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Abstract: Macrophages and fibroblasts are two types of important cells in wound healing. The devel-
opment of novel platforms for studying the interrelationship between these two cells is crucial for
the exploration of wound-healing mechanisms and drug development. In this study, a microfluidic
chip composed of two layers was designed for the co-culturing of these two cells. An air valve was
employed to isolate fibroblasts to simulate the wound-healing microenvironment. The confluence
rate of fibroblasts in the co-culture system with different macrophages was explored to reflect the role
of different macrophages in wound healing. It was demonstrated that M2-type macrophages could
promote the activation and migration of fibroblasts and it can be inferred that they could promote
the wound-healing process. The proposed microfluidic co-culture system was designed for non-
contact cell–cell interactions, which has potential significance for the study of cell–cell interactions in
biological processes such as wound healing, tumor microenvironment, and embryonic development.

Keywords: microfluidic chips; organ-on-a-chip; wound healing; cell co-culture; macrophages

1. Introduction

Skin wound-healing is a complex and highly coordinated process that can be di-
vided into three stages: (1) hemostasis and inflammatory stage, (2) proliferative stage,
and (3) matrix deposition and remodeling [1–3]. Fibroblasts play a critical role in these
processes as they promote wound contraction, wound closure, and produce extracellular
matrix (ECM) components [4]. Although over-activation of fibroblasts can lead to fibrosis
and scarring [5], they have many vital effects, such as the reconstruction of connective
tissue including the dermis of the skin [6,7], muscle reparation, and as a source of adipocyte
progenitor cells [8]. Therefore, the degree of fibroblast activation may determine the ul-
timate healing fate. As another key cell type in wound healing, macrophages contribute
to all stages of tissue repair. They provide essential inflammatory and debris clearance
functions during early trauma before giving way to functions that support healing during
the regeneration phase. During healing, M2 macrophages secrete essential factors such as
platelet-derived growth factor α (PDGF-α), interleukin-10 (IL-10), transforming growth
factor β1 (TGF-β), fibronectin (FN), resistin-like molecule α (RELM-α), and vascular en-
dothelial growth factor (VEGF) that activate fibroblasts and drive tissue regeneration [9–14].
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At the same time, fibroblasts are able to induce the transformation of M1 macrophages
into M2 type to prevent excessive inflammation and promote wound healing. Therefore,
elucidating the interrelationship between these two cells is crucial for the exploration of
wound-healing mechanisms and drug development.

At present, scratch assay and transwell migration assay are commonly used in in vitro
experimental methods to observe different stimulus factors on cellular regulation, as well
as study interactions between cells [15]. The advantages of the two methods are simple
operation and suitable for routine laboratory operations. However, the scratch assay is not
conducive to the observation of the interaction between different cells, and the transwell
migration assay is not suitable for the dynamic observation of cell migration. Both of
them are low throughput and the types of cells that can be observed at the same time are
limited [16,17]. Therefore, these methods are not competent for observing the regulatory
effect of macrophages with different polarities on a variety of skin intrinsic cells. For in vivo
experimental methods, they are relatively complex, time-consuming, and expensive. It is
also impossible to independently observe the effects of macrophage-secreted factors on
different cells and find the main effector cells regulated by macrophage-secreted factors.

Microfluidics is a set of artificially fabricated miniature systems that operate on small
flow volumes [18]. This system can ensure miniaturization, integration, automation,
and parallelism in analytical processes [19]. The most prominent advantage of microflu-
idics for cell culture is that they can better simulate the physiological conditions of in vitro
culture [20]. Moreover, the design of microfluidic devices is flexible and the experimental
operation is highly controllable [21]. Meanwhile, because the dosage of related reagents is
small, the demand for cells is low and it is conducive to the observation of single cells [22].
Using a microfluidic chip, the entire analysis process can be detected dynamically in
real-time, and the observation results are conducive to effective statistical analysis [23].
At present, microfluidic technology is involved in many aspects of cell culture, such as cell
co-culture, physiological microenvironment construction, neural cell development, single-
cell metabolism, and cell secretion [24]. The use of microfluidic chambers for cell co-culture
has been widely used to observe the interaction between cells, such as in the study of
neuromuscular junctions, tumor neural invasion, and the interaction between tumor cells
and stromal cells [25–27]. However, the application of microfluidic chips in the research on
cellular and molecular mechanisms related to skin damage repair is rarely reported.

Herein, a novel microfluidic chip for studying the regulation of skin innate cells by
macrophages in different phenotypes has been designed (Scheme 1A,B). The chip is divided
into the cell culture layer and the air valve layer. On the lower level (cell culture layer),
fibroblasts and macrophages were cultured in the middle and side channels, respectively.
Between the channels are extremely tiny microchannels, which are used to prevent the
passage of cells and allow the exchange of secretions between cells. The video shows that
when the cells flowed into the chip, they didn’t pass through the microchannels (Video S1).
When the air valve is closed, the underlying fibroblasts are separated due to pressure to
simulate wound formation. After adding macrophages on both sides and opening the
air valve, the effect of different macrophages on fibroblasts can be observed in real-time
(Scheme 1C). In a word, using this co-culture system, interaction mechanisms between cells
can be studied.
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2. Materials and Methods
2.1. Cell Culture

The macrophage cell line RAW264.7 (ATCC TIB-71, USA), and fibroblast cell line NIH-
3T3 (ATCC CRL-1658, USA) were used as cell models. The 293T cells (CRL-3216) were used
for coating the lentivirus. All cell types were cultured in Dulbecco’s modified eagle medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
(10,000 U/mL). For differentiation, RAW 264.7 macrophage cells were stimulated with
IFN-γ (10 ng/mL) and LPS (40 ng/mL) for 24- hours to obtain M1 macrophages or IL-4
(40 ng/mL) for M2 polarization [28–30].

2.2. Construction of Fluorescent Cells

RAW264.7 was modified with red fluorescence (mCherry) and NIH-3T3 with green
fluorescence (GFP) through genetic engineering technology. When the density of the 293T
cells in the 6-well plates was about 60%, the serum-free medium was hanged 1 h before
transfection. Plasmid including 2 µg CMV-GFP or CMV-mCherry and 1.5 µg psPAX2,
0.5 µg pMD2.G was added into a 200 µL serum-free medium. Then 8 µL TurboFect was
added and mixed well, incubated at RT for 20 min. The mixed system was transferred
to the 293T cell medium and incubated at 37 ◦C, 5% CO2 for 8 h. After post-transfection,
the medium was replaced with a 20% serum concentration medium.

At 48 h post-transfection, the supernatant was collected and 0.1% polybrene was
added. When the density of the RAW264.7 or NIH-3T3 cells was about 60%, the medium
was changed and all the virus solution was added. The medium was changed at 24 h
post-infection, and then 0.1% puromycin was added at 48 h. Screen to no cell death, and the
GFP-labeled NIH-3T3 cells and mCherry-labeled RAW264.7 cells were constructed.

2.3. Fabrication of the Microfluidic Chip

The proposed microfluidic chip was fabricated based on the multi-layer soft lithog-
raphy as described previously [31]. Briefly, using standard lithographic procedures,
a two-level SU-8 master mold was fabricated to create the cell culture layer including
two macrophage channels (marked with an in Scheme 1) and two fibroblast channels
(marked with b in Scheme 1). In addition, a single-level SU-8 master mold was fabricated
to create the air valve layer. After the preparation of molds, a replica molding process was
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performed to create the poly (dimethyl siloxane) (PDMS) cell culture layer and air valve
layer. The upper air valve layer was fabricated by casting a thick layer (3 mm) of PDMS
(ratio 15:1 of base material to curing agent, Sylgard® 184, Dow Corning, MI, USA) onto
the valve mold, while for the lower cell culture layer, PDMS (10 : 1 ratio) was spin-coated
onto the wafer to create a thin layer (~ 200 µm) of microstructured PDMS. Both layers were
partially cured for ~20 min at 75 ◦C and the valve layer was released from the mold and
aligned with the cell culture layer. The assembly was again incubated for 1 h at 75 ◦C to
enable off-ratio PDMS bonding. Next, the inlet and outlet ports for both layers were created
using a punching tool. Finally, the punched PDMS assembly was sealed with a cover glass
after oxygen plasma activation.

2.4. Immunofluorescence Staining and Imaging

NIH-3T3 cells were seeded in the middle microchannels of the microfluidic chip
(Scheme 1, blue area, marked with b) at the same density, and then M1 or M2 macrophages
were seeded to make NIH-3T3 cells co-cultured with different macrophages. A culture
medium was added from the side of the macrophages and cultured for 24 h. The cells were
washed with PBS once and then fixed with 4% paraformaldehyde at room temperature
for 40 min. Subsequently, washed with PBS once, then cells were permeabilized by PBS
containing 0.01% TritonX-100 for 20 min. A 10% BSA-PBS solution was used for blocking
overnight at 4 ◦C. On the second day, the primary antibody (anti-α-SMA) was diluted
at 1:400 and incubated overnight at 4 ◦C. After washing 3 times with PBST (PBS + 0.1%
Tween-20), the phalloidin (1:400), DAPI (1:400), and the fluorescent secondary antibody at
400:1 dilution were added into the chip and incubated at room temperature and protected
from light for 4 h. Immediately afterward, the cells were washed with PBST thrice. Then,
the pictures can be taken on the laser scanning confocal microscope. Five independent
immunofluorescence assays on five microfluidic chips were carried out simultaneously.

2.5. Scratch Assay

The NIH-3T3 cells were plated in six-well plates. When the cells were grown to
80–90% density, a uniform scratch was produced through a sterile pipette tip. The cells
were mono-cultured or co-cultured with M1/M2 macrophages which were seeded in the
upper transwell chamber (0.4 µm-sized). At 0 h, 12 h, and 24 h after the scratch, the white
light of a fluorescent microscope was used to take pictures of the scratch under the 10X
objective lens, and 5 positions for each group of samples were taken. The width of the
scratch was measured to calculate the relative closure rate (Figure S1). Three independent
scratch assays were carried out simultaneously. The area reduction of the scratch assays
was calculated using ImageJ software.

2.6. Statistical Analysis

All data were expressed as mean ± standard deviations (SD). One-way analysis of
variance (ANOVA analysis) and the Student’s t-test was used to statistically analyze the
data obtained from the experiments. Statistical differences were shown by * (p < 0.05),
** (p < 0.01), and *** (p < 0.001).

3. Results and Discussion
3.1. Design, Fabrication, and Characterization of the Microfluidic Chip

Fibroblasts and macrophages are two types of critical cells in the microenvironment
of skin wound healing. A microfluidic chip was designed and fabricated to study the
interactions between fibroblasts and macrophages that reflect the skin microenvironment
in vivo. Scheme 1 presents the design of the chip used in this study. This chip includes
two layers: a lower layer for cell culture and an upper layer for air valves. The layer of cell
culture contains four units. The two sides of the chip (orange area, marked with a) were
used to culture macrophages, while the two middle units (blue area, marked with b) were
used to culture fibroblasts and study their biological phenomena. To explore the effect of
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cytokines secreted by macrophages on fibroblasts, 4.00 µm width channels were designed
to connect the orange area and the blue area, which allows the exchange of components
in the extracellular culture medium without direct cell contact. The design drawing of
the microfluidic chip was presented in Figure 1A. Through two steps of UV lithography
and soft lithography, the positive mode was successfully fabricated on a silicon wafer
(Figure 1B). PDMS with replicated microchannel from the positive mode was bonded to
a cover glass by plasma treatment and the microfluidic chip was obtained (Figure 1C).
PDMS is the ideal material for fabricating the chip because it is malleable and basically
non-toxic to cells, hence, they are often used to prepare cell culture devices or wearable
devices [32,33]. To evaluate the integrity and connectivity of the cell culture channels of the
chip, red ink was added to a sample well for observation. As shown in Figure 1D, the red
ink evenly filled the entire culture layer channel, which indicated that the chip has good
sealing and connectivity.
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Figure 1. (A) Design drawing of the microfluidic chip. (B) The positive mode of the microfluidic
chip on a silicon wafer. (C) Image of the microfluidic chip that consists of PDMS and cover glass.
(D) The microfluidic chip with microchannels filled with red ink.

There are two critical functional areas on the microfluidic chip: the air valve and the
connection channels between macrophages and fibroblasts. When the air was introduced
into microchannel c, the pressure was generated and subsequently caused the PDMS under
microchannel c to press down. Hence, microchannel b was separated by the pressed
PDMS, and the situation was called valve closed (Scheme 1A,C CLOSED). On the contrary,
when the air was drawn away from microchannel c, the PDMS under the microchannel c
returned to its original shape and the lower channel was connected again. The situation
was called valve open (Scheme 1A,C OPEN). When the air valve was closed, the channel in
the middle of the cell culture layer was separated (Figure 2A). NIH-3T3 cells were separated
to simulate wound formation (Figure 2C). When the air valve was open, the channel was
connected (Figure 2B). As shown in Figure 2D, the NIH-3T3 cells grew towards each other
which was used to mimic wound healing in vitro.
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Figure 2. Images of the microfluidic chip with the air valve closed (A) and opened (B). Fluorescence
images of NIH-3T3 cells on the microfluidic chip before (C) and after (D) valve opened. (E) Image of
the microchannels connecting part a and part b of the microfluidic chip. (F) Fluorescence images of
NIH-3T3 (green) and RAW264.7 (red) separated by microchannels connecting part a and part b. “a”,
“b” and “c” were marked to indicate different areas of the microfluidic chip. It was consistent with
Scheme 1. The arrows in (D) indicated the cell migration directions.

As another key structure of the microfluidic chip, the precision of the microchannels
connecting part a and part b is crucial for studying non-contact or indirect intercellular
interactions. Due to errors in the preparation process of the microfluidic chip, the actual size
of the microchannels was 5.78 µm (Figure 2E), which is slightly larger than the designed
width of 4.00 µm. Furthermore, when the cells were seeded in the chip, the macrophages
(RAW264.7, red fluorescence) and the fibroblasts (NIH-3T3, green fluorescence) were well
separated (Figure 2F), while the exchange of materials in the extracellular culture medium
was not affected (Figure 2E). It should be noted that when the cells were cultured for a
long time (three days or more), the cell density was so high that some of the cells passed
through the microchannels between both part a and part b, and the same for part b and
part b. Therefore, our study was focused on exploring the indirect effect between cells at
the early stage of co-culture (12–36 h).

3.2. Culture of Macrophages and Fibroblasts in the Microfluidic Chip

Poly-L-lysine (PLL) is widely used to enhance cell adhesion to the solid matrix by
enhancing the electrostatic interaction between negatively charged ions on the surface
of the cell membrane and the PLL-coated surface. To promote cell adhesion and growth
ability in the microfluidic chip [34,35], poly-L-lysine (0.2 mg/mL) was coated on the
surface of microchannels. The macrophages and fibroblasts were seeded separately on
the microfluidic chips. As shown in Figure 3A,B, the macrophages (RAW264.7) and the
fibroblasts (NIH-3T3) were all normal after being cultured in the microfluidic chip for
48 h. In Figure 3C, both fluorescent RAW264.7 and NIH-3T3 were time-dependently
increasing. Therefore, the RAW264.7 and NIH-3T3 could proliferate within the space of the
corresponding channels over three days, during which their growth and interaction could
be monitored and characterized.
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Figure 3. (A) and (B) Microscope images of macrophages and fibroblasts in white light and the
morphology of RAW264.7 and NIH-3T3 cells cultured in the microfluidic chip. (C) Fluorescence
images of macrophages and fibroblasts with increased incubation time.

The microfluidic chip was reusable after the cell culture. It can be refreshed with
trypsin digestion and distilled water cleaning of the cells in the microfluidic chip. Following
re-coated microchannels with PLL, it can be reused for the next round of the experiment.

3.3. Effect of Macrophages on the Immigration of Fibroblasts

Fibroblasts play an important role in wound healing by proliferating and migrating to
the wound site and being activated to secrete extracellular matrix components to fill wound
defects. Macrophages are key cells and function in multiple processes of wound healing.
Therefore, it is important to investigate the effect of macrophages on fibroblasts. Different
subtypes of macrophages and fibroblasts were inoculated in the corresponding regions of
the microfluidic chips. When the air valve was turned off, the fibroblasts were separated
by a gap which was used to mimic the wound-healing microenvironment. After the air
valve was turned on, the effect of different macrophages on fibroblast migration could
be determined by observing the proportion of gap narrowing. As shown in Figure 4A,C,
the intercellular septum area of the fibroblasts co-cultured with M2 macrophages decreased
the most, indicating that M2 macrophages could promote the migration of fibroblasts
compared with M1 macrophages or mono-cultured. Then, conventional co-culture systems
and scratch experiments were used to verify the results. Similarly, fibroblasts co-cultured
with M2 macrophages showed the highest reduction rate of scratch spacing (Figure 4B,D).
Results demonstrated that M2 macrophages can promote the migration of skin fibroblasts
and wound healing.

Although results from both methods reveal the same conclusion, the microfluidic
chip-based assay showed its advantages. The entire experimental process can be conducted
in the microfluidic chip and cell migration can be observed and recorded dynamically in
real-time. The experimental demand for cells was low and conducive to the observation of
single cells. Meanwhile, the obtained results are conducive to effective statistical analysis
compared with the scratch experiments, possibly because the experimental operation is
highly controllable in the microfluidic chip [21]. Moreover, the intercellular substance ex-
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change and signal communication between macrophages and fibroblasts was bidirectional,
which was closer to the in vivo microenvironment.
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Figure 4. The migration ability of fibroblasts under co-culture with different macrophages.
(A,C) A picture for representative regions showing fibroblast migrated at the septum formed when
the air valve closed and a comparison of the area reduction. Measure the reduction of inter-fibroblast
septal area relative to 0 h. (B,D) Images of fibroblast migration at scratches in a conventional tran-
swell co-culture system and comparison of the area reduction. Measure the reduction of scratch
area relative to 0 h. Herein, “CTR” refers to mono-cultured, “M1” and “M2” refer to “co-cultured
with M1 macrophages” and “co-cultured with M2 macrophages”. Data are presented as mean ± SD
(n = 3). “*” is the intragroup comparison with “CTR”. * p < 0.05; *** p < 0.001.

3.4. Effect of Macrophages on Activation of Fibroblasts

Fibroblast migration is closely related to its activation. When the fibroblasts were
co-cultured with M2 macrophages, the expression levels of the F-actin and α-smooth
muscle actin (α-SMA) were significantly changed. Compared with mono-cultured or
co-cultured with M1 macrophages, the fibroblasts co-cultured with M2 macrophages
showed signs of activation, and the expression levels of α-SMA and F-actin were in-
creased (Figure 5A). F-actin stress fibers showed the elongated spindle shape of fibroblasts
(Figure 5A). The ratio of F-Actin/DAPI (Figure 5B) and α-SMA/DAPI (Figure 5C) of
mono-cultured fibroblasts, fibroblasts co-cultured with M1 macrophages, and fibroblasts
co-cultured with M2 macrophages were calculated quantitatively. It showed that the ex-
pression levels of F-actin and α-SMA were significantly up-regulated when the fibroblasts
were co-cultured with M2 macrophages for 24 h. It revealed that M2 macrophages can
activate fibroblasts further to promote wound healing.
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Figure 5. Fluorescence images of fibroblasts with stained α-SMA and F-actin to reveal the activation
of fibroblasts by co-culture with different macrophages. (A) Fluorescence images of fibroblasts
stained for F-actin and α-SMA showing differential expression levels under mono- and co-culture
conditions. (B,C) the ratio of F-Actin/DAPI and α-SMA/DAPI. Herein, “Mono” refers to mono-
cultured, “M1 mac” and “M2 mac” refer to “co-cultured with M1 macrophages” and “co-cultured
with M2 macrophages”, respectively. Data are presented as mean ± SD (n = 5). “*” is the intragroup
comparison with “Mono”. ** p < 0.01; *** p < 0.001.

4. Conclusions

In this study, a microfluidic chip was developed to simulate an in vitro co-culture
model of macrophages and fibroblasts. The microfluidic chip is without direct macrophages–
fibroblasts contact, in which soluble factors can be transported across the medium chan-
nel (5.78 µm) and the potential development of local concentration gradients may occur.
Subsequently, we demonstrated that macrophages and fibroblasts could be co-cultured
using this microfluidic chip to simulate mutual microenvironmental interactions. Air valves
were used to isolate fibroblasts to mimic wound formation, and M2-type macrophages
were found to promote the migration and activation of fibroblasts, thereby accelerating
wound healing. The on-chip results were also verified by a conventional co-culture system.
Immunofluorescence staining results showed that M2-type macrophages could promote
the expression of A-SMA and F-actin in fibroblasts. In short, the microfluidic chip can
mimic the wound healing microenvironment. M2-type macrophages were identified to
promote the activation and migration of fibroblasts, thereby accelerating wound healing.
In addition, cell migration and cell–cell interactions are crucial in tumor formation, embry-
onic development, and a variety of other biological processes. The developed microfluidic
chip could be easily expanded to these fields of research as a technology or a platform.
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