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Abstract: Melatonin (MT), a pineal gland hormone, regulates the sleep/wake cycle and is a potential
biomarker for neurodegenerative disorders, depression, hypertension, and several cancers, including
prostate cancer and hepatocarcinoma. The amperometric detection of MT was achieved using a
sensor customized with ruthenium-incorporated carbon spheres (Ru–CS), possessing C- and O-rich
catalytically active Ru surfaces. The non-covalent interactions and ion–molecule adducts between
Ru and CS favor the formation of heterojunctions at the sensor–analyte interface, thus accelerating
the reactions towards MT. The Ru–CS/Screen-printed carbon electrode (SPCE) sensor demonstrated
the outstanding electrocatalytic oxidation of MT owing to its high surface area and heterogeneous
rate constants and afforded a lower detection limit (0.27 µM), high sensitivity (0.85 µA µM −1 cm−2),
and excellent selectivity for MT with the co-existence of crucial neurotransmitters, including nore-
pinephrine, epinephrine, dopamine, and serotonin. High concentrations of active biomolecules,
such as ascorbic acid and tyrosine, did not interfere with MT detection. The practical feasibility of
the sensor for MT detection in pharmaceutical samples was demonstrated, comparable to the data
provided on the product labels. The developed amperometric sensor is highly suitable for the quality
control of medicines because of its low cost, simplicity, small sample size, speed of analysis, and
potential for automation.

Keywords: melatonin; amperometric sensor; ruthenium; carbon spheres; lower detection limit;
pharmaceutical samples

1. Introduction

Melatonin (MT), with the chemical name N-acetyl-5-methoxytryptamine, is a
tryptophan-derived lipophilic hormone produced and secreted at night by the pineal
gland. MT is a multifunctional pleiotropic neurohormone that protects against neurotoxic-
ity and oxidative stress [1,2]. MT modulates the sleep/wake cycle (circadian rhythmicity),
retinal and immune functions and is thus commonly used as a medication for insomnia
and jetlag. MT has a characteristic circadian-synthesis profile with high levels at night and
low levels throughout the day, in synchrony with the natural cycle of light and dark [3,4].
Some studies have reported that high oscillation of MT scores in humans are linked to
various neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s [5,6], Hunt-
ington’s disease, depression [7], and hypertension [8]. MT is also a potential biomarker for
the diagnosis of prostate cancer or hepatocarcinoma [9]. Moreover, MT is an antioxidant
and free radical scavenger. Owing to the high clinical relevance of MT, the development

Biosensors 2023, 13, 936. https://doi.org/10.3390/bios13100936 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios13100936
https://doi.org/10.3390/bios13100936
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0002-3597-5225
https://orcid.org/0009-0008-7030-2350
https://orcid.org/0000-0002-9005-5990
https://orcid.org/0000-0003-3203-2130
https://doi.org/10.3390/bios13100936
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13100936?type=check_update&version=1


Biosensors 2023, 13, 936 2 of 17

of an accurate estimation technique is essential for diagnosing and understanding the
biological relationship between MT and the aforementioned disorders [10]. Notably, an
error-free/precise technique for investigating MT levels can ensure easy applicability in
the quality control of medicines.

Over the past decades, MT analysis has gained increasing significance, where con-
firmatory techniques, such as radioimmunoassay [11], calorimetry [12], enzyme-linked
immunoassay [13], high-resolution nuclear magnetic resonance spectroscopy [14], high-
performance liquid chromatography [15,16], mass spectrometry [17,18], and electrochem-
ical approaches [19], have been used to detect MT levels. However, owing to the low
concentrations of MT (0.043 µM in the day and 0.86 µM in the night [20]) and co-existence
of several endogenous metabolites in biological fluids, the accurate detection of MT at low
concentrations with sufficient anti-interference ability remains a challenge. Among the
techniques used for MT detection, electrochemical techniques are reported to be ecofriendly,
require low manpower handling, are less susceptible to matrix effects, and enable highly
sensitive and selective real-time detection with rapid responses [19].

Carbon nanomaterials, especially carbon nanospheres (CSs), are unique electrocata-
lysts for fabricating electrochemical sensors owing to their high conductivity, large specific
surface area, well-controlled pore systems, concise synthetic routes, and easy functionaliza-
tion. Carbon nanomaterials also provide active sites for electron transfer and enable efficient
mass transport [21,22]. Especially, the C and O functionalities promote electron-transfer
kinetics [23]. The encapsulation or confinement of metal catalysts in a porouscarbon matrix
results in substantial improvements in the catalytic performance compared to that of the
unencapsulated congeners. Thus, the self-aggregation of metal catalysts is prevented, and
their stability is improved in the porous carbon matrix [24]. In the past decade, noble metal
(Au, Ag, and Pt)-loaded CSs have received extensive research attention owing to its unique
morphology and potential as an electrocatalyst [25–28] in sensor fabrication [26]. Noble
metals promote the diffusion of target molecules towards the active metal sites; however,
they suffer from the drawbacks of low metal dispersion and metal leaching. Ruthenium
(Ru), a transition metal that is inert to most other chemicals, has been employed to over-
come these drawbacks. Ru has emerged as a substitute for noble metals, such as rhodium,
iridium, gold, silver, and platinum, because it is more cost-effective than noble metals [29].
Ru has been reported to exhibit a peroxidase-like property and superior chemical stability
on exposure to aqua regia [30]. In addition, the C- and O-rich Ru surface is catalytically ac-
tive [31], and interfacial contacts between Ru and C atoms further facilitate relatively strong
interactions with the target, thus accelerating the reactions of the target at the electrode and
preventing Ru aggregation, leaching, surface oxidation, and cross-coupling reactions [32].
As a polyvalent metal, Ru can easily adopt various oxidation states, leading to the formation
of a multitude of complexes with unique properties [33]. Different configurations of Ru in
various phases alter the electrocatalytic activity and electronic and geometric structures.
Ru is highly intriguing for electrochemical sensing applications owing to its multifarious
intrinsic properties, including its tunable structure, high electrical conductivity, high surface
area, reduced resistance, and improved accessibility to electrolyte ions [34]. These excellent
features inspired us to explore the catalytic activity of Ru nanoparticle (NP)-loaded CSs.

Herein, we report an efficient, rapid, and cost-effective electrochemical sensor employ-
ing Ru-loaded CSs for MT detection. The concept is based on the use of polydopamine
(pDA) as a carbon source, which takes advantage of the inherent ability of pDA to in-
teract with metal ions, forming ion–molecule adducts [35]. Initially, Ru–CSs are synthe-
sized via the polymerization of dopamine (DA) to pDA, condensation, and subsequent
high-temperature calcination of the formed Ru–pDA to Ru–CSs. Screen-printed carbon
electrodes (SPCEs) are subsequently modified with Ru–CSs for detecting MT through
chronoamperometry (CA). The fabricated Ru–CS/SPCE sensor displays a low limit of
detection (LOD = 0.27 µM) due to the large active surface area between the Ru–CS and MT
molecules. The present study has the following merits. (1) CSs are synthesized utilizing
a simple carbon source, pDA. (2) the size and dispersion of the Ru NPs on CSs are finely
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tuned through condensation and high-temperature calcination processes, and (3) for the
first time, Ru–CSs are employed as an electrocatalyst for the electrochemical detection of
MT in pharmaceutical samples.

2. Materials and Methods
2.1. Materials

The following chemicals were procured from Sigma-Aldrich (Seoul, Republic of Korea):
aqueous ammonia solution (1.0 mL, 25–28%), dopamine hydrochloride (DA), potassium
ferricyanide and ferrocyanide [Fe(CN)6]3−/4−, potassium chloride (KCl), hydrochloric acid
(HCl, 37%), concentrated sulfuric acid (H2SO4), ethanol (99.5% purity), toluene (99.5%), and
ruthenium(III) chloride (RuCl3). MT, ascorbic acid (AA), tyrosine (Ty), norepinephrine (NE),
epinephrine (EP), and serotonin (5–HT), were used for the interference studies. Phosphate
buffers (0.1 M) were prepared by following a standard protocol [36]. All aqueous solutions
were prepared using 18.2 MΩ water.

2.2. Synthesis of CSs and Ru–CSs

DA was polymerized to polydopamine (pDA) via a condensation process and used in
the subsequent synthesis of the Ru–CS materials. The synthesis procedure was a modifica-
tion of a previously reported method [37]. For CS synthesis, ammonia (1.0 mL, 25–28%)
was mixed with ethanol (18 mL) and 18.2 MΩ.cm water (48 mL) under stirring for 30 min
at 300 rpm; this mixture was labeled as Solution A. DA (250.0 mg) was dissolved in ethanol
(2 mL) and 18.2 MΩ water (3 mL), with the solution being stirred at 300 rpm for 30 min, and
labeled as Solution B. Solution B was then slowly injected into Solution A, under stirring
for 12 h at 60 ◦C. CSs were obtained through the condensation process in a Teflon-lined
steel autoclave at 210 ◦C for 12 h, which was then separated via filtration and washed thrice
with 18.2 MΩ water and ethanol. The CS product was washed and re-dispersed in ethanol.
Finally, the product was calcined at 600 ◦C for 6 h under an N2 atmosphere.

For Ru–CS synthesis, an additional Solution A was prepared. Subsequently, DA
(250.0 mg) and RuCl3 (2.8 mg, 0.2 mol% to DA) were dissolved in a mixture of ethanol
(2 mL) and 18.2 MΩ water (3 mL); the resulting mixture was stirred at 300 rpm for 30 min
and labeled as Solution B. Solution B was then mixed/injected into Solution A, under
stirring for 12 h at 60 ◦C. Ru–CSs were obtained through the condensation of Ru–pDA in a
Teflon-lined steel autoclave at 210 ◦C for 12 h. The resulting Ru–pDA was separated via
filtration and washed thrice with 18.2 MΩ water and ethanol. The acquired product was
washed and re-dispersed in ethanol. Finally, the product was calcined at 600 ◦C for 6 h
under an N2 atmosphere. In this process, Ru ions were reduced to Ru NPs (Scheme 1).
The Ru NPs confined within the CSs were expected to enhance the catalytic reaction of the
sensor towards the target.

2.3. Fabrication of Ru–CS/SPCE

SPCEs were purchased from Metrohm DropSens (C11L, Oveido, Spain), and they
were modified with 6 µL of Ru–CSs (1.0 mg mL−1) via a simple drop-casting technique
and dried at the room temperature of 25 ◦C. The modified Ru–CS/SPCE was utilized as a
working electrode. Integrated Ag/AgCl and platinum electrodes were used as reference
and counter electrodes.

2.4. Instrumentation and Measurements

Detailed information on the instruments used and their measurement techniques are
provided in Section S1 of the Supplementary Material.

2.5. Preparation of Pharmaceutical Samples

The applicability of the sensor was studied by analyzing pharmaceutical-grade mela-
tonin samples. The pharmaceutical samples of melatonin, Cosmopharm melatonin (3 mg),
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and Nature Made Melatonin (5 mg), were procured from a local store and Nature Made
Nutritional Products, West Hills, Los Angeles, CA, USA.

The pharmaceutical samples were ground to a fine powder using a mortar and pestle,
homogenized, and dissolved in a phosphate buffer solution under ultrasonication for
30 min. After filtration, the final filtrate was again diluted with a phosphate buffer solution.
Aliquots of this solution were withdrawn for CA measurements. Each pharmaceutical
sample was prepared in several dilutions (1:10, 1:50, and 1:100) and analyzed in triplicate.
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Scheme 1. Synthesis of Ru–CSs through the polymerization of DA to pDA, condensation, and
calcination processes under a N2 atmosphere.

3. Results and Discussion
3.1. Morphology/Microstructure and Elemental Analysis

The textural properties of the synthesized Ru–CSs and CSs were explored via field-
emission scanning electron microscopy (FE–SEM) and transmission electron microscopy
(TEM), as shown in Figures 1–3. The Ru–CS (Figure 1a) particles had uniform, spherical
shapes with a much smoother surface owing to impregnation of the Ru NPs. The enlarged
image in Figure 1b shows a perfect Ru–CS sphere with a porous microstructure. The TEM
images of Ru–CSs in Figure 1c,d confirm the presence of very small and uniform Ru NPs
trapped on the spherical particles of CSs. The average particle size of Ru–CSs was around
500–600 nm (Figure 1d inset). The FE–SEM image of CSs also exhibited a uniform, spherical
morphology, whereas the surface was slightly rough with minor agglomeration between the
spheres, which can be ascribed to slight polymerization interruptions (Figure 2a), similar
to a previous report [28]. The TEM image of CSs in Figure 2b also reveals a perfectly
spherical morphology.
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High-angle annular dark-field scanning transmission electron microscopy
(HAADF–STEM) and energy-dispersive X-ray (EDX) mapping revealed that the C, N,
O, and Ru atoms were uniformly distributed throughout the spheres (Figure 3).

The surface composition and chemical valence states of Ru in the synthesized Ru–CSs
were examined through X-ray photoelectron spectroscopy (XPS) measurements. Clearly,
the XPS survey spectra represented in Figure S1a reveal the presence of elements, such as C,
N, O, and Ru elements, at the binding energies of 284.0 eV, 399.0 eV, 531.7 eV, and 460.7 eV,
respectively. The deconvoluted Ru3p spectra (Figure S1b) speculated on the presence of
two distinct Ru peaks, Ru 3p1/2 and Ru 3p3/2, at the binding energies of 461.7 eV and
486.2 eV, respectively. Both the Ru 3p1/2 and Ru 3p3/2 peaks evidenced the presence of the
mixed valence states of Ru, namely the Ru0 and Ru2+ states. The sub-peaks centered at
461.5 eV and 483.7 eV are assigned to the electron-richer Ru0 states, while the sub-peaks
centered at 463.8 eV and 486.1 eV are indexed to the oxidized Ru2+ species. The optimal
Ru (Both Ru0 and Ru2+):C ratio was 1:39. The interfacial bonding interaction is probably
dominated by d electrons from the Ru metal core donated to the π* orbitals of C≡N, rather
than the donation of the N lone-pair electrons to Ru, similar to the previous report [38].
Thus, the formation of strong interfacial contacts between Ru and N, as well as Ru and C,
verify the formation of ion–molecule adducts between Ru and CSs.

Further, the atomic % value of C, N, O, and Ru were found to be 70.85%, 6.30%,
21.04%, and 1.81% through the XPS analysis. The high C content originates from the porous
carbon spheres, whilst the N content of 6.3% is due to the condensation process, in which
decomposition of the added ammonia formed N species. However, this low N content was
sufficient to induce strong anchorage of the Ru NPs on the CSs. The actual Ru content was
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nearly 1.81%, indicating the successful confinement of Ru NPs in the CSs. The atomic % of
O being 21.04% signifies the introduction and activation of oxygen vacancies that enhance
the electron transfer and electrical conductivity of Ru–CS material.

3.2. Electrochemical Performance of the Sensors

The electrochemical properties of the fabricated sensors were evaluated through a
cyclic voltammetry (CV) analysis in 5.0 mM Fe(CN)6]3−/4− in 0.1 M KCl electrolytes at
a scan rate of 50 mV s−1. Figure 4a shows the CV data of bare the SPCE, CS/SPCE, and
Ru–CS/SPCE. The CV curves of the three sensors exhibited well-resolved redox peaks,
indicating efficient electron-transfer kinetics. The anodic peak potential (Epa) of the bare
SPCE was determined as 0.415 V. Successive modifications of the SPCE with CSs and Ru-
CSs negatively shifted the Epa to 0.315 V. The remarkable negative shift of the Epa indicates
the efficient electrocatalytic activity of the Ru–CS/SPCE. The peak-to-peak separation (∆Ep)
of the aforementioned sensors was 0.34, 0.18, and 0.17 V, respectively. The low ∆Ep value
indicates the fast electron-transfer properties due to the successive Ru–CS modifications.
However, the anodic peak current (Ipa) for the Ru–CS/SPCE was 140.2 µA, which is 1.7-fold
higher than that of the bare SPCE (80.35 µA) and 1.1-fold higher than that of the CS/SPCE
(131.26 µA), specifying that Ru–CS impregnation enhanced the conductive properties of
the sensor (Figure 4b). Along with the well-resolved redox peaks in the spectrum of the
Ru–CS/SPCE, the non-redox/pseudocapacitive currents were also substantially enhanced
in the potential window of 0.3–1.0 V, which may be attributed to the high-valence Ru redox
center [39].
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Figure 4. (a) CV data for bare the SPCE, CS/SPCE, and Ru–CS/SPCE in the 5 mM Fe(CN)6]3−/4−

redox couple prepared in 0.1 M KCl, at a 50 mV s−1 scan rate. (b) Ipa plot. (c) EIS profiles of the
sensors in the redox couple. The inset is the fitted equivalent Randles circuit, R(Q(RW))(QR).

The resistances of the sensors were calculated from the EIS data. Figure 4c shows
the Nyquist diagrams from the EIS profiles within the 100 kHz to 0.1 Hz frequency range
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under the alternative current amplitude of 0.005 V. The overall resistance is determined
by the resistance of the solution (Rs) and the internal resistance produced by Ru–CSs.
Figure 4c reveals that at the sensor surface, diffusion occurs at low frequencies, whereas
resistance occurs at higher frequencies. The high charge–transfer resistance (Rct) of 316 Ω
corresponds to the bare SPCE, implying high resistance in this sensor. Fitting the data with
the Equivalent Randles circuit, R(Q(RW))(QR), demonstrated lower Rct values of 145 and
102 Ω for the CS/SPCE and Ru–CS/SPCE, respectively. The Ru–CS/SPCE exhibited the
lowest resistance, which explains the diffusion-controlled electron transfer in this system.

Figure S2a shows the electrochemical outputs of the Ru–CS/SPCE at various scan rates
in 5.0 mM Fe(CN)6]3−/4−. As the scan rate increased, sharp and well-defined redox peaks,
with gradual increases in Ipa and Ipc, were observed. The linear plots of Ipa and Ipc as a
function of the square root of the scan rate indicated diffusion-controlled electron-transfer
kinetics at the Ru–CS/SPCE surface (Figure S2b). Electron transfer at the sensors in the
Fe(CN)6]3−/4− redox couple is a reversible process. The electrochemically active surface
area (ASA) was determined using the Randles–Ševčík equation [4]. The ASA values of the
bare SPCE, CS/SPCE, and Ru–CS/SPCE were 0.1274, 0.1439, and 0.1590 cm2, respectively.
The ASA of CS/SPCE and Ru–CS/SPCE was 1.20- and 1.25-times larger, respectively, than
that of the bare SPCE. The larger ASA is due to the confinement of the Ru NPs in the CSs,
which boosted the conductivity of the Ru–CS/SPCE.

The roughness factor (ASA vs. geometrical area ratio) was 1.26. This roughness factor
is related to the presence of Ru–CSs, which increases the mass transport rate of the sensor.
The heterogeneous rate constant (k0) was computed using the Nicholson equation, where
the working curves relate ∆Ep to a kinetic parameter (Ψ). k0 was calculated as previously
described [10]. The calculated k0 was 5.0 × 10−3 cm2 s−1, indicating rapid electron transfer
at the sensor.

The oxidation of MT at the bare SPCE, CS/SPCE, and Ru–CS/SPCE was ruled out
using CV experiments. Figure 5a shows the CV graphs for the sensors in the presence of
10.0 µM MT in 0.1 M phosphate buffer (pH 8.0). A small broad irreversible oxidation peak
for MT was observed at +0.65 and 0.64 V with bare the SPCE and CS/SPCE, respectively.
The Ipa values generated at the bare SPCE and CS/SPCE were 7.06 and 12.38 µA, respec-
tively. For Ru–CS/SPCE, the oxidation peak for MT was observed at 0.63 V, with a higher
Ipa value of 26.05 µA (Figure 5b). The slight negative shift of the Epa value and the 3.7-fold
increase in the Ipa value of the Ru–CS/SPCE (26.05 µA) indicate that Ru–CSs are effective
for the electrocatalysis of MT.
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Figure 5. (a) CV data for modified sensors in 0.1 M phosphate buffer (pH 8.0) containing 10 µM MT.
(b) Respective Epa and Ipa plots.

3.3. Effect of Scan Rate on the Ru–CS/SPCE

Figure 6a shows the electrochemical data for the Ru–CS/SPCE at different scan rates
in 50.0 µM of MT prepared in phosphate buffer solution (pH 8.0). When the scan rate
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was increased from 10 to 500 mV s−1, well-defined oxidation peaks were recorded, with
increasing Ipa values. The high ion diffusion rate at higher scan rates resulted in an
increased response. As shown in Figure 6b, the linear dependence of Ipa on the square root
of the scan rate implies diffusion-controlled electron transfer at the Ru–CS/SPCE. Figure 6c
shows the plots of Epc vs. square root of the scan rate; the obtained linear regression
equation is as follows:

Epa = 0.2284x ± 0.315 × logv, R2 = 0.999

The electron-transfer rate constant (Ks) was estimated using Laviron’s derivation given
below [4]:

Ep = E0 + (2.303RT/αnF) log(RTK0/αnF) + (2.303RT/αnF)logv (1)

Here, Ep and E0 are the anodic and formal potentials; R is the universal gas constant,
T is the temperature, α is the electron transfer coefficient, F is the Faraday constant, and n is
the number of electrons involved. By substituting the obtained slope and intercept values
into Equation (1), the values of α and Ks were calculated to be 0.9 and 2.1 s−1, respectively.
Thus, two electrons are transferred during the reaction.
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Figure 6. (a) CV data for the Ru–CS/SPCE at different scan rates from 10 to 500 mV s−1 (10, 20, 40, 60,
80, 100, 150, 200, 250, 300, 350, 400, 450 and 500 mV s−1) in 50 µM MT prepared in 0.1 M phosphate
buffer (pH 8.0). (b) Ipa and (c) Epa plots from data in (a). (d) log (I) vs. log (ν) plots of the Ipa up to a
100 mV scan rate.

Typically, the diffusion-controlled or capacitive-controlled reaction mechanism at the
sensor–electrolyte interface can be distinguished from the power law equations as below:

I = aνb (2)

where I signifies the current, a is a constant, ν is the scan rate, and b is the calculated value
close to 0.5 or 1. A b-value of 0.5 suggests diffusion-controlled processes, while a b-value of
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1 illustrates the capacitive type of the reaction mechanism. Here, the calculated b-value
for the Ipa was 0.63 (Figure 6d) suggesting a discrete/mixed reaction mechanism, with
the predominance of a diffusion-controlled mechanism. The contribution of capacitive-
controlled (k1ν

1/2) and diffusion-controlled processes (k2ν) could be analyzed using the
given Equation (3).

I(V) = k1ν
1/2 + k2ν (3)

where I(V) is the current at potential V and ν is the scan rate. “k1” and “k2” are constants,
and “k1ν” and “k2ν” are related to the capacitive and diffusion-controlled process, re-
spectively [40]. Thus, at lower scan rates (10–100 mV s−1), the linear relationship of the
log current (I) and log scan rate (ν) plots describes the dominance of diffusion-controlled
mechanisms occurring at the sensor. However, at higher scan rates, the diffusion-controlled
process likely decreases.

3.4. Optimization of Solution pH

The optimum electrolyte pH is important for determining the Epa and Ipa values for
the electrocatalytic oxidation of MT at the Ru–CS/SPCE sensor. CV analysis in the presence
of 40.0 µM MT was performed in the pH range of 6.0–8.0 at 50 mV s−1 (Figure 7a). The
magnified region of the same voltammogram is presented in Figure 7b, showing that the
Epa shifted toward the less positive region as the solution pH increased (up to pH 8.0). This
Epa shift is due to the participation of a proton in the electrode reaction. Moreover, good
linearity between the Epa and pH was observed (Figure 7c). The Ipa responses plotted in
Figure 7c illustrate a high Ipa value of 72.24 µA at pH 8.0. The CV responses evince a slope
of −0.31 mV/pH. Thus, the participation of two electrons and one proton (2e−; H+) in the
oxidation of MT to quinone imine is substantiated.
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Figure 7. (a) CV responses of the Ru–CS/SPCE in 0.1 M phosphate buffer of different pH
(6.0–8.0) containing 40 µM MT. (b) Magnified region of CV within the potential window of
0.4–0.8 V. (c) Corresponding Ipa and Epa plots.

The optimum pH was verified using the CA technique, as displayed in Figure 8a.
Similar to the CV data, at pH 8.0, higher current responses (0.614 µA) were obtained with
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5.0 µM MT addition than at the other pH values (Figure 8b). Phosphate buffer solution
(pH 8.0) was selected as the solution with the optimal pH.
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Figure 8. (a) Amperometric responses of the Ru–CS/SPCE in 0.1 M phosphate buffer of different
pHs (pH 6.0–8.0) containing 5.0 µM MT, at the applied potential of +0.6 V. (b) Plot of current values
determined from (a).

3.5. Optimization of Working Potential; Selectivity and Sensing Mechanism at the Ru–CS/SPCE

Compounds with structures similar to that of the analyte often pose a risk of inter-
ference. Several biomolecules could potentially interfere with MT detection, and hence
testing through CA experiments is essential. AA is electrochemically active and is oxidized
at 0.1 V (vs. Ag/AgCl). NE, EP, and DA are highly electroactive catecholamines; however,
these compounds are oxidized at a potential of 0.15 V. Since MT is oxidized at higher poten-
tials (above 0.6 V), these compounds could substantially interfere with MT detection [41].
Also, 5-HT is structurally similar to MT and is a metabolic precursor of MT [42–44]. Thus,
MT precursors or metabolites are also expected to interfere with the analysis of MT in
pharmaceutical samples.

The selectivity of the Ru–CS/SPCE towards MT was determined in the presence
of other interferents, such as AA, Ty, NE, EP, DA, and 5-HT. Interestingly, the sensor
exhibited high selectivity towards MT, and only negligible interference was found when the
concentrations of the tested interferents were ten-fold higher than that of MT (Figure 9a).
It is considered that a substance caused interference at a concentration level that led to
a change of 10% in the initial analytical signal of MT. According to this criterium, the
maximum concentrations of each interferent that can produce interference were calculated
from the CA responses (Figure 9a). The histograms in Figure 9b illustrate the high current
response (22.99 µA) with the addition of MT at an applied potential of 0.6 V. The current
response was lower at applied potentials of 0.3, 0.4, 0.5, and 0.7 V. The lowest responses
were recorded at 0.3 V. In the potential range of 0.3–0.7 V, negligible interference (less than
8%) was recorded for the tested interferents, as illustrated in Figure 9b. The threshold
concentrations of NE, EP, DA, and 5-HT were 400 µM. The concentrations higher than
400 µM could probably exert interferences in MT detection using the Ru–CS/SPCE sensor.
AA and Ty even at 25-fold did not exert any interferences. Because the maximum current
response for MT was recorded at an applied potential of 0.6 V (Figure 9b), this was chosen
as a suitable working potential for the sensor in the presence of miscellaneous interfering
compounds. Herein, the electrostatic interactions between the carbon ring of Ru–CSs and
the benzene ring of MT plays an important role in improving the selectivity of the sensor
towards MT.
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Figure 9. (a) Selectivity of the Ru–CS/SPCE in 0.1 M PBS at pH 8.0 with the addition of 40 µM MT
and various interferents, such as AA, Ty (25-fold higher), NE, EP, DA, and 5–HT, at 400 µM (10-fold
higher), under applied potentials from 0.3 to 0.7 V. (b) Plot of Ipa values 20 s after adding each analyte.

The proposed sensing mechanism of the Ru–CS/SPCE is as follows: first, MT molecules
are adsorbed on the Ru–CS surface via π–π interactions through the conjugated carbon
ring of Ru–CSs and the benzene ring of MT. The adsorbed MT is electro-oxidized to the
corresponding intermediate quinoneimine ions (Scheme 2) [4]. At highly acidic and basic
pHs, MT protonation is compromised, and at the near-neutral/optimized pH of 8.0, MT is
easily oxidized to its quinoneimine form. Thus, the oxidation of MT relies solely on the
electrostatic interactions between the carbon ring of Ru–CSs and the benzene ring of MT.
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Briefly, CSs interact strongly with Ru ions to form ion–molecule adducts, which en-
hances the catalytic activity and chemical stability of Ru–CSs. The Ru NPs are anchored on
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the surfaces of CSs through non-covalent interactions, mainly π–π and hydrogen bonding
interactions. The strong electronic interactions within Ru–CSs, mainly involving the Ru–O
and Ru–C groups, contribute to accelerated electron transfer to and from MT.

Additionally, the introduction of electronegative polymers and molecularly imprinted
polymers could actively repel the negatively charged interferents, thus eliminating the
effects of interferences. However, completely eliminating the interferences of NE, EP, and
DA is unavoidable and necessitates the introduction of advanced analytical techniques
and/or specially tailored nanomaterials [45].

3.6. Amperometric Estimation of MT on the Ru–CS/SPCE

CA measurements were performed using the Ru–CS/SPCE with various MT con-
centrations (0.0, 1.25, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, and 20.0 µM). The current response of
the Ru–CS/SPCE increased rapidly with an increasing MT concentration (Figure 10a); the
current responses measured after 20 s of MT addition are shown in the calibration plot
in Figure 10b. The error bars in the calibration plot indicate the standard deviations of
four mean values (Figure 10b). From the obtained calibration plot, the linear dynamic
range was 1.25–20.0 µM, with a sensitivity of 0.85 µA µM−1 cm−2. The limit of detection
(LOD) was 0.27 µM (S/N = 3), which is much lower than that of reported amperometric
MT sensors [10,46] and the other electrochemical sensors summarized in Table 1.
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Figure 10. (a) Amperometric responses of the Ru–CS/SPCE in 0.1 M PBS pH 8.0 with different
concentrations of MT under an applied potential of +0.6 V. (b) Corresponding linear calibration plot
illustrating linearity from 1.25 µM to 20.0 µM MT.

3.7. Reproducibility and Stability

The reproducibility of the Ru–CS/SPCE sensor (n = 4) for MT (5.0 µM) detection
was tested using CA experiments. The relative standard deviation obtained for the four
identically prepared sensors was 4.1%. The stability of the sensors was examined over the
course of four weeks, in which the current response of the sensor with MT addition was
98.8%, 89.5%, 85.9%, and 82.9% after each successive week, evidencing the good stability of
the sensor (Figure S3).

3.8. Analysis of Pharmaceutical Samples

The analytical usefulness of the Ru–CS/SPCE was evaluated by using the regular
addition method to determine the amount of MT in pharmaceutical samples. All analyses
were performed in triplicate, and the mean values, standard deviations, and relative
standard deviations were calculated. The CA data for the pharmaceutical samples (Table 2)
demonstrated acceptable recovery percentages of ~100%, with a low relative standard
deviation of less than 3.0% compared to the label value. Hence, the fabricated sensor is a
simple and sensitive tool for determining the MT concentration in pharmaceutical samples.
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Table 1. Performance comparison of the Ru–CS/SPCE with previously reported sensors in
MT detection.

Electrochemical Sensor Linear Range (µM) LOD
(µM)

Electrochemical
Technique Tested Real Samples Reference

CPE 3.0–550 2.3 CV, LSV Pharmaceutical samples [47]

BDD 0.5–4.0 0.11 CV, SWV Pharmaceutical and
human urine samples [19]

BT-drug ion pair
PVC sensor 1.0–1000 7.0 Potentiometry Pharmaceutical samples [48]

GCE 10.0–500 1.48 CV, DPV, SWV Pharmaceutical and
human serum samples [49]

ZnFe2O4/CPE 50.0–500 3.0 SWV Fruits, human urine, and
pharmaceutical samples [50]

Graphene/SPCE 1.00–300 0.87 CA Pharmaceutical samples [10]

Gr-Av 10.0–100.0 0.47 SWV
Synthetic urine, human

blood serum, and
pharmaceutical samples

[51]

GO nanoribbons/SPCE 5.0–3000 1.1 CV, DPV Pharmaceutical samples
and herb extracts [52]

Carbon disc electrode 2.5–1000 1.3 CE-ED Pharmaceutical samples [53]

MnHCF-PEDOT/GCE 100–4600 100 CV, CA – [46]

Polymer-PdNPs-
rGO/GCE 5.0–100 0.09 CV, SWV Pharmaceutical and

human urine samples [54]

rGO/RuO2/GCE 2.0–20.0 0.18 DPV – [42]

Ru–CS/SPCE 1.25–20.0 0.27 CV, CA Pharmaceutical samples This study

CPE: carbon paste electrode; LSV: linear sweep voltammetry; BDD: boron-doped diamond electrode; SWV: square
wave voltammetry; BT: bismus tetraiodate; PVC: poly vinyl chloride; GCE: glassy carbon electrode; DPV: dif-
ferential pulse voltammetry; ZnFe2O4: zinc ferrite; Gr-Av: graphite automotive varnish; GO: graphene oxide;
CE-ED: capillary electrophoresis with electrochemical detection; MnHCF: manganese hexacyanoferrate; PEDOT:
mixed-valent poly(3,4-ethylenedioxythiophene); PdNPs: palladium nanoparticles; rGO: reduced graphene oxide;
RuO2: ruthenium oxide.

Table 2. Comparison of MT contents (mean of three replicates) in pharmaceutical samples using the
CA technique.

Pharmaceutical Samples MT Taken (mg) MT Found (mg) Recovery (%) RSD (%)

Nature Made MT

5.0 4.99 97.4 1.1

10.0 9.63 95.2 2.9

15.0 14.9 97.6 2.1

20.0 19.03 94.6 0.7

Melatonina
(Cosmopharm)

3.0 3.11 102.2 2.9

6.0 6.13 101.4 2.3

9.0 9.09 100.6 1.6

12.0 12.10 102.0 2.6
RSD: relative standard deviation.

4. Conclusions

Ru–CS materials that readily interact with MT via strong electronic interactions were
synthesized. The formation of ion–molecule adducts between the CSs and Ru ions en-
ables efficient adsorption of Ru in the CS matrix. Ru NPs confined in CSs showed good
electron-transfer kinetics, resulting in an increased current response towards MT. The
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improved electrochemical performance of the Ru–CS/SPCE is attributed to its high ASA of
0.1590 cm2. The Ru–CS/SPCE exhibited a linear response in the MT concentration range of
1.25–20.0 µM, with a sensitivity of 0.85 µA µM−1 cm−2 and a much lower LOD of 0.27 µM
(S/N = 3). The Ru–CS/SPCE exhibited high selectivity for MT in the presence of ten-fold
higher concentrations of structurally similar interferents and other biomolecules. In the
pharmaceutical samples, the Ru–CS/SPCE exhibited satisfactory recovery percentages
with low relative standard deviations, indicating precise measurement by the sensor. The
low LOD of the sensor and the lack of sample separation prior to analysis are important
characteristics that enable the rapid detection of MT in complex samples. These results
suggest that the fabricated Ru–CS/SPCE is a highly applicable tool for the quality control
of medicines at a low cost and offers the potential for automation. Furthermore, the sim-
ple fabrication process makes it a potential electrochemical platform for developing new
point-of-care systems for detecting MT.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios13100936/s1, Section S1: Instrumentation and Mea-
surements. Figure S1: (a) The XPS survey spectra of Ru–CS/SPCE and (b) the deconvoluted Ru3p
spectra evincing two distinct sub-peaks Ru3p1/2 and Ru3p3/2 with mixed valence states Ru0 and
Ru2+ of metallic Ru. Figure S2. (a) CV data for Ru–CS/SPCE in 5 mM [Fe(CN)6]3−/4− prepared
in 0.1 M KCl at increasing scan rates (10 to 200 mVs−1) and (b) respective Ipa and Ipc calibration
plots. Figure S3. (a) Amperometric current responses of Ru–CS/SPCE measured and plotted against
20.0 µM concentration of MT under an applied potential of +0.6 V. (b) Relative % of current responses
retained in the 0–4 weeks period.
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