
Citation: Koyappayil, A.; Yagati,

A.K.; Lee, M.-H. Recent Trends in

Metal Nanoparticles Decorated 2D

Materials for Electrochemical

Biomarker Detection. Biosensors 2023,

13, 91. https://doi.org/10.3390/

bios13010091

Received: 7 November 2022

Revised: 27 December 2022

Accepted: 1 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Recent Trends in Metal Nanoparticles Decorated 2D Materials
for Electrochemical Biomarker Detection
Aneesh Koyappayil † , Ajay Kumar Yagati † and Min-Ho Lee *

School of Integrative Engineering, Chung-Ang University, 84 Heuseok-ro, Dongjak-Gu, Seoul 06974, Republic of Korea
* Correspondence: mhlee7@cau.ac.kr; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
† These authors contributed equally to this work.

Abstract: Technological advancements in the healthcare sector have pushed for improved sensors and
devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for
various specific physiological conditions, early disease screening has become a possibility. Biomarkers
are the body’s early warning systems, which are indicators of a biological state that provides a
standardized and precise way of evaluating the progression of disease or infection. Owing to the
extremely low concentrations of various biomarkers in bodily fluids, signal amplification strategies
have become crucial for the detection of biomarkers. Metal nanoparticles are commonly applied on
2D platforms to anchor antibodies and enhance the signals for electrochemical biomarker detection. In
this context, this review will discuss the recent trends and advances in metal nanoparticle decorated
2D materials for electrochemical biomarker detection. The prospects, advantages, and limitations of
this strategy also will be discussed in the concluding section of this review.

Keywords: metal nanoparticles; immunosensor; MXene; MoS2; graphene; MOF; biomarkers; graphitic
carbon nitride; black phosphorous; 2D-LDHs; boron nitrides; graphdiyne

1. Introduction

The definition of biomarkers has evolved over time, and a broader definition was
suggested by the World Health Organization as “a biomarker is any substance, structure,
or process that can be measured in the body or its products and influence or predict the
incidence of outcome or disease” [1,2]. More specific definitions such as “a biological
molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal
process, or of a condition or disease and can be tested to see how well the body responds to
treatment for a disease or condition” [3], and “a characteristic that can be objectively mea-
sured and quantitatively evaluated as an indicator of a normal biological and pathological
process, or pharmacological responses to a therapeutic intervention” [4] were coined by
the US National Cancer Institute, and the US National Institutes of Health, respectively.
Biomarkers can be biological, chemical, or physical, and are measurable parameters indica-
tive of a specific biological state. The detection of biomarkers is crucial for the diagnosis
and treatment of numerous diseases [5]. Biomarkers are classified broadly into imaging
biomarkers and molecular biomarkers based on their characteristics. Imaging biomarkers
are often used in combination with various imaging tools, whereas molecular biomarkers
comprise RNA, DNA, and proteins [6]. Molecular biomarkers are easily quantifiable from
biological samples and can complement clinical characteristics [7,8]. Another category,
known as pharmacodynamic biomarkers, is applied in drug development during dose
optimization studies [9]. Based on the application, biomarkers are classified into prognostic
biomarkers, diagnostic biomarkers, predictive biomarkers, and monitoring biomarkers [10].
Prognostic biomarkers help to identify the risk of disease progression in the future [11].
Diagnostic biomarkers help physicians to identify a specific disease condition [12], and pre-
dictive biomarkers predict the responses related to therapeutic interventions [11], whereas
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a monitoring biomarker is usually measured for assessing the status of a medical condition
or disease [13].

An ideal biomarker sensor must capture the biomarker selectively from the complex
biological matrix of interfering molecules. Although nonspecific binding is still a concern,
electrochemical detection methods, specifically electrochemical impedance spectroscopy
(EIS), allow the selective analysis of biomarker detections by the resistive and/or capacitive
changes due to physical and/or biomolecular interactions of the electrode surfaces coated
with nanomaterials, DNA, proteins, etc. [14–16]. It is one of the basic and widely used
approaches to determine the fundamental redox events at the electrode-electrolyte interface.
However, evaluations are made by comparing the results of the EIS with cyclic voltam-
metry (CV) measurements. Also, differential pulse voltammetry (DPV) and square wave
voltammetry (SWV) techniques are used in biomarker detection systems for both label
and label-free approaches [17,18]. Among these techniques, CV-based detection sensing is
widely reported due to its ability to explain the electrochemical events, such as oxidation-
reduction reactions and electron-transfer kinetics occurring at the electrode-electrolyte
interface, and the mass transport towards the electrode surface [19–21]. The search for ad-
vanced functional materials for electrochemical biomarker detection has sparked a research
interest in layered 2D materials over the past few years and several novel approaches were
reported for the synthesis of various 2D materials and their nanocomposites with exciting
immunosensor applications. The interest and demand for 2D materials have increased sig-
nificantly, and the global market for 2D materials is expected to grow rapidly with a CAGR
of 3.9% between 2020 and 2027 and a corresponding increase in valuation from 2.27 billion
to 2.86 billion USD [22]. In this context, this review discusses the recent advances and
challenges of metal nanoparticle decorated 2D materials for biomarker detection.

2. Metal Nanoparticles on 2D Materials for Biomarker Detection

Nanoparticles used separately or in conjugation with other nanomaterials on 2D mate-
rials fulfill various roles in the design and development of electrochemical immunosensors.
Also, they improve the analytical characteristics of the developed sensors such as linear
range, LOD, and sensitivity [23]. For instance, nanoparticles deposited on the surface of
the working electrode result in an enhancement of the surface area, thereby leading to
an increased molecule loading capacity [24,25]. Additionally, the unique properties of
nanoparticles could enhance the signal for the sensitive determination of biomarkers [23].
Also, the high electrical conductivity of metal nanoparticles at the electrode surface acceler-
ates the redox electron transfer process. In some cases, nanoparticles could act as platforms
for anchoring antibodies [26]. Metal nanoparticles were also used as a transport medium
to capture the analyte from the sample, thereby concentrating the analyte molecules to-
wards the electrode surface to improve the analytical signal [27]. Among various metal
nanoparticles, AuNPs were extensively used to immobilize antibodies on the electrode
surface to effectively amplify the immunosensor signal, anchor antibodies, and improve
electrocatalytic activity [28,29].

2.1. Graphene Oxide Conjugated with Nanoparticles for Electrochemical Biomarker Detection

Graphene, a single layer (monolayer) of SP2 carbon atoms with a molecular bond
length of 0.142 nm, is tightly bound in a hexagonal honeycomb lattice. It is basically
extracted from graphite and is merely a sheet of graphite. Graphene possesses excellent
electrical conductivity (200,000 cm2/Vs) due to its bonding and antibonding of pi orbitals,
with the strongest compound around 100–130 times stronger than steel with a tensile
strength of 130 GPa and a Young’s Modulus of 1 TPa-150,000,000 psi. It is also one of the best
conductors of heat at room temperature (at (4.84 × 103–5.30 × 103 W/mK). As graphene is
a subunit of graphite it can be synthesized by direct extraction from bulk graphite. From the
high-quality sample of graphite, graphene can be extracted by micromechanical cleavage
or the scotch tape method of production. It is a straightforward method that doesn’t need
any specialized equipment. A piece of adhesive tape is placed onto and then peeled off
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the surface of a sample of graphite, resulting in a single to few layers of graphene. Other
methods include the dispersion of graphite, exfoliation of graphite oxide, epitaxial growth,
and chemical vapor deposition (CVD) as shown in Figure 1.
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Graphene oxide is a form of graphene that includes oxygen functional groups and
possesses interesting properties that are different from graphene. By reducing graphene
oxide, these functional groups can be removed resulting in reduced graphene oxide. The
production of reduced graphene oxide can be done in (i) chemical reduction, (ii) Thermal
reduction; (iii) microwave and photoreduction; (iv) photocatalyst reduction; (v) solvother-
mal/hydrothermal reduction. The detailed information for various synthesis routes can be
found elsewhere [31–33] and is beyond the scope of this review.
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In this section, we discuss the development of various types of electrochemical sensors
based on graphene oxide conjugated with nanoparticles that have been reported recently
for various types of biomarkers. The development of biosensors that accurately measure
the desired biomarker at high sensitivity and selectivity is crucial. However, sensitivity
and selectivity are the two main factors that limit accuracy when performing the detections
at the point of care with meager volumes of biological test solutions. For cancer cell
analysis, the sensors should be able to detect tumors within the range of 100–1000 cell
counts. To overcome these difficulties, innovative biosensor approaches with the optical,
electrochemical, and piezoelectric transducer occupy the place of benchtop protocols
adopted by the classical detection methods. Among these biosensors, electrochemical-
based approaches competed with optical sensors which are widely used for the analysis of
cancer biomarkers due to the characteristics of high sensitivity, selectivity, fast response,
ease of use, low cost, and minimal fabrication procedures. In electrochemical biosensors,
the right choice of transducer material is crucial, since it is the transducer that mainly
influences the overall sensitivity [34] with minimal contributions from labeling methods.

Recently, Ranjan et al. [35] reported on the detection of breast cancer CD44 biomarkers
using a gold-graphene oxide nanocomposite with ionic liquid with differential pulse
voltammetry and electrochemical impedance spectroscopy. In this work, the authors
reported the synthesis of RGO, ionic liquid (IL), and Au nanoparticles (Au NPs) by the
citrate reduction method and other chemical procedures to form a nanocomposite on a
glassy carbon electrode (GCE), as shown in Figure 2. In this work, the addition of 1-butyl-3-
methylimidazolium tetrafluoroborate, an ionic liquid in conjugation with Au nanoparticles
enabled the enhancement in the overall sensitivity of the developed sensor. Once the
nanocomposite is deposited on GCE, the surface is activated with EDC/NHS to covalently
bind the anti-CD44 antibodies. After the surface is blocked with BSA for nonspecific binding,
then different concentrations of CD44 antigen were allowed for electrochemical investigation
with CV, DPV, and EIS. The sensor possessed a linear range of 5 fg/mL to 50 µg/mL with a
LOD of 2.7 fg/mL and 2.0 fg/mL in serum and PBS samples, respectively. This sensor is a
promising candidate for the onsite detection of CD44 in breast cancer patients.
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In another study, Yagati et al. [36] proposed indium tin oxide (ITO)-based electrodes
modified with reduced graphene oxide-gold nanoparticles that were used for the electro-
chemical impedance sensing of the C-reactive protein in serum samples. This biomarker
detection is crucial in analyzing the inflammation due to an infection, and the risk of
heart disease. In this study, graphene oxide-Au nanoparticles were electrodeposited on
ITO microdisk electrodes fabricated using standard photolithography techniques. Subse-
quently, the modified electrodes were coated with a self-assembled monolayer of 3-MPA
and activated with EDC/NHS. After the surface-blocking protocol was performed, then
the selective antibodies were immobilized on the rGO-NP surface. Once the transducer
surface is ready, a different concentration of CRP in human serum (1: 200) was detected
with the help of impedance spectroscopy (Figure 3). The key feature of this sensor is that
by forming the nanohybrid materials (RGO-NP hybrid) on the electrode, it results in an
enhanced sensitivity toward CRP detection. The linear range of the sensor is 1–1000 ng/mL
with an LOD of 0.08 ng/mL in serum samples. Based on the findings, it has the feasibility
to employ multiplexed assay detection of biomarkers for point-of-care applications.

Biosensors 2023, 13, x  5 of 37 
 

Figure 2. (A) Schematic diagram shows the synthesis of GO-IL-AuNPs hybrid nanocomposite and 
(B) Stepwise fabrication shows the surface modification procedures for the fabrication of BSA/anti-
CD44/GO-IL-AuNPs/GCE Immunosensor. Reprinted with permission from Ref. [35] Copyright 
2022, ACS. 

In another study, Yagati et al. [36] proposed indium tin oxide (ITO)-based electrodes 
modified with reduced graphene oxide-gold nanoparticles that were used for the electro-
chemical impedance sensing of the C-reactive protein in serum samples. This biomarker 
detection is crucial in analyzing the inflammation due to an infection, and the risk of heart 
disease. In this study, graphene oxide-Au nanoparticles were electrodeposited on ITO mi-
crodisk electrodes fabricated using standard photolithography techniques. Subsequently, 
the modified electrodes were coated with a self-assembled monolayer of 3-MPA and acti-
vated with EDC/NHS. After the surface-blocking protocol was performed, then the selec-
tive antibodies were immobilized on the rGO-NP surface. Once the transducer surface is 
ready, a different concentration of CRP in human serum (1: 200) was detected with the 
help of impedance spectroscopy (Figure 3). The key feature of this sensor is that by form-
ing the nanohybrid materials (RGO-NP hybrid) on the electrode, it results in an enhanced 
sensitivity toward CRP detection. The linear range of the sensor is 1–1000 ng/mL with an 
LOD of 0.08 ng/mL in serum samples. Based on the findings, it has the feasibility to em-
ploy multiplexed assay detection of biomarkers for point-of-care applications. 

 
Figure 3. (A) Fabrication of 8-channel Indium-tin oxide electrodeposited with reduced graphene 
oxide-nanoparticle microdisk electrode array as working electrodes with a shared counter electrode. 
(B) Chemical functionalization of modified ITO electrode with EDC/NHS to couple antibodies for 
CRP detection in real samples. Reprinted with permission from Ref. [36]. Copyright 2016, Elsevier. 
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(B) Chemical functionalization of modified ITO electrode with EDC/NHS to couple antibodies for
CRP detection in real samples. Reprinted with permission from Ref. [36]. Copyright 2016, Elsevier.

Jonous et al. [37] reported on the detection of prostate-specific antigen (PSA) by
using a sandwich-type transducer composed of graphene oxide (GO) and gold nanopar-
ticles (AuNPs). In this work the authors utilized an 11-mercaptoundecanoic acid for
self-assembled monolayer formation on the GO-coated glassy carbon electrode (GCE) and a
subsequent modification with EDC/NHS to convert -COOH to -NH for antibody bindings
(Figure 4). After blocking with 1% BSA, different concentrations of PSA were allowed
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to bind to the electrode and with square wave voltammetry, and the quantification was
made. The sensor possessed a limit of detection estimated to be around 0.2 and 0.07 ng/mL
for total and free PSA antigens, respectively. The incorporation of AuNPs on GO/GCE
enabled double functionality, i.e., specific recognition and signal amplification, for sensitive
determination of PSA.
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Also, Kasturi et al. [38] reported on the development of a biosensor for the detection
of microRNA-122 (miRNA-122) with AuNPs-decorated reduced graphene oxide (rGO) on
the Au electrode surface (Figure 5). The thiol-labeled DNA probes were attached to the
Au-rGO transducer surface by forming a SAM layer, with subsequent blocking with 1%
BSA. Then, the target miRNA was allowed to bind to the transducer surface to quantify the
biomarker for liver diseases.

The sensor possessed a linear range from 10 µM to 10 pM and had a detection limit of
1.73 pM. The sensor possessed good biocompatibility, superior electron transfer characteris-
tics, large surface area, and selective conjugation with biomarkers. Also, the sensor design
can be applied to construct other types of biomarker detection. Furthermore, it can be
integrated with a lab on a chip platform. It is also applicable to the large-scale production
of sensors with a focus on the early detection of diseases.

In another interesting work, Rauf et al. [39] reported on the use of laser-induced
graphene oxide [34] as a new-generation electrode in cancer research for the detection
of human epidermal growth factor receptor 2 (HER-2). In this study, with laser printing
technology, the structures of working, counter, and reference electrodes were formed on a
polyimide sheet, then the gold nanostructures (Christmas-tree-like structures) were formed
by electrodeposition on the working electrode (Figure 6). Subsequently, the sensor surface
is modified with thiol labeled HER-2 aptamer and blocked with BSA for any nonspecific
bindings. Then, the HER-2 protein was allowed, in different concentrations, to interact
with the aptamer immobilized surface. The electrochemical signals were then recorded
for the aptamer surface after bindings with different concentrations with [Fe(CN)6]3−/4−
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redox probe. The CV analysis showed a decrease in current upon bindings of various
concentrations of HER-2, and from the calibration, the limit of detection was found to
be 0.008 ng/mL. It is claimed that with the incorporation of 3D Au nanostructures the
sensor possessed a high electron transfer rate, which resulted in achieving a lower LOD
and possessing high sensitivity and accuracy in detecting HER-2 in human serum samples.
Furthermore, special software was developed to make it a POC device, in which the
laboratory aptasensor could be converted into a hand-held aptasensor.
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Also, Hasanjani et al. [40] reported on the development of Zidovudine (ZDV). A
modified pencil graphite electrode (PGE) was made using deoxyribonucleic acid/Au-
Pt bimetallic nanoparticles/graphene oxide-chitosan (DNA/Au-Pt BNPs/GO-chit/PGE)
(Figure 7). The PGE was immersed in the GO-chit solution to create the graphene oxide-
chitosan/pencil graphite electrode (GO-chit/PGE). Later, the electrodeposition of Au-
Pt bimetallic nanoparticles (Au-Pt BNPs) was accomplished on the surface of the GO-
chit/PGE-modified electrode. Subsequently, DNA was immobilized on the Au-Pt BNPs/GO-
chit/PGE, applying a constant potential of 0.5 V.
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Figure 6. The schematic diagram for the formation of laser-induced graphene (LIG) electrode sensor.
(A) LIG electrode on polyimide sheet, (B) Formation of Au nanostructures on working electrode area
with electrodeposition, inset shows the SEM images of the tree-like structure of Au. (C) Bindings
of DNA aptamer on the electrode through self-assembly of mecaptohexanol (MCH), (D) Surface
blocking procedures with BSA and measurement of electrochemical signal with [Fe(CN)6]3−/4− redox
probe, (E) Incubation with the HER-2 antigen and measurement of EC signal, and (F) Quantification of
HER-2 by evaluating the electrochemical signal. Reprinted with permission from Ref. [39]. Copyright
2021, Elsevier.
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permission from Ref. [40]. Copyright 2021, Elsevier.
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Using differential pulse voltammetry, the I−V response was recorded for different
concentrations of ZDV. The sensor showed a linear dynamic range from 0.01 pM to 10.0 nM,
with a detection limit of 0.003 pM in human serum samples.

Recently, Kangavalli and Veerapandian reported on the development of a dengue
biomarker using ruthenium bipyridine complex on the surface of graphene oxide [41].
They also reported on various EC-based techniques for the electrodeposition and electroless
deposition procedures of graphene oxide as a nanoarchitecture for a label-free biosen-
sor platform [42]. Some more information on electrochemical biosensors developed for
biomarker detection that contain graphene oxide and metal nanoparticles can be found
in some valuable studies recently reported, and are available in the literature [43–47].
Graphene oxide-based nanomaterials offer a wide range of possibilities for developing
sensitive electrochemical biosensors for biomarker detection. In recent years, significant ad-
vances in graphene-nanoparticle-based electrochemical sensors are made for the detection
of cancer biomarkers, and here we analyze the analytical parameters of those sensors, as
shown in Table 1.

Table 1. Literature reports on the analytical parameters of graphene oxide conjugated nanoparticles
for various biomarker detection.

Sensing Platform Biomarker Technique Linear Range LOD Real Sample Ref.

RGO-NP/ITO CRP EIS 1–10,000 ng/mL 0.08 ng/mL Human serum [36]

GO-CoPP CPEB4 DPV 0.1 pg/mL–10 ng/mL 0.074 pg/mL Human serum [48]

AuNP-RGO/ITO TNF-α EIS 1–1000 pg/mL 0.43 pg/mL Human serum [49]

rGO@AgNPs LA CV 10–250 µM 0.726 µM Human serum [50]

AgPdNPs/rGO

RAC
LSA

0.01–100 ng/mL

1.52 pg/mL

—- [51]SAL 1.44 pg/mL

CLB 1.38 pg/mL

MWCNTs-AuNPs/CS-
AuNPs/rGO-AuNPs OTC DPV 1.00–540 nM 30 pM —- [52]

GO-Fe3O4-β-CD MGMT DPV 0.001–1000 nM 0.0825 pM Human plasma [53]

AuNPs/GQDs/GO/SPCE

miRNA-21
SWV

0.001–1000 pM

0.04 fM

Human serum [54]miRNA-155 0.33 fM

miRNA210 0.28 fM

rGO/RhNPs/GE HER-2-ECD DPV 10–500 ng/mL 0.667 ng/mL Human serum [55]

AuNPs-rGO/ITO IL8 DPV 500 fg/mL–4 ng/mL 72.73 pg/mL —- [56]

Pd@Au@Pt/rGO
CEA

DPV
12 pg/mL–85 ng/mL 8 pg/mL

Human serum [57]
PSA 3 pg/mL–60 ng/mL 2 pg/mL

AgNPs/GO/SPCE PSA DPV 0.75–100 ng/mL 0.27 ng/mL Human serum [58]

rGO-GNPs-Cr.6/GCE L-Trp SWV 0.1–2.5 µM 0.48 µM Human serum [59]

GO/AgNPs/Au PSA LSV 5–20,000 pg/mL 0.33 pg/mL Human serum [60]

AuNP/RGO/GCE CA125 SWV 0.0001–300 U/mL 0.000042 U/mL Human serum [61]

ErGO-SWCNT/AuNPs HER2 EIS 0.1 pg/mL–1 ng/mL 50 fg/mL Human serum [62]

Au-PtBNPs/CGO/FTO MUC1 DPV 1 fM–100 nM 0.79 fM Human serum [63]

BNPAu-Fe-rGO/GCE Acetaminophen DPV 50–800 nM 0.14 nM Human urine [64]

2.2. MoS2 Conjugated Nanoparticles for Electrochemical Biomarker Detection

Recently, transition metal dichalcogenides (TMDCs) found their applications in vari-
ous biosensors due to their large surface-to-volume ratio, tunable electronic and optical
properties, low toxicity, and unique van der Waals layered structure [65]. In TMDCs, one
layer of transition metal atoms (M) lies between two layers of chalcogen atoms (X) resulting
in a formula MX2. Various kinds of TMDCs can be realized by altering the chalcogen atoms
such as Sulphur (S), Selenium (Se), and Tellurium (Te), and metal atoms like Molybdenum
(Mo) and Tungsten (W). Among these, MoS2 is commonly used because its fundamental
constituents are surplus and innoxious [66]. MoS2 molybdenum (Mo) atoms lie between
the two sulfide atoms layers (S-Mo-S) and atoms in the crystal are associated by strong



Biosensors 2023, 13, 91 10 of 33

covalent bonding and adjacent layers of MoS2 are held by weak van der Waals forces. MoS2
possesses a mobility of 200 cm2/Vs at room temperature, high on/off current ratio of 108,
and a direct band gap of 1.8 eV. Based on these properties, MoS2 becomes a promising al-
ternative to graphene and is applied in various electrochemical and optical sensors [67–69].
MoS2 can be synthesized in both top-down and bottom-up approaches (Figure 8). The
top-down approach includes the exfoliation of MoS2 [70], while the bottom-up approaches
include (i) chemical vapor deposition [71]; (ii) physical vapor deposition [72]; (iii) solution-
based processing [73]. For a more detailed synthesis of MoS2, readers are encouraged to go
through the literature survey of the desired synthesis approach. Thus, like graphene, MoS2
offers a large surface area that enhances its biosensing performance.
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MoS2 possesses a direct band gap of 1.8 eV in the monolayer, lattice defects of zero
dimensionality, grain boundary defects, and an enhanced surface-to-volume ratio. Also,
the feasibility of surface modification and chemical functionalization makes these char-
acteristics of MoS2 to adopt and study in scientific and industrial fields [75] (Figure 9).
Furthermore, to increase the electroactivity/conductivity of graphene and/or other 2D
materials, mostly nanoparticles were incorporated to achieve the synergistic effects from
both nanomaterials, which ultimately resulted in an improvement in the overall analytical
performance of the biosensor. In this section, we review various types of biosensors that
incorporate metal nanoparticles on MoS2 for the detection of various biomarkers.
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In a recent report that mentions the usage of MoS2-Au nanoparticles, Yagati et al. [77]
reported on the applications of MoS2 conjugated Au nanoparticles on indium tin oxide
(ITO) electrodes for the detection of the thyroid-stimulating hormone biomarker, triiodothy-
ronine (T3), as shown in Figure 10. Electrodeposition procedures allowed the formation of
MoS2 and Au nanostructures on the ITO electrode. Subsequently, T3 antibodies were immo-
bilized on the MoS2-Au/ITO surface by forming a self-assembled monolayer of dithiobis
(succinimidyl propionate) (DSP). For any nonspecific bindings, the surface is coated with
casein and then subjected to different concentrations of the T3 biomarker diluted in both
PBS and serum samples. Electrochemical impedance spectroscopy was used to analyze the
bindings of T3 to its antibodies and a linear correlation was observed for different concen-
trations. Based on the quantifications made by this sensor for the detection of T3, a linear
range of 0.01–100 ng/mL with a detection limit of 2.5 pg/mL was observed. The sensor
also showed a good correlation with data observed by the conventional method (Roche
Cobas) and possessed high sensitivity and selectivity in discriminating the healthy and
cancer samples. Based on the findings, the developed sensor could apply to cancer-related
biomolecule analysis.

Su et al. [78] developed dual target sensing (adenosine triphosphate (ATP) and throm-
bin) detection electrochemical biosensors based on gold nanoparticles-decorated MoS2
(AuNPs–MoS2) nanocomposites which feature both “signal-on” and “signal-off” elements
in the detection system, and thrombin and ATP could act as inputs to activate an AND
logic gate (Figure 11). In this approach, two different aptamer probes labeled with redox
tags (ferrocene (Fc) and methylene blue (MB)) were simultaneously immobilized on an
AuNPs-MoS2 modified glassy carbon electrode (GCE) through Au-S bond formations.
Subsequently, the electrode was immersed in 6-mercaptohexanol to block the uncovered
spots of AuNPs–MoS2/GCE. Square wave voltammetry (SWV) was used to determine the
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various concentrations of ATP and thrombin applied to the GCE. From concentration vs.
change in the current results, it was evaluated that the sensor had a linear range for the
determination of ATP, which was 1 nM to 10 mM with a detection limit of 0.32 nM, while
for the thrombin determination, the linear range was 0.01 nM to 10 µM with a detection
limit of 0.0014 nM.
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EIS (Nyquist plot) shows increased semi-circle (Rct) for quantification. Reprinted with permission
from Ref. [77]. Copyright 2020, Elsevier.
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The authors also suggested that this mechanism can be acted as an AND logic gate
by using ATP and thrombin as inputs and the electrochemical signals of Fc and MB as
outputs (Figure 12). The logic gate works on the structural conversion of the aptamer probe
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triggered by ATP and thrombin. The working mechanism was the individual peak current
enhancement of Fc or the suppression of MB as electron transfer OFF (eTOFF) or “zero”
output, and the simultaneous peak current enhancement of Fc and suppression of MB
as electron transfer ON (ON) or “one” output. From the inset table, a “one” output was
achieved only when both inputs were “one”. When there were no inputs (0, 0) or only
one input (0, 1 or 1, 0), the result was “zero” output. Thus, the MoS2-based multiplexed
aptasensor could also serve as an “AND” gate.
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In another work, Chen et al. [79] reported on the development of a growth differ-
entiation factor-15 (GDF-15) expression sensor which is a potential biomarker for the
diagnosis, risk stratification, and prognosis of various cardiovascular diseases (Figure 13).
Here, a sandwich-type immunosensor was constructed using amine-modified graphene-
supported gold nanorods (NG/AuNPs) as a substrate platform, and the durian-shaped
MoS2/AuPtPd nanodendrite (NDs) as a label for secondary antibodies (Ab2) for the quan-
tification of growth differentiation factor-15 (GDF-15). NG/AuNPs are used to enhance
the surface area and for the immobilization of primary antibodies through the binding of
amino or sulfhydryl groups. Subsequently, the electrodes were blocked with 1wt% BSA.
Finally, the signal probe MoS2/AuPtPd-Ab2 was added to the sample.

The developed sensor was also applied to evaluate the efficacy towards the clini-
cal sample analysis and compared with traditional sensing methods, such as ELISA, to
evaluate the accuracy of the results. The sensor showed a linear range of 1.5 pg/mL to
1.5 µg/mL with a detection limit of 0.9 pg/mL. Due to its high sensitivity, rapid response,
and feasibility to miniaturization, the proposed sensor could be applied to a point-of-care
diagnostic tool for cardiovascular diseases and paves the path toward “liquid biopsies”.
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Figure 13. Schematic illustration for the development of a sandwich-type electrochemical sensor for
GDF-15 detection sensor. Reprinted with permission from Ref. [79]. Copyright 2022, Elsevier.

Nong et al. [80] reported on the detection of cortisol which is a glucocorticoid hormone
that adrenal glands produce and release, and this hormone regulates stress, inflammation,
blood pressure, sugar, and overall metabolism. In this work, copper tungstate-molybdenum
sulfide (CuWO4@MoS2) and chitosan-gold (Chit-Au) nanocomposite were synthesized and
applied to GCE (Figure 14). Subsequently, the cortisol antibody (C-Mab) was immobilized
using the EDC/NHS reaction and subsequent blocking with BSA. Once the transducer sur-
face was fabricated, SWV was performed to analyze the bindings of various concentrations
of cortisol and a linear relationship was observed concerning different concentrations. The
sensor showed a linear range of 0.1 fg/mL to 1 µg/mL with a detection limit of 0.014 fg/mL
(S/N = 3). The sensor showed excellent storage stability and reproducibility and it can
detect the content of cortisol in saliva.

Su et al. [81] reported on the use of a MoS2-Au nanocomposite for the detection of a car-
cinoembryonic antigen (CEA). In this work, CEA antibodies labeled with horseradish per-
oxidase resulted in an amplified electrochemical signal by catalyzing o-phenylenediamine
(o-PD) in the presence of hydrogen peroxide (H2O2). As can be seen in Figure 15, the
MoS2-Au conjugated HRP labeled antibodies enhance the overall sensitivity when the dif-
ferent concentrations of CEA were measured using cyclic voltammetry. From the analytical
performance, the sensor displayed a linear range of 10 fg/mL to 1 ng/mL with a detection
limit of 1.2 fg/mL. The sensor also exhibited good stability, and high selectivity suggesting
that the proposed immunosensor could detect CEA in real samples.
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Also, Ma et al. [82] reported similar works using MoS2@Cu2O-Au nanoparticles for
the detection of alpha-fetoprotein (AFP), a tumor marker to identify adult primary liver
cancer (Figure 16). In this work, AuNPs were electrodeposited on GCE which acted as
antibody carriers and sensing platforms. Further, MoS2@Cu2O was combined with the
AuNPs as a strategy to obtain the signal amplification resulting in a composite MoS2-
Cu2O-Au as a triamplification electrochemical signal. A sandwich immunosensor was
developed by immobilizing primary antibodies on Au-deposited GCE and blocked with a
surface with BSA for nonspecific bindings. Then, the electrodes were dipped with different
concentrations of AFP. Subsequently, the HRP-labeled secondary antibodies coupled with
MoS2@Cu2O were then allowed to conjugate with the electrode. Amperometric response,
under suitable experimental conditions, exhibited that the sensor possessed a linear range
of 0.1 pg/mL to 50 ng/mL and a detection limit of 0.037 pg/mL (S/N = 3). The sensor
showed satisfactory recoveries when tested in human serum samples, and the proposed
approach could extend the potential application of electrochemical immunosensors to
medical applications.
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Likewise, several reports demonstrated the usage of a MoS2-Au nanocomposite for
the detection of electrochemical biosensors for various types of biomarker detection in
clinical applications. However, very few reports show the possibility of point-of-care
applications. Here, we analyzed the analytical parameters of the reports that adopt the
MoS2-Au nanocomposite used for electrochemical sensors and presented them in the
following Table 2.
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Table 2. Literature reports on the analytical parameters of MoS2 conjugated nanoparticles for various
biomarker detections.

Sensing Platform Biomarker Technique Linear Range LOD Real Sample Ref.

Au-NPs/MoS2 CRP EIS 1 fg/mL–1 µg/mL 0.01 fg/mL —- [83]

Fe3O4@MoS2-AuNPs H2O2 SWV 1–120 µM 80 nM Human serum [84]

Au/MoS2/Au/PET GP120 SWV 0.1 pg/mL–10 ng/mL 0.066 pg/mL Human serum [85]

MoS2/Pt@Au-nanoprism/PDA free-PSA; total-PSA DPV 0.0001–100 ng/mL 0.1 pg/mL;
0.0011 fg/mL Human serum [86]

MoS2 NFs/Au@AgPt YNCs CEA i-t curve 10 fg/mL–100 ng/mL 3.09 fg/mL Human serum [87]

Au/Co-BDCf/MoS2 CTnIg i-t curve 10 fg/mL–100 ng/mL 3.02 fg/mL Human serum [88]

Au/MoS2/rGO CA 27-29 BCA i-t curve 0.1–100 U/mL 0.08 U/mL Human serum [89]

MoS2-AnNPs/GCE CEA DPV 1 pg/mL–50 ng/mL 0.27 pg/mL Human serum [90]

Ce-MoS2/AgNRs PSA CV 0.1–1000 ng/mL 0.051 ng/mL Human serum [91]

MoS2@Au Siglec-5 ECL 10 pM–500 pM 8.9 pM Human serum [92]

MoS2/PPY/AuNPs Glucose DPV 0.1–80 nM 0.08 nM Human serum [93]

AgPt/MoS2 H2O2 i-t curve 20 µM–4 mM 1.0 µM —- [94]

2.3. Biomarker Detection on MXenes Conjugated with Metal Nanoparticles

MXenes are transition-metal carbides/nitrides/carbonitrides with a 2D structure and
general formula Mn + 1XnTx (n = 1–3), where M is an early transition metal, X can be
carbon or nitrogen, and Tx corresponds to the surface terminations (Figure 17A,B). The
ideal electronic structure [95], structural stability [96], high surface-to-volume ratios [97],
outstanding mechanical [98] and optical properties [99], versatile surface chemistries [100],
tunable bandgap [101], and high thermal and chemical stability [102,103] make them
promising materials for biomarker detection (Table 3). The initial synthesis approach for
MXenes was realized based on the etching of Ti3AlC2 with 50% HF for 2 h at room tem-
perature [104]. Later many environmentally friendly approaches were formulated [105]
(Figure 17C). However, similar to any other pristine 2D materials, MXenes suffer from
poor selectivity, low sensitivity, and slow response [106]. These disadvantages were usu-
ally overcome by synthesizing MXene-metal nanoparticle nanocomposites. MXene-metal
nanoparticle nanocomposites possess a large specific surface area, superior electron con-
ductivity, and enhanced electron transfer properties for biosensing applications [107]. To
expand beyond the limitations of MXenes, Liu et al. [108] reported the covalent graft-
ing of PAMAM onto MXene (MXene@PAMAM) (Figure 18A). Here, the PAMAM acted
as an efficient stabilizer and spacer, thereby preventing the restacking and oxidation of
the MXene. Moreover, the aminoterminals of PAMAM acted as adsorption sites for
AuNPs. The AuNPs@MXene@PAMAM nanobiosensing platform was applied for the
detection of the cardiovascular disease biomarker cTnT. The sensor performance was re-
markable with a wide detection range (0.1–1000 ng/mL) and a very low detection limit
(0.069 ng/mL). Medetalibeyoglu et al. [109] fabricated a d-Ti3C2TX MXene@AuNPs/Ab2
bioconjugate-based sandwich-type electrochemical immunosensor for the detection of
PSA. Here, AuNPs at the bioconjugate were used to label PSA secondary antibody-2 for
signal amplification (Figure 18B). In one study, Laochai et al. [110] fabricated thread-based
L-Cys/AuNPs/MXene working electrodes for the noninvasive electrochemical detection
of sweat cortisol, which is an important biomarker for identifying adrenal gland disorders
(Figure 18C). Here, MXene served as a 2D platform to anchor the monoclonal anticortisol
antibodies, whereas AuNPs increased the specific surface area, and thereby the sensi-
tivity of the detection system. Mesoporous nanoparticles (MNPs), comprising metallic
and nonmetallic counterparts, show better catalytic performance compared to their bulk
nanoparticles [111]. Liu et al. [112] reported sandwich-type PdPtBP MNPs/MXene-based
immunosensor for the ultrasensitive detection of urine kidney injury molecule-1(KIM-1)
(Figure 18D). Yang et al. [113] reported an interesting cascaded signal amplification strategy
on in situ reduced gold nanoparticle deposited Ti3C2 MXene (Figure 18E), where MXene
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acted as a stabilizer and reductant. Here, AuNPs with the predominant (111) facet on
MXene provided high electrocatalytic activity and were also used as a carrier of the C-DNA
and to make DNA hybridization. Mohsen et al. [114] reported Au nanoparticles on Ti3C2
MXene for synergistic signal amplification (Figure 18F). Here, the perfectly distributed Au
nanoparticles on the flaky architecture of MXene contributed to the enhanced electrochemi-
cal performance and the attomolar detection of multiple micro-RNAs (miRNAs) achieved
on an AuNP@MXene/Au electrode. Wang et al. [115] proposed a competitive electrochemi-
cal aptasensor for the breast cancer biomarker Mucin1 based on Au nanoparticles decorated
Ti3C2 MXene. Here, aptamer binding to the electrode surface was achieved through Au-S
bonds by the electrodeposited gold nanoparticles. The electrochemical aptasensor reported
a wide linear range (1.0 pM–10 µM) and a low detection limit (0.33 pM) with promising
clinical applications. Cheng et al. [116] demonstrated a gold nanoparticle-modified MXene-
based sandwich-type immunosensor platform for squamous cell lung cancer cytokeratin
fragment antigen 21-1 (CYFRA 21-1).
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Table 3. Recent literature reports on metal nanoparticles incorporated MXenes for electrochemical
biomarker detection.

Sensing Platform Biomarker Technique Linear Range LOD Real Sample Ref.

AuNPs/Ti3C2@PAMAM cTnT DPV 0.1–1000 ng/mL 0.069 ng/mL Human serum [108]

Ti3C2@AuNPs PSA DPV pg/mL 3.0 fg/mL Plasma [109]

L-cys/AuNP/Ti3C2 Cortisol CA 5–40 ng/mL 0.54 ng/mL Artificial sweat [110]

PdPtBP MNPs/Ti3C2 KIM-1 DPV 0.5–100 ng/mL 86 pg/mL Human urine [112]

AuNPs-Ti3C2/AuE miRNA-21 DPV 100 aM–1 nM 50 aM —- [113]

AuNP@MXene/Au
miRNA-21

DPV 500 aM–50 nM
204 aM

Total plasma [114]
miRNA-141 138 aM

cDNA-Fc/MXene/Apt/Au/GCE MUC1 SWV 0.001–1.0 × 104 nM 0.33 × 10−3 nM Human serum [115]

AuNP-Ti3C2 CYFRA21-1 SWV 0.5–1.0 × 104 pg/mL 0.1 pg/mL Human serum [116]

MCH/CP/MXene-Au/GCE miRNA-377 SWV 10 aM–100 pM 1.35 aM Human serum [118]

Ti3C2-AuNPs/GCE PSA DPV 1–50,000 pg/mL 0.31 pg/mL —- [119]

AuNPs/d-S-Ti3C2 PCT DPV 0.01–1.0 2.0 fg/mL —- [120]

MB/DNA/HT/HP1/AuNPs/Ti3C2/BiVO4/GCE VEGF165 PEC 10 fM–100 nM 3.3 fM —- [121]
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terials comprising a framework of metal ions or metal-containing clusters and organic lig-
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ture [123], large surface area [124], abundant functional groups [125], high porosity [126], 
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Figure 18. (A) Schematic illustration of the fabrication of AuNPs/MXene@PAMAM for the electrochemical
detection of cTnT. Reproduced with permission from Ref. [108]. Copyright 2022, Nature. (B) Preparation
of d-Ti3C2 MXene@AuNPs/Ab2 for the detection of PSA. Reproduced with permission from Ref. [109].
Copyright 2020, Elsevier. (C) Fabrication of L-cys/AuNPs/MXene on a thread-based electrochemical
biosensor for noninvasive sweat cortisol detection. Reproduced with permission from Ref. [110]. Copyright
2022, Elsevier. (D) Fabrication of PdPtBP nanoparticles/MXene-based enzyme-free electrochemical biosen-
sor for the detection of kidney injury molecule-1 (KIM-1). Reproduced with permission from Ref. [111].
Copyright 2021, Elsevier. (E) Schematics of the AuNPs-based cascaded signal amplification process for
the detection of miRNA-21. Reproduced with permission from Ref. [113]. Copyright 2022, ECS, and
(F) Schematic diagram based on AuNPs decorated MXene for the multiplex and concurrent detection of
miR-21 and miR-141. Reproduced with permission from Ref. [114]. Copyright 2020, Elsevier.

2.4. MOFs Conjugated Metal Nanoparticles for Electrochemical Biomarker Detection

As an emerging material with exceptional properties, metal-organic frameworks
(MOFs) have been studied exceptionally during the past decades. MOFs are porous ma-
terials comprising a framework of metal ions or metal-containing clusters and organic
ligands [122]. MOFs have been reported to have excellent properties such as a tunable struc-
ture [123], large surface area [124], abundant functional groups [125], high porosity [126],
good conductivity [127], and thermal stability [128]. MOFs have been traditionally syn-
thesized by hydrothermal/solvothermal methods [129]. The solvothermal method is a
general concept where a solvent other than water is used, and the synthesis is usually
performed at a temperature above the boiling temperature of the solvent in closed chemi-
cal reactors at higher pressures. Moreover, the greater pressure inside the closed reactor
results in enhanced salt solubility. The benefits of the solvothermal process allowed re-
searchers to develop reproducible protocols with total control of the long-term synthesis



Biosensors 2023, 13, 91 20 of 33

processes. The solvothermal method has the advantage of higher product yield with im-
proved crystallinity [130]. The hydrothermal/solvothermal method has been optimized for
the synthesis of MOFs such as Ni-MOF [131], Co-MOF [131], Fe-MOF [132], Cu-MOF [133],
Zn-MOF [134], and mixed-ligand metal-organic frameworks [135]. In recent years, elec-
trochemical synthesis gained attention, and several MOFs such as Cu3(HHTP)2 [136], Mn-
DABDC(ES) [137], 2D/3D Zn(II)-MOF hybrid [138], Fe-MIL-101 and Fe-MIL-101-NH2 [139],
etc. have been reported for various MOFs’ electrocatalytic applications. Electrochemical
synthesis has the advantages of mild synthesis conditions, shorter synthesis times, and
controllability of morphology and thickness by the applied current/voltage [140]. During
electrochemical synthesis, the metal ions enter the solution through the dissolution of
the anode and the process is usually continuous with the availability of dissolved linker
molecules [141]. Researchers have also developed a variety of other synthesis approaches
such as ultrasound and microwave-assisted [142], mechanochemical [143], and sonochemi-
cal [144] methods for the synthesis of MOFs with different morphology and applications
(Figure 19). As shown in Table 4, modified MOF nanocomposites often outperform unmod-
ified MOF and are often exploited for diverse biosensor applications [145]. MOFs are often
decorated with metal nanoparticles in immunosensor applications for anchoring antibodies
and enhancing the electrochemical signal. Nanoparticles decorated MOFs with versatile
ligands and metal clusters, low cost, and simple operation provide researchers with an
adequate 2D platform for biosensing applications. Li et al. [146] fabricated such an inter-
esting immunosensor platform with core-shell Cu2O@Cu-MOF@AuNPs nanostructures
for the sensitive detection of CEA (Figure 20A). Here, the sandwich-type electrochemical
immunosensor achieved a tripled electrical signal amplification due to the synergistic effect
of Cu-MOF, Cu2O, and AuNPs. Nanowires had more surface area to accommodate pro-
teins and were used to fabricate label-free sensors with exceptional performance [147,148].
Li et al. [149] constructed such an ultrasensitive label-free platform for the detection of
NMP-22 based on CuAu nanowires decorated Co-MOFs (Figure 20B). The outstanding
catalytic capabilities of Co-MOFs/CuAu NWs achieved a highly sensitive immunosensor
with a good linear response (0.1 pg/mL–1 ng/mL), with a lower detection limit (33 fg/mL)
suitable for the detection of NMP-22 from human urine samples. An immunoprobe based
on AuNPs decorated Fe-MOF for the detection of PSA was reported by Feng et al. [150].
In this study, the labeling antibody was immobilized on AuNPs/Fe-MOF, and methylene
blue (MB) covered by a thin layer of AuNPs-rGO served to covalently attach the coating
antibodies. An amperometric signal at 0.18 V was measured to quantitatively measure PSA
from urine samples (Figure 20C). Zhang et al. [27] reported a similar MB-based strategy
for the detection of PSA (Figure 20D). Here, the MOF-325 adsorbed and stabilized MB,
thereby solving the problem of MB leakage. A similar nanocomposite comprising MOF,
rGO, and AuNPs was reported by Mehmandoust et al. [151] for the detection of a GFAP
biomarker (Figure 20F). Here, AuNPs were anchored onto zeolitic imidazolate MOFs and
were deployed as a recognition element for the detection of GFAP in urine samples. The
intrinsic properties of unique nanomaterials are advantageous for specific immunosensor
applications. Zhao et al. [152] fabricated an immunosensor for the detection of NMP-22
based on AuNPs and PtNPs decorated MOFs. The nanoparticles decorated MOF sowed an
increased surface area to anchor antibodies through Pt-S and Au-N bonding (Figure 20E),
and the immunosensor reported a sensitive response towards NMP-22.
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Royal Society of Chemistry. (C) Various biomedical applications of 2D MOFs. Reprinted with
permission from Ref. [155]. Copyright 2022, BMC (Springer).

Table 4. Recent literature reports on metal nanoparticles incorporated MOFs for electrochemical
biomarker detection.

Sensing Platform Biomarker Technique Linear Range LOD Real Sample Ref.

Au/MOF-235/MB PSA DPV 0.01–1.2 ng/mL 3 pg/mL Human serum [28]

Co-MOFs/CuAu NWs NMP-22 CA 10−4–1 ng/mL 33 fg/mL Human urine [149]

AuNPs/Fe-MOF PSA SWV 0.001–100 ng/mL 0.13 pg/mL Human serum [150]

Au@ZIF-8@rGO/SPE GFAP EIS 50–10,000 fg/mL 50 fg/mL Human urine [151]

rGO-TEPA/AuNPs-PtNPs-MOFs NMP-22 DPV 0.005–20 ng/mL 1.7 pg/mL Human urine [152]

PtNPs/Fe-MOF Thrombin DPV 1 fM–10 nM 0.33 fM Human serum [156]

Fe3O4@UiO-66/Cu@Au cTnI DPV 0.05–100 ng/mL 16 pg/mL Human serum [157]

SiO2-Fc-COOH-Au/UiO-66-TB PCT DPV 1 pg/mL–100 ng/mL 0.3 pg/mL Human serum [158]

Au-MoS2/MOF NSE CA 1 pg/mL–100 ng/mL 0.37 pg/mL Human serum [159]

AgNPs@Co/Ni-MOF AFP ECL 1 pg/mL–100 ng/mL 0.417 pg/mL Human serum [160]

BSA/Ab-AgNPs/CdS@MOF-
5/PDDA/FTO cTnI ECL 0.01–1000 pg/mL 5.01 fg/mL Human serum [161]

Pd/NH2-ZIF-67 PSA CA 100 fg/mL–50 ng/mL 0.03 pg/mL Human serum [162]
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Figure 20. Schematic illustrations of (A) Fabrication of core-shell Cu2O@Cu-MOF@AuNPs-based 
electrochemical immunosensor for CEA detection. Reproduced with permission from Ref. [146]. 
Copyright 2020 Springer, (B) Preparation of Co-MOFs/CuAu NWs based label-free immunosensor 
for the detection of NMP-22. Reproduced with permission from Ref. [149]. Copyright 2019 Royal 
society of chemistry, (C) Fabrication of Au-MOF-based amperometric immunosensor for the detec-
tion of PSA. Reproduced with permission from Ref. [150]. Copyright 2020 Springer, (D) Preparation 
steps of AuNPs decorated MOF235/MB based electrochemical immunosensor for PSA detection. 
Reproduced with permission from Ref. [28]. Copyright 2021 Elsevier, (E) Stepwise assembly of 
AuNPs-PtNPs-MOFs based electrochemical immunosensor for the detection of NMP-22 in urine 
samples. Reproduced with permission from Ref. [152]. Copyright 2019 Elsevier, and (F) Preparation 
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tion of GFAP. Reproduced with permission from Ref. [151]. Copyright 2022 ACS. 
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sp2 carbon network and highly π-conjugated structure has been receiving increased at-
tention [163]. A graphdiyne-based self-powered biosensor platform was constructed by 
Hou et al. [164] for the determination of miRNA-21. Here, both the cathode and bioanode 
were fabricated by different modifications of AuNPs/GDY (Figure 21A). The 2D hexago-
nal boron nitride nanosheets, due to their electronic conductivity and large surface area 
were explored for immunosensor applications [165]. A label-free aptasensor for the detec-
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Figure 20. Schematic illustrations of (A) Fabrication of core-shell Cu2O@Cu-MOF@AuNPs-based
electrochemical immunosensor for CEA detection. Reproduced with permission from Ref. [146].
Copyright 2020 Springer, (B) Preparation of Co-MOFs/CuAu NWs based label-free immunosensor
for the detection of NMP-22. Reproduced with permission from Ref. [149]. Copyright 2019 Royal
society of chemistry, (C) Fabrication of Au-MOF-based amperometric immunosensor for the detection
of PSA. Reproduced with permission from Ref. [150]. Copyright 2020 Springer, (D) Preparation
steps of AuNPs decorated MOF235/MB based electrochemical immunosensor for PSA detection.
Reproduced with permission from Ref. [28]. Copyright 2021 Elsevier, (E) Stepwise assembly of
AuNPs-PtNPs-MOFs based electrochemical immunosensor for the detection of NMP-22 in urine
samples. Reproduced with permission from Ref. [152]. Copyright 2019 Elsevier, and (F) Preparation of
GFAP-BSA-Anti-GFAP-Au@ZIF-8@rGO/SPE based electrochemical immunosensor for the detection
of GFAP. Reproduced with permission from Ref. [151]. Copyright 2022 ACS.

2.5. Biomarker Detection on Other 2D Materials Conjugated with Metal Nanoparticles

2D materials such as graphitic carbon nitride, black phosphorous, 2D layered double
hydroxides (LDHs), boron nitrides, graphdiyne, etc. have also been explored in conjunc-
tion with metal nanoparticles for immunosensor applications with interesting biomarker
targets (Figure 21, Table 5). Graphdiyne, the new 2D carbon allotrope with its unique
sp-sp2 carbon network and highly π-conjugated structure has been receiving increased
attention [163]. A graphdiyne-based self-powered biosensor platform was constructed by
Hou et al. [164] for the determination of miRNA-21. Here, both the cathode and bioanode
were fabricated by different modifications of AuNPs/GDY (Figure 21A). The 2D hexagonal
boron nitride nanosheets, due to their electronic conductivity and large surface area were
explored for immunosensor applications [165]. A label-free aptasensor for the detection
of cardiac biomarker myoglobin on AuNPs decorated 2D-Boron nitride nanosheets was
reported by Adeel et al. [166]. Here, the boron nitride nanosheets modified electrode
AuNPs/BNNSs/FTO acted as a transducer for the immobilization of thiol-functionalized
DNA aptamer for the specific binding of myoglobin (Figure 21B). Carbon nitrides are poly-
meric materials mainly consisting of carbon and nitrogen [167,168]. At ambient temperature,
graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. Due to
the presence of basic surface groups and rich surface properties, g-C3N4 is attractive for
many applications including catalysis [169]. Neto et al. [170] fabricated a miniaturized PEC
system based on AuNPs decorated g-C3N4 for the detection of the breast cancer biomarker
CA15-3 (Figure 21C). In this work, AuNPs on the g-C3N4 platform acted as a linker to
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11-mercaptoundecanoic acid for the effective adsorption of antibodies. The performance
of the PEC sensor was remarkable with a long linear range (0.1 fg/mL–10 ng/mL) and a
very low detection limit (0.04 fg/mL). One of the promising candidates for immunosen-
sor applications is 2D-Black phosphorus (BP) with high carrier mobility and controllable
bandgap [171]. The unique properties of BP at atomic thickness are valuable for diverse
applications [172–174]. Li et al. [175] reported a 2D-black phosphorous-supported Pt-Pd
nanoelectrocatalyst for the determination of 4-AP, a potent biomarker for aniline exposure.
Layered double hydroxides (LDHs) received attention because of their tunable chemistry
and high charge density [176]. In one study, an electrochemical immunosensor based on
AuNPs decorated ferrocene carboxylic acid conjugated MgAl layered double hydroxides
for the label-free detection of CA-125 was reported by Wu et al. [177]. In this work, an LBL
approach was used to increase the number of ferrocenes and antibodies, thereby amplifying
the signal. The sensor reportedly displayed a wide linear range (0.01–1000 U/mL) and
LOD (0.004 U/mL) and was tested for clinical cancer diagnostics (Figure 21D).
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Figure 21. Schematic illustration of (A) Fabrication of a GDY-based self-powered device for miRNA-
21 detection. Reprinted with permission from Ref. [164]. Copyright 2021 ACS, (B) Fabrication
of AuNPs decorated boron nitride nanosheets based label-free aptasensor for the detection of the
cardiac biomarker myoglobin. Reprinted with permission from Ref. [165]. Copyright 2019 Elsevier,
(C) Graphitic carbon nitride sensitized with AuNPs for the PEC detection of CA15-3. Reprinted with
permission from Ref. [170]. Copyright 2022 Elsevier, and (D) Fabrication of label-free electrochemical
immunosensor based on LBL assembly of mesoporous carbon, AuNPs, and MgAl LDHs containing
ferrocenecarboxylic acid. Reprinted with permission from Ref. [177]. Copyright 2022 Elsevier.
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Table 5. Recent literature reports on biomarker detection based on various metal nanoparticles
decorated 2D materials.

Sensing Platform Biomarker Technique Linear Range LOD Real Sample Ref.

AuNPs/GDY miRNA-21 OCV 0.1–100,000 fM 0.034 fM Human serum [164]

Au-NPs/2D-hBN/FTO Mb DPV 0.1–100 µg/mL 34.6 ng/mL Human serum [166]

AuNPs-g-C3N4 CA15-3 PEC 10−7–101 ng/mL 0.04 fg/mL Human serum [170]

Pt-Pd/BP 4-AP DPV 0.02–5 µM 14.1 nM —- [175]

Au/Fc@MgAl-LDH CA-125 DPV 0.01 U/mL–1000 U/mL 0.004 U/mL Human serum [177]

AuNRs-g-C3N4 NS1 EIS 0.6–216 ng/mL 0.09 ng/mL Human serum [178]

3. Conclusions

In this review, we have discussed various electrochemical sensors that have been
reported in recent years which incorporate various 2D nanomaterials conjugated with
metal nanoparticles towards biomarker detection that have potential suitability for clinical
use and some for point-of-care applications for cancer diagnosis. Although much research
has been done in the synthesis of graphene, MoS2, MXenes, MOFs, and other 2D materials
incorporated with metal nanoparticles for an in vitro analysis of biomarkers. However,
significant progress needs to be done in performing an in vivo analysis. Moreover, due to
their inherent conductivity, these 2D nanomaterials are significantly used in electrochemi-
cal or even optical sensing. However, they are often doped with other nanomaterials to
improve their electroactivity/conductivity. Further, new approaches such as nanofabrica-
tion and clinical applicability are most crucial for developing an open-use-dispose type of
sensor at low cost. Furthermore, electrode-to-electrode variations upon modifications with
nanomaterials largely depend on the type of functionalization method adopted, which
also needed to be studied for developing electrochemical transducers with greater stability
and reproducibility. Finally, the paper-based electrochemical and wearable electrochemical
sensing approaches for biomarker detections are also promising due to their improved
sensitivity, selectivity, and portability, such as a simple paper-based sensor that can measure
with an application able to get the electrochemical signal downloaded into a smartphone is
best suitable for clinical/point-of-care applications [179,180]. Though the integration of mi-
crofluidic devices with electrochemical systems possesses numerous advantages, including
rapid manipulation of sample fluid, reduced reagent consumption, and low cost, commer-
cialization of these electrochemical sensors is still in its infancy due to the challenges that
these techniques are facing, such as miniaturization (multiple electrodes and channels)
and integration of microfluidic systems (miniaturized flow controllers). Therefore, it is
necessary to develop manufacturable biosensors that can provide accurate quantification
of a biomarker of interest with a meager quantity of solutions at point-of-care with simple
fabrication steps by avoiding multiple modifications on the electrode surface.
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Abbreviations

2D Two dimensional
2D-Hbn 2D-hexagonal boron nitride
AgNPs Silver nanoparticles
AgNRs Silver nanorods
Apt Aptamer
Au Gold
AuE Gold electrode
AuNP-RGO Au nanoparticle-reduced graphene oxide
AuNPs Gold nanoparticles
AuPtBNPs Gold platinum bimetallic nanoparticles
BDC 1,4-benzenedicarboxylate
BiVO4 Bismuth vanadate
BNNSs Boron nitride nanosheets
BP Black phosphorous
BSA Bovine serum albumin
CA 27-29 BCA Cancer antigen 27-29 breast cancer antigen
CA Chronoamperometry
CA125 Cancer antigen 125
CA15-3 Cancer antigen 15-3
C-DNA Capture DNA
CEA Carcinoembryonic antigen
ce-MoS2 Chemical exfoliated MoS2
CGO Carboxylic groups
CLB Clenbuterol
CoPP Cobalt protoporphyrin
CP Capture probe
CPEB4 Cytoplasmic polyadenylate element-binding protein 4
Cr.6 18-crown-6
CRP C-reactive protein
CS Chitosan
CTnI Cardiac troponin I
CTnT Cardiac troponin T
CV Cyclic voltammetry
CYFRA21-1 Cytokeratin 19 fragment
DNA Deoxyribonucleic acid
DPV Differential pulse voltammetry
ECD Extracellular domain
ECL Electrochemiluminescence
EIS Electrochemical impedance spectroscopy
ELISA Enzyme-linked immunosorbent assay
eT Electron transfer
Fc Ferrocene
FTO Fluorine doped tin oxide
g-C3N4 Graphitic carbon nitride
GCE Glassy carbon electrode
GDY Graphdiyne
GE Graphite electrode
GFAP Glial fibrillary acidic protein
GP120 Glycoprotein GP120
4-AP p-Aminophenol
HER-2 Human epidermal growth factor receptor-2
HP1 Hairpin DNA
HT Hexane thiol
IL8 Interleukin-8
i-t curve Amperometric current-time response
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ITO Indium tin oxide
LA Lactic acid
LBL Layer by layer
L-cys L-Cysteine
LOD Limit of detection
LSV Linear sweep voltammetry
L-Trp L-tryptophan
Mb Myoglobin
MCH 6-mercaptohexanol
MgAl-LDH Mg-Al-Layered double hydroxide
MGMT O6-methylguanine-DNA methyltransferase
miRNA-141 micro-RNA-141
miRNA-21 micro-RNA-21
miRNA-377 micro-RNA-377
miRNAs micro-RNAs
MNPs Mesoporous nanoparticles
MOFs Metal organic frameworks
MUC1 Mucin1
MWCNT Multiwalled carbon nanotubes
NMP-22 Nuclear matrix protein 22
NS1 Non-structural 1
NSE Neuron-specific enolase
OCV Open circuit voltage
OTC Oxytetracycline
PAMAM Polyamidoamine
PCT Procalcitonin
PDA Polydopamine
PdPtBP MNPs Pd-Pt-Black phosphorous-mesoporous nanoparticles
PEC Photoelectrochemical
PET Polyethylene terephthalate
PPY Polypyrrole
PSA Prostate specific antigen
PtNPs Platinum nanoparticles
RAC Ractopamine
rGO Reduced graphene oxide
RhNPs Rhodium nanoparticles
RNA Ribonucleic acid
S/N Signal-to-noise ratio
SAL Salbutamol
SPCE Screen-printed carbon electrode
SWV Square wave voltammetry
TEPA Tetraethylenepentamine
VEGF165 Vascular endothelial growth factor 165
YNCs Yolk-shell nanocubes
β-CD β-cyclodextrin
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