart rate [1,2], body temperature [3,4],
blood pressure [5–7], and ECG [8–10], as well as biochemical parameters, including glu-
cose [11,12], lactate [13,14], cortisol [15–17], Na+ [18,19], and K+ [20,21], within various
biofluids (like sweat, tears, saliva, and interstitial fluid) [22]. Biosensors have been seam-
lessly incorporated into a wide range of wearable platforms, such as contact lenses [23,24],
wristbands [25,26], patches [27,28], tattoos [29,30], and retainers [31]. While these advances
are promising, there remain challenges in terms of accuracy, stability, multiplexed sensing,
energy harvesting, and system integration that require further technical innovations [32].
The potential for commercialization and the anticipated healthcare benefits continue to
drive rapid progress in wearable biosensor research.

This Special Issue, “Frontiers of Wearable Biosensors for Human Health Monitoring”,
presents ten research articles and three reviews showcasing the latest advancements in
wearable biosensing technology development, validation studies, and healthcare appli-
cations. The research papers cover a diverse spectrum of wearable biosensor research,
ranging from the sensing of electrical impedance, transcutaneous gas, heart rate, capillary
oxygen desaturation, ECG waveform, intracranial pressure, intra-abdominal pressure,
and sleep patterns to the mitigation of data loss in the wearable healthcare ecosystem.
Additionally, the reviews in this Special Issue provide comprehensive insights into flexible
wearable sensors in medical monitoring, biosensors based on electromyography (EMG),
force myography (FMG), and electrical impedance tomography (EIT), and the utilization of
wearables for remote healthcare among the elderly.

Respiratory rate is a fundamental vital sign that offers essential information about a
person’s overall health and lung function. Historically, spirometry has been the standard
for respiratory rate monitoring, but its bulkiness and complexity pose challenges [33].
Yan et al. introduced a wearable head-mounted system that monitors respiration by mea-
suring electrical impedance in the subpapillary pharynx of the mastoid bone [34]. They
successfully simulated impedance changes in the pharynx during breathing, integrated a
head-mounted device, and confirmed its effectiveness. Test results showed a high corre-
lation with commercial respiratory monitoring devices, making this system a promising
solution for real-time continuous personalized respiratory monitoring in healthcare.

Electrocardiogram (ECG) signals are widely used for diagnosing heart conditions
and assessing emotional and psychological states [35]. However, in many wearable ECG
systems, only prominent R peaks are evaluated for heart rate variability (HRV) monitoring,
while smaller peaks (P, Q, S, and T) are often overlooked. Research indicates that this fine-
grained variability data are essential for measuring emotional and stress responses. Arquilla
et al. developed various woven textile electrodes (eight different sizes, four different
patterns, and two different thread types), testing their performance on 10 participants.
They suggest that woven textile electrodes are a viable option for garment-integrated ECG
monitoring systems to capture the complete ECG waveform [36]. This research offers
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valuable guidelines for future woven textile ECG electrode development. Recent research
suggests that HRV is an indicator of cognitive fatigue. Continuous monitoring of heart
rate through wearable ECG devices is a viable method of assessing cognitive fatigue.
However, wearable ECG devices often compromise the sampling rate, affecting HRV signal
quality. To explore if lower sampling rates impact HRV features in predicting cognitive
fatigue, Lee et al. collected ECG data at 2000 Hz during a typical cognitively fatiguing
task, systematically down-sampled the data to various rates, extracted frequency domain
features, and developed predictive models [37]. They discovered that a sampling rate
of 125 Hz is sufficient for an accurate assessment of cognitive fatigue using frequency
domain features. These findings are valuable for designing cost-effective wearables to
detect cognitive fatigue.

Bio-pressure measurement plays a vital role in diagnosing various medical conditions.
Elevated intracranial pressure (ICP) can be indicative of head injuries, hydrocephalus, or
infections [38]. However, monitoring ICP in infants is challenging due to the risks (hemor-
rhage and infection) associated with invasive techniques and the limitations (low accuracy
and high cost) of noninvasive methods. Zhang et al. introduced a novel noninvasive
approach using a wearable pressure sensor that measures ICP changes by detecting the elec-
trical resistance variation in a liquid metal (Ga)-filled microchannel when it deforms due to
inflation [39]. This innovative ICP sensor, fabricated through a freeze-casting method, can
be applied directly to infants like a band-aid. Their results showed a high linear correlation
and demonstrated the potential for cost-effective noninvasive ICP monitoring in clinical
or point-of-care settings. Intra-abdominal pressure (IAP) is a crucial factor in diagnosing
intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) [40].
The existing IAP monitoring method is labor-intensive and provides only a single-point
measurement. Kumar et al. introduced a stretchable pressure-sensing sleeve enabling
continuous IAP monitoring while significantly reducing the complexity of the process [41].
This sleeve’s sensitivity in low-pressure ranges (<2.7 kPa) is clinically relevant for early IAH
and ACS diagnosis. Benchtop testing validated the sleeve’s performance. This stretchable
capacitive pressure sensor could potentially reduce the personnel and time needed for
continuous IAP monitoring and can be easily adapted with intrabody catheter balloons for
on-site intra-abdominal pressure measurement.

Blood oxygen and carbon dioxide levels are essential parameters for evaluating respi-
ratory and metabolic health. Monitoring blood CO2 partial pressure (pCO2) is critical for
diagnosing and treating respiratory and metabolic conditions [42]. Instead of invasive arte-
rial blood gas sampling, noninvasive transcutaneous CO2 monitoring provides a promising
alternative approach [43]. Cascales and colleagues reported the development of a highly
breathable CO2-sensing film for transcutaneous CO2 monitoring through fluorescence
quantification [44]. They investigated various HPTS-based ion pairs in diverse support ma-
trices and found the (HPTS)/(TOA)4-embedded PPMA matrix was highly sensitive within
the physiological CO2 range (0–50 mmHg). These CO2-sensing films exhibited inherent re-
sistance to humidity variations and maintained photostability during extended continuous
sampling. This work holds great potential for commercial, miniaturized wearable devices
for transcutaneous CO2 monitoring. Obstructive sleep apnea (OSA) is a common sleep
disorder [45] for which continuous positive airway pressure (CPAP) is the most effective
treatment [46]. Simple, low-cost, at-home diagnostic tools are needed to improve CPAP
adherence. Wearable devices, like smartwatches, measure oxygen saturation in arm or
wrist tissues. However, it is unclear if arm oxygen desaturation can gauge CPAP effective-
ness. Zhang et al. investigated oxygen desaturation in arm muscles using gold-standard
frequency domain multi-distance near-infrared spectroscopy (FDMD-NIRS) during CPAP
titration in OSA patients [47]. They found only fingertip SpO2, not arm StO2 (muscle tissue
oxygen saturation), reflected reduced desaturation during CPAP titration, likely due to the
contribution of venous blood to StO2. This suggests that muscular oxygen desaturation
may not be an ideal indicator of CPAP effectiveness. This study advises caution in using
these wearables until they have been clinically validated.
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Wireless communication is a vital feature in wearables, with Bluetooth Low Energy
(BLE) being a common choice for data transmission [48,49]. Ensuring reliable and secure
data transfer in a wearable healthcare ecosystem requires a systematic evaluation of BLE
packet loss and the development of mitigation strategies. Tipparaju et al. conducted a
comprehensive assessment of packet losses in Android and iOS-based wearable systems
and proposed a mitigation solution that included a reduction in transmission frequency,
data bundling, and a queue-based packet transmission protocol [50]. Their approach
reduces packet losses to less than 1% and can benefit various applications, such as body
sensor networks (BSNs), the Internet of Things (IoT), and smart homes within BLE-based
wearable ecosystems.

Machine learning techniques are powerful tools for processing data from wearable
sensors, enabling precise disease prediction and early detection [51,52]. In a recent study,
Guo et al. developed a 1D-Convolutional Neural Network (CNN) with a Long Short-Term
Memory (LSTM)-based evaluation model using self-designed wearable smart bracelets to
assess teenagers’ physical fitness [53]. They collected 1024 photoplethysmography (PPG)
data from teenagers, applied noise reduction techniques, and constructed a deep learning
model to classify physical fitness levels. This deep learning model demonstrates excellent
accuracy in predicting physical fitness for both boys and girls. This study highlights
the potential of integrating machine learning techniques with wearable devices for well-
being prediction.

The articles in this Special Issue demonstrate the latest advancements in wearable
biosensor research. Overcoming challenges such as accuracy, stability, selectivity, motion
artifacts, power management, regulatory compliance, and commercialization of these
biosensors demands further innovative engineering solutions. Moreover, integrating smart
materials [54,55], additive manufacturing (3D printing) [56–58], artificial intelligence [59,60],
the Internet of Things (IoT) [61,62], and big data [63,64] can further enhance the potential
of wearable biosensors for human health monitoring.
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