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Abstract: Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays sig-
nificant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction
of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is
emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the
most serious diseases to threaten public health. As it is clear that much more concentrated GSH is
present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early
diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments,
effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well.
In this review, we focus on the fluorescent methodologies for GSH detection, since they can be
conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then,
the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related
biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent
GSH sensing—in particular, fluorescent GSH-sensing-prompted disease diagnosis—are addressed.
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1. Introduction

Glutathione (GSH) plays crucial roles in physiological processes, such as protecting
cells from oxidative damage, maintaining intracellular redox homeostasis, signal trans-
duction, etc. [1–4]. Abnormal levels of GSH have been demonstrated to be related to the
dysfunction of a series of biological activities, as well as certain kinds of diseases—for
example, Alzheimer’s disease or cancer [5,6]. Taking the above facts into account, the
accurate sensing of GSH—especially in vivo—is of significant importance [7–9]. To date,
a number of methods have been developed for the detection of GSH, including mass
spectroscopy [10], high-performance liquid chromatography [11,12], nuclear magnetic
resonance [13], colorimetric methods [14,15], electrochemical methods [16–18], enzymatic
methods [19], and fluorescent approaches [20,21]. Among all of these methods, fluorescent
methodologies have attracted significant attention due to their abundant output signals,
high sensitivity, and great potential for in vivo imaging [22].

Cancer, as one of the most malignant diseases, is the second-leading cause of death
globally. According to the World Health Organization, delayed cancer treatment decreases
the chance of survival, induces cancer metastases and, of course, leads to a great deal of
physical, emotional, and financial burdens on patients [23,24]. Therefore, the early diagnosis
of cancer remains an urgent issue. In addition to screening, the most common strategy
for cancer diagnosis is the sensing of characteristic markers. Considering that the GSH
concentration has been demonstrated to be much higher in the microenvironment of cancer
(2–10 mM) than that of normal sites (2–20 µM), the approach of GSH sensing—especially
when taking advantage of the fluorescent method—is rationally further encouraged for
cancer diagnosis [7,9]. The above idea can be applied to other GSH-related diseases as well.

Taken together, in this review, the underlying mechanisms for fluorescent sensing
are first introduced. Afterwards, the principles for the design of fluorescent GSH sensors
according to the various origins of fluorescent output signals are discussed (Figure 1) [25].
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Then, the recent progress of fluorescent GSH-sensing-related bio-applications (such as
imaging, cancer diagnosis, etc.) is exemplified [26]. Finally, the future prospects for
fluorescent GSH sensing and corresponding bio-applications are described. It is believed
that the review presented herein will clarify the design principle for fluorescent GSH sensors
and, more importantly, open up new horizons for GSH-sensing-actuated bio-applications.
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Figure 1. Schematic representation of the fluorescent GSH sensing methods and related bio-applications.

2. Fluorescent Sensing Principle
2.1. The Components of Fluorescent Sensors

The development of chemosensors has been an essential topic among scientists, as it
significantly benefits the areas of public safety, clinical diagnosis, environmental protection,
etc. [27,28]. It is well known that common chemosensors are composed of a recognition
element, transduction element, and signal processing element. By determining the output
signals, the chemosensors can be categorized as electrochemical sensors [29], colorimetric
sensors [30], NMR sensors [31–33], fluorescent chemosensors [34–36], etc. Among them,
fluorescent sensors have attracted plenty of attention recently [37]. In this section, the design
principle for fluorescent sensors is briefly introduced, and representative mechanisms
are exemplified.

The recognition unit is one of the most important factors that needs to be considered
for the fabrication of fluorescent sensors [38]. The most basic prerequisite for the design
of a recognition unit is that it should have the ability to interact with analytes. Though
this requirement is arbitrary, the interaction mode between the recognition unit and ana-
lytes can be flexible, e.g., covalent reaction [39], electrostatic interaction [40,41], hydrogen
bonding interaction [42], Van der Waals interaction [43,44], hydrophobic interaction [45,46],
π–π stacking [47,48], etc. Taking advantage of the above methods, the analytes can be
selectively reacted, absorbed, or bound with the fluorescent sensor from a bulk phase. After
the capture of the analytes, the interacting event between the recognition unit and the
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analyte—which can result in changes in the molecular/nanomaterial structure or the initia-
tion/disruption of specific self-assembly behavior—is transferred to the signal processing
element (a fluorophore, in the case of fluorescent sensors) through the transduction element,
which normally serves as the link between the recognition element and the fluorophore [49].
In general, the fluorescent signal alteration induced by the above stimuli can be divided
into on–off, off–on, on–off–on, and off–on–off modes. Nevertheless, the nature of the
fluorescent intensity change lies in the alteration of the processing of electronic excited
states of the fluorophore, which can be manipulated by photoinduced electron transfer
(PET) [50], intramolecular charge transfer (ICT) [51], fluorescence resonance energy transfer
(FRET) [52], excited-state intramolecular proton transfer (ESIPT), etc.

2.2. The Mechanisms of Fluorescent Sensors

The PET process is a common strategy for the development of off–on fluorescent
sensors (Figure 2). Essentially, for the related probe, the fluorophore is connected with a
recognition acceptor, usually through the transduction unit. Before its interaction with the
analytes, the highest occupied molecular orbital (HOMO) of the acceptor is higher than
that of the fluorophore. When irradiated, an electron from the HOMO of the fluorophore is
excited to the lowest unoccupied molecular orbital (LOMO), promoting the charge transfer
from the HOMO of the acceptor to the HOMO of the fluorophore and quenching the
fluorescence, providing a fluorescence-off initial state. However, upon the interaction with
the analytes, the energy level of the HOMO of the acceptor will be lower than that of the
fluorophore, preventing the PET process and leading to the emission of fluorescence [53].
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Figure 2. Schematic representation of the (A) PET, (B) ICT, and (C) FRET processes (reproduced with
permission from [53], Copyright 2020, Elsevier B.V.).

The ICT process occurs in the system where the fluorophore is simultaneously linked
with an electron-donating group and an electron-withdrawing group (Figure 2B) [51].
With photoirradiation, the ICT takes place and results in different dipole moments, along
with the characteristic fluorescence emission originating from the ICT state. Upon the
interaction with either the electron-donating group or the electron-withdrawing group,
the presence of analytes can modulate the fluorescence spectrum through the alteration
of the original dipole moment. Specifically, after interacting with the analytes, either the
electron-donating capability of the donating group or the electron-withdrawing capability
of the withdrawing group is improved, and the fluorescent spectrum will be redshifted.
Otherwise, a blueshifted fluorescence spectrum will be obtained.

The FRET process is defined as the dipole–dipole interaction of the overlapped orbitals
between the ground state of an acceptor and the excited state of a donor (Figure 2C) [54].
There are several requirements for the occurrence of the FRET, including the proximity of
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the donor and acceptor and the overlap between the excited spectrum of the acceptor and
the emission spectrum of the donor [55]. Once the FRET efficiency is sensitive to the binding
between the fluorescent probe and the analytes, the change in the fluorescence intensity
or emission spectrum of the probe will take place. According to the FRET, on–off–on-type
fluorescence sensors known as indicator displacement assays have been developed [56].
In these cases, highly emissive fluorescent compounds or nanomaterials are chosen as
indicators. Through the regulation of the interaction of the indicators with the FRET
acceptor, the fluorescence of the indicators can be quenched. When in the presence of
the analytes, which exhibit higher affinity for the FRET acceptor, the indicators were
displaced by analytes from the surface of the FRET acceptor, leaving the fluorescence
turned on [57,58].

3. Fluorescent Methods for GSH Sensing

GSH, the tripeptide of γ-L-glutamyl-L-cysteinyl-glycine, is well known for its vital
biological functions [59]. Due to its ability to interact with fluorescent species, compounds,
or nanomaterials, GSH can be quantitatively evaluated via the changing of fluorescent
signals. According to the origin of the output signals, the recent progress in fluorescent
GSH sensing can be divided into three categories: (1) The output signals originate from
fluorescent compounds. Through chemical reaction with fluorescent compounds, GSH can
induce changes in the fluorescence intensity or fluorescence emission wavelength. (2) The
output signals originate from fluorescent nanomaterials. Through the disruption of the
surface properties or nanostructure of the nanomaterials, GSH can lead to the alteration of
the fluorescence performance. (3) The output signals originate from fluorescent indicators.
Through the interruption of the FRET between the fluorescent indicators and certain
sensing nanoplatforms, GSH can switch on the fluorescence of indicators. In this section,
the working principles and corresponding mechanisms for each kind of GSH fluorescent
sensor are discussed. Additionally, the pros and cons of these methodologies are clarified.

3.1. Fluorescent GSH Sensing via Its Reaction with Organic Fluorescent Compounds

The organic fluorescent compounds are common species that can be employed for
fluorescent GSH sensing [60,61]. The related mechanism lies in the reaction between GSH—
usually the sulfhydryl group with strong nucleophilic and reductive characteristics—and
the recognition unit of the organic fluorescent compounds, such as nucleophilic substitution
reaction, nucleophilic addition reaction, reduction reaction, etc. [62–64].

From the above perspective, the 4-chloro-anthra [1,2-c] [1,2,5] thiadiazole-6,11–dione
(ATD-Cl) was synthesized by Liu et al. (Figure 3A) [65]. They deliberately introduced an
electron-withdrawing group of -Cl on the skeleton of the fluorophore to prevent the ICT
process, leading to the rather weak fluorescence of ATD-Cl, with an excitation wavelength of
465 nm. Meanwhile, via nucleophilic substitution reaction, the sulfhydryl group originating
from GSH can replace the -Cl moiety, initiating the ICT process and the enhancement
of fluorescence emission. Through the quantification of the fluorescence change, the
concentration of GSH can then be monitored, and the limit of detection can be as low as
89 nM. In addition to the on–off mode, GSH sensing based on the off–on fluorescence
change was also presented via the nucleophilic addition reaction (Figure 3B). In this case,
a pyronine-based fluorescent compound with the addition of a Ge atom was reported
(GeP) [66]. With the introduction of the Ge atom, the charge density of the carbon at the
position 9 of pyronine was greatly increased, making it an active site for the occurrence
of nucleophilic addition. Therefore, in the presence of GSH, the reaction progressed;
meanwhile, the conjugation skeleton of the fluorescent probe was disrupted, resulting in
GSH-concentration-dependent fluorescence quenching with an excitation wavelength of
595 nm. The limit of detection for GSH was demonstrated to be 70 nM.
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Copyright 2018, Elsevier B.V.) and (B) GeP, taking advantage of the nucleophilic characteristics of
GSH (reproduced with permission from [66], Copyright 2022, Elsevier B.V.).

The reductive nature of GSH is another factor that can be employed for the design of
fluorescent GSH sensors. Wang et al. prepared an acetaldehyde-modified cysteine (AMC)
probe [67]. This probe exhibited fluorescence caused by the n–π* transition of the Schiff
base bonds. However, the fluorescence was relatively weak due to the close linking of the
Schiff base bonds by disulfide bonds. Meanwhile, in the presence of GSH, the GSH can
cleave the disulfide bond of the AMC. Hence, the fluorophores were diffused apart and
the fluorescence quenched by aggregation was restored, with an excitation wavelength
of 464 nm (Figure 4A). Through the evaluation of the fluorescence changes, GSH could
be detected, and the limit of detection was confirmed to be 36 µM. The disulfide–thiol
exchange reaction provides an alternative approach for GSH sensing. Xu’s group designed
a squaraine-based fluorescence sensor (SQSS) [68]. As shown in Figure 4B, the SQSS
featured two squaraines, which were closely linked with disulfide bonds. In the initial
state, the fluorescence of the SQSS was almost quenched due to the aggregation-induced
quenching and FRET. Since GSH can undergo disulfide–thiol exchange with the SQSS,
the squaraines were then distanced from one another in the presence of GSH, leaving the
recovery of the fluorescence with an excitation wavelength of 610 nm. In this case, the limit
of detection for GSH was verified to be 0.15 µM.
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In brief, for sensors based on organic fluorescent compounds, the fluorophores can
be flexibly chosen, the output signals are easy to modulate, and the fluorescence chang-
ing mode can be designed as desired. In addition, due to the dramatic changes in the
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fluorescence properties for organic compounds before and after reaction with GSH, the
sensors developed with this methodology are usually endowed with high sensitivity (less
than 1 µM), which makes them promising in practical biological applications. Moreover,
relatively high selectivity is often achieved thanks to the requirement of specific reaction
activity for interfering agents. However, high concentrations of other biothiols—for ex-
ample, cysteine (Cys) and homocysteine (Hcy)—may affect the accuracy of the sensing
results. Despite having several advantages, the tedious process of organic synthesis may be
one factor that limits the further boosting of organic fluorescent GSH sensors. In addition,
regarding biological applications, the lack of targeting capability of the small-molecule
fluorescent compounds towards the investigated tissue(s) remains a problem as well.

3.2. Fluorescent GSH Sensing via Its Interaction with Nanomaterials

A number of nanomaterials have been demonstrated to feature fluorescence, such as
quantum dots and gold clusters [69,70]. It has been demonstrated that the fluorescence
intensity of the nanomaterials is closely related to their structures. Therefore, through the
interruption of the inner or functional surface structure by GSH, the nanomaterials can be
used as fluorescent sensors for GSH [71,72].

Carbon dots, as one of the well-known nanomaterials with tunable fluorescence, have
received plenty of attention recently. The fluorescent performance of carbon dots has
been demonstrated to be supported by the conjugated π-domains of the carbon core, the
surface functional groups, the involvement of organic fluorophores, the doping element,
etc. Therefore, through the manipulation of the above factors by GSH, the fluorescence
of carbon dots can be regulated and, in turn, the carbon dots can be simply employed
as fluorescent GSH sensors. Yang et al. designed nitrogen-doped carbon dots (N-CDs)
with phenylenediamine as a precursor (Figure 5A) [73]. The N-CDs were demonstrated
to have a yellow emission, at 538 nm, with an excitation wavelength of 450 nm. However,
in the presence of GSH, the GSH molecules were attached to the surface of the carbon
dots, which induced changes in the original surface properties of the N-CDs and resulted
in the fluorescence quenching via a static mechanism. In this way, the N-CDs showed
high promise for the detection of GSH in vegetables and fruits, with a low detection
limit (0.059 µM) and high selectivity. Another example was presented by Shuang et al.
(Figure 5B) [74]. In this case, carbon dots with dual emission, at 430 nm and 642 nm,
and with an excitation wavelength of 465 nm, were prepared with alizarin carmine. Due
to its reductive nature, GSH can reduce the disulfide bonds located on the surface of
carbon dots, thereby inducing the disruption of the surface structure. Furthermore, it
was demonstrated that, by taking advantage of the NH group, the GSH can interact with
the oxygen-containing groups on carbon dots and cause their aggregation. Supported
by the above two factors, the emission at 430 nm was increased while that at 642 nm
was decreased in the presence of GSH, providing an intrinsic fluorescent GSH sensor in
a ratiometric manner. In addition, carbon quantum dots functionalized with the ligands
of bis(3-pyridylmethyl)amine (BPMA-CQDs) were fabricated (Figure 5C) [75]. With the
coordination of Cu(II), the fluorescence of BPMA-CQDs/Cu(II) was quenched due to PET.
Thanks to its reductive ability, the GSH can reduce Cu(II) to Cu(I), preventing the PET
process and inducing the fluorescence enhancement. With this sensor, the GSH can be
discriminated with a low detection limit (0.31 µM) and high selectivity among amino acids
and metal ions.
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Figure 5. Schematic illustration of carbon-dot-based fluorescent GSH sensing through (A) surface at-
tachment of GSH (reproduced with permission from [73], Copyright 2020, Elsevier Ltd.), (B) disulfide
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ety), and (C) metal ion reduction by GSH (reproduced with permission from [75], Copyright 2016,
Elsevier B.V.).

The nanomaterial-based fluorescent GSH sensors have endowed the area of GSH
sensing with several advantages. First of all, the fluorescence of nanomaterials is sen-
sitive to their structure, their surface functionality, and even their aggregation state. In
addition to covalent bonding interactions, non-covalent bonding interactions between
nanomaterial-based sensors and GSH could induce fluorescence changes as well, endow-
ing the corresponding sensors with relatively high sensitivity and selectivity. Secondly,
nanomaterials exhibit passive targeting capability for tumor sites, enabling their good
bioavailability and potential for high-resolution imaging and diagnosis of cancer in vivo.
However, for biological applications, the degradability issue of inorganic nanomaterials
should be paid attention to.

3.3. Fluorescent GSH Sensing via Indicator Displacement Assay

Indicator displacement assay is another common strategy for fluorescent GSH sens-
ing [76,77]. Using this methodology, the interaction between GSH and specific species—
usually nanomaterials—can be indicated by versatile fluorescent indicators. Taking ad-
vantage of the fluorescence changes, the amount of GSH can be quantified. Wang et al.
presented this idea by combining luminescent metal−organic frameworks (Figure 6A),
which were prepared with Ru-(bpy)3

2+-coated UiO-66 and manganese dioxide (MnO2) [78].
Due to the wide UV–Vis absorption of MnO2, after coating on the surface of Ru-(bpy)3

2+-
UiO-66, the fluorescence of Ru-(bpy)3

2+-UiO-66 was significantly quenched, resulting in
a low background platform. However, when mixed with GSH, thanks to its reductive
nature, GSH could efficiently reduce MnO2 to Mn2+, which enabled the recovery of the
fluorescence of Ru-(bpy)3

2+-UiO-66, with an excitation wavelength of 420 nm. In this way,
the concentration of GSH presented could be quantified from the increased fluorescence
intensity, and the limit of detection was demonstrated to be 0.28 µM. Further works ex-
panded this principle with various kinds of nanomaterials, such as metal nanoclusters and
graphene. Among these, monolayer-protected gold nanoparticles (MPGNs) have received
enormous attention due to their good biocompatibility, flexible functionalization, and ease
of preparation. Our group fabricated MPGNs coated with trimethylammonium-based
cationic ligands (Figure 6B) [79]. In view of the high affinity between the cationic MPGNs
and anionic 1-pyrenesulfonic acid sodium salt, the fluorescence resonance energy transfer
occurred, and the fluorescence of the 1-pyrenesulfonic acid sodium salt bound on the
surface of MPGN was quenched. When the MPGN-1-pyrenesulfonic acid sodium salt
nanoplatform with a low fluorescence background was mixed with GSH, the GSH bound
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to the surface of the gold nanoparticles via crosslinking and initiated the release of the
1-pyrenesulfonic acid sodium salt to a free molecule state, simultaneously causing the
recovery of fluorescence, with an excitation wavelength of 350 nm. With this simple design,
GSH was detected with high sensitivity (limit of detection: 1.1 µM) and excellent selectivity
among amino acids.
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Figure 6. Schematic illustration of fluorescent GSH sensing using indicator displacement assay
with (A) metal–organic frameworks (reproduced with permission from [78], Copyright 2019, Ameri-
can Chemical Society.), (B) monolayer-protected gold nanoparticles (reproduced with permission
from [79], Copyright 2022, Elsevier B.V.), and (C) MnO2-based nanocomposites (reproduced with
permission from [80], Copyright 2022, Elsevier B.V.).

For the detection of GSH, especially in biological systems, cysteine (Cys) and homo-
cysteine (Hcy) usually provide interference due to their similar functionality; therefore, the
development of sensing approaches that can discriminate GSH in the presence of Cys/Hcy
is of significant importance. With this idea in mind, manganese dioxide nanoflowers (MnO2
NFs) were coated with carbon dots through an amidation coupling reaction (Figure 6C) [80].
Similar to the above example, the fluorescence of the carbon dots was quenched by MnO2
NFs via FRET. When this platform was mixed with GSH, the GSH reduced the MnO2 to
Mn2+, again leading to an increase in the fluorescence intensity at an excitation wavelength
of 380 nm. Meanwhile, in the case of Cys or Hcy, although both of them can induce the
decomposition of MnO2 NFs, instead of the disulfide bond, their reduction products were
demonstrated to be SO32−, which can quench the fluorescence of carbon dots to a larger de-
gree, further decreasing the intensity of the fluorescence. Taken together, the two opposite
fluorescence response modes observed for MnO2 NFs make them promising candidates for
the fluorescent sensing of GSH in practical applications.

In the indicator displacement assay strategy, a higher degree of flexibility is offered for
fluorescent GSH sensing. To start with, diverse indicators with high fluorescent quantum
yields and emission colors can be flexibly chosen to improve the sensing sensitivity. In
addition, when multiple indicators with diversified fluorescence channels are employed
simultaneously, fluorescent sensor arrays endowed with high selectivity for GSH can be
developed. Moreover, as the displacement event is usually actuated by non-covalent
interactions, reversible fluorescence changes can be achieved in the presence and absence of
GSH. Therefore, undoubtedly, this approach provides the possibility for in situ monitoring
of GSH in vivo. However, the stability of fluorescent nanomaterial–indicator sensing
platforms during blood circulation and their related bioavailability should be considered
for biological applications.

Above all, taking advantage of fluorescent output signals originating from organic
compounds, fluorescent nanomaterials, or fluorescent indicators, GSH can be sensitively
and selectively detected. In addition to the abovementioned examples, the limit of detection
and selectivity of other GSH sensors are listed in Table 1 to further prove their potential in
practical applications.
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Table 1. The structure, limit of detection, and sensitivity of representative fluorescent GSH sensors.

Structure Limit of Detection Selectivity

CBF3 [62] 9.2 nM Amino acids, anions, and amines

Lyso-RC [61] 27 nM Cys/Hcy, GSH, and H2S

NH2-UiO-66@AgNPs [81] 79 nM Amino acids

BSA@AuNCs–MnO2 [82] 1000 nM Ions and amino acids

UCNPs [83] 200 nM Ions and amino acids

UCNP@RBD probe [84] 50 nM Serum samples and urine samples

Cdot-MnO2 nanostructures [85] 19,000 nM Amino acids

GODs-MnO2 [86] 48 nM Ions and amino acids

carbon dots–MnO2 [87] 300 nM Electrolytes, amino acids,
and proteins

Murexide-Hg2+ system [88] 100 nM Amino acids and anions

ACD [89] 6 nM Cys, Hcys, and GSSG

Graphene quantum
dot−MnO2 [90] 150 nM Inorganic salts, metal ions, amino

acids, and proteins,

4. Fluorescent GSH-Sensing-Actuated Bio-Applications

Taking into account that GSH plays a crucial role in biological processes and, more
interestingly, that there is a significant discrepancy in GSH concentration between normal
cells and certain diseased cells, intracellular GSH sensing is becoming a hot topic. Currently,
enzymatic assays (e.g., Ellman’s assay) for GSH detection are commercially available.
Although these methods are endowed with satisfying sensitivity, most of them can only
be used in vitro, as the output information that they provide is the intensity of UV–Vis
signals. Therefore, fluorescent GSH sensing, which offers the possibility of spatial and
temporal resolution, can greatly benefit GSH imaging, cancer cell recognition, and even
the monitoring of stroke or neurological diseases [91]. In this section, the possible bio-
applications prompted by GSH sensing are discussed.

4.1. GSH Imaging

Fluorescence imaging is an essential way to study the GSH-related physiological
processes. To apply GSH imaging in cellular, living systems—or even subcellular systems—
with fluorescent GSH sensors, several factors need to be kept in mind: (1) the degree
of fluorescence enhancement or the sensitivity of the probe to GSH, (2) the background
of the GSH-sensing probe, (3) the quantitative evaluation, (4) the influence of possible
interference, (5) the biocompatibility, (6) the bioavailability, and (7) the biological stability
of the probe [92–94].

As addressed above, the selective imaging of GSH, with negligible interference from
other biothiols, is an important factor that needs to be taken into account for the practical
application of fluorescent GSH sensors. In biological systems, Cys and Hcy are two com-
mon kinds of thiols that may affect the accuracy of GSH imaging results [95]. Thanks to the
slight differences in their molecular structures, a multisite binding fluorescent probe (Probe
BCC) was developed by Yin’s group (Figure 7) [96]. The core fluorophore of the probe is
coumarin. While in different positions, the coumarin is modified with n-butylthio groups,
α,β-unsaturated C=C bonds, and cyano groups as binding sites for nucleophilic substitu-
tion, Michael addition or amino addition, and amino addition, respectively. Therefore, the
reaction of the probe with GSH, Cys, and Hcy was imparted with different mechanisms
and, of course, resulted in products with different conjugation sections, i.e., fluorescence
properties. The biological results further confirmed that the abovementioned fluorescent
probe can differentiate the GSH from Cys and Hcy in BEL-7402 cells via the monitoring of
the different fluorescence channels.
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Figure 7. Upper: the molecular structure of Probe BCC and the mechanism for multiple binding
sites inducing selective recognition of GSH. Lower: the differentiated fluorescence emission of Probe
BCC in the presence of Cys, GSH, and Hcy in BEL-7402 cells (reproduced with permission from [96],
Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA).

Quantitative imaging of GSH in live cells can significantly benefit the deep under-
standing of a series of pathological processes. Wang et al. creatively developed a reversible-
reaction-based GSH sensor taking advantage of ThiolQuant Green (Figure 8A). [97] The
ThiolQuant Green featured green emission (590 nm) with an excitation wavelength of
479 nm. In the presence of GSH, the ThiolQuant Green, which served as a Michael acceptor,
underwent Michael addition with GSH, resulting in the product of ThiolQuant Green–GSH,
which was imparted with blue emission (463 nm) with an excitation wavelength of 406 nm.
Through the regulation of the equilibrium constant, this sensor can be employed for the
quantitative discrimination of concentrated GSH in living cells in a ratiometric manner
while using a small amount of ThiolQuant Green. The quantitative GSH sensing with
spatial and temporal resolution provides the most direct evidence for the understanding of
the biological functions of GSH. Jiang et al. reported a novel strategy in this respect [98].
They elaborately combined the HaloTag protein and a reversible Michael-addition-reaction-
based fluorescent GSH sensor (Figure 8B). Similar to the above example, the GSH-related
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reversible reaction offered ratiometric output signals, which could be used for the quantita-
tive discrimination of GSH inside cells. When different HaloTag proteins were employed
for the targeting of various organelles, by comparing the ratio of the fluorescence signal
between the probe and the product, the concentration gradient of GSH located in the
nucleus and cytosol was demonstrated to be inappreciable. Moreover, upon treatment
with hydrogen peroxide, buthionine sulfoximine, tunicamycin, and nelfinavir, the GSH
concentrations in the nucleus and cytosol experienced similar changes for HeLa cells. The
subcellular imaging of GSH with spatial and temporal resolution provided by this ap-
proach will undoubtedly spur progress GSH-sensing-related biological applications. Taken
together, to achieve quantitative GSH imaging with spatial and temporal resolution, the
following two factors should be considered: (1) the precise quantification parameter in a
suitable concentration range, and (2) the targeting capability for the investigated cells or
organelles and their resultant bioavailability.
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Figure 8. (A) ThiolQuant-Green-based reversible reaction with GSH and related ratiometric quan-
tification of GSH in living cells (reproduced with permission from [97], Copyright 2014, American
Chemical Society.). (B) GSH quantification with subcellular resolution based on HaloTag technology
combined with a reversible reaction (reproduced with permission from [98], Copyright 2019, Mary
Ann Liebert, Inc.).

4.2. Cancer Cell Recognition

Taking advantage of the concentration discrepancy of GSH between tumor tissue
and healthy tissue, cancer cell recognition can be achieved with fluorescent GSH sensors.
Wu et al. developed an elaborate method for cancer cell recognition by monitoring the GSH
contents [99]. They prepared nanocomposites by encapsulating fluorescein on graphene
oxide–MnO2 (Figure 9A). Through the FRET, the fluorescence of fluorescein was quenched
by MnO2 from graphene oxide–MnO2. Meanwhile, in the presence of GSH, the MnO2
decomposed and contributed to the recovery of the fluorescence. Encouraged by the fact
that the nanocomposites exhibited excellent cytocompatibility, the graphene oxide–MnO2–
fluorescein was testified in living systems and provided the possibility of intracellular
imaging. Even more fascinating, when the nanocomposites were incubated in cancerous
and healthy mice, due to the higher amounts of GSH in tumor tissue, twofold brighter
fluorescence was observed in the tumor tissue than in the normal tissue, offering the
promise of GSH-sensing-actuated cancer diagnosis. Zhang et al. [100] reported a fluorescent
nanocluster, MBT@PVP-CuNCs (Figure 9B), which was composed of polyvinylpyrrolidone
(PVP), 2-mercaptobenzothiazole (MBT), and copper nanoclusters (CuNCs). It was found
that the Hg2+ could effectively diminish the fluorescence ratio at F585/F432, in comparison
with a series of metal ions, amino acids, and saccharides. Furthermore, taking advantage of
the strong affinity between GSH and Hg2+, the Hg2+ was displaced from the MBT@PVP-
CuNCs by GSH and the fluorescence of the MBT@PVP-CuNCs was recovered, making
MBT@PVP-CuNCs-Hg2+ an appealing candidate for GSH detection. More importantly,
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the tumor cell recognition capability of MBT@PVP-CuNCs was demonstrated both in vitro
and in vivo.
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Figure 9. Fluorescent GSH-sensing-promoted cancer cell recognition with (A) MnO2-based nanocom-
posites (reproduced with permission from [99], Copyright 2018, Elsevier Inc.), (B) Cu nanoclusters
(reproduced with permission from [100], Copyright 2022, Elsevier B.V.), and (C) Au nanoclusters
(reproduced with permission from [101], Copyright 2014, Wiley-VCH Verlag GmbH & Co. KGaA.).

Gold nanoclusters (Au NCs) are known for their excellent biocompatibility and as
attractive candidates for bio-applications. With the mixing of HAuCl4 and histidine, Au
NCs with a size of ~3 nm were prepared (Figure 9C). Chen et al. found that the as-obtained
Au NCs had relatively weak fluorescence [101]. Meanwhile, in the presence of GSH, the
Au-S bonds were formed and charge transfer from the ligands to the metal cluster occurred,
resulting in the marked enhancement of fluorescence. As the common biothiols Cys and
Hcy did not show any obvious effect on the fluorescence change, the as-reported Au NCs
were tested in biological systems, and a selective fluorescence increase in tumor cells was
achieved, providing an alternative approach for cancer diagnosis.

4.3. Other Bio-Applications

The monitoring of ROS-induced redox imbalance has been achieved with fluorescent
GSH sensors. In this respect, Yin’s group synthesized a coumarin probe functionalized with
chloride and 2-dicyanmethylene-3-cyano-4,5,5trimethyl-2,5-dihydrofuran (Probe 1) [102].
This probe could selectively detect GSH from other biothiols according to the substitution–
cyclization cascade reaction (Figure 10A). When applied in a cellular system, the flu-
orescence of the above probe was attenuated along with the increased ROS treatment
(Figure 10B), making it a proper candidate for the recognition of excessive ROS in vivo.
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Figure 10. (A) The molecular structure of Probe 1 and the related mechanism for the detection of
GSH. (B) The discrimination of various amounts of ROS in BEL-7402 cells by Probe 1 (reproduced
with permission from [102], Copyright 2020, Elsevier B.V.).

Reduced amounts of GSH in serum are related to a series of neurological diseases.
According to this fact, Qian’s group designed a probe of Eu3+/Cu2+@UiO-67-bpydc
(Figure 11A), of which the fluorescence of the Eu3+ was quenched by Cu2+ [103]. Since
GSH has the ability to coordinate with Cu2+, it could remove Cu2+ from the Eu3+/Cu2+@
UiO-67-bpydc probe and induce the fluorescence enhancement. When this GSH sensor
was applied in fetal bovine serum, the concentration of GSH in the serum could be accu-
rately fitted with the intensity of fluorescence, confirming its suitability for the diagnosis of
neurological diseases.
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Figure 11. (A) Schematic illustration of a UiO-67-bpyde-based fluorescent GSH sensor and related
principle for the diagnosis of neurological diseases (reproduced with permission from [103], Copy-
right 2019, Elsevier Inc.). (B) Upper: the molecular structure of a BODIPY-based probe and its
mechanism for the sensing of GSH. Lower: the in vivo monitoring of stroke and ferroptosis with an
MCAO model (reproduced with permission from [104], Copyright 2022, Elsevier B.V.).

The diagnosis of cerebral ischemia–reperfusion injury has also been accomplished
by taking advantage of fluorescent GSH sensors. This breakthrough was reported by
Gu et al. [104], who designed an elaborate series of BODIPY-based fluorophores functional-
ized with a 2,4-dinitrobenzenesulfonate group (Figure 11B). Because of the strong electron-
withdrawing capability of the 2,4-dinitrobenzenesulfonate group, the PET process occurred,
and the fluorescence of the as-prepared fluorophores was quenched. Due to the ability to
cut off the 2,4-dinitrobenzenesulfonate group from the probes, the GSH could be quantified
from the fluorescence enhancement. Even more appealing, in a middle cerebral artery
occlusion (MCAO) model that can stimulate stroke, the fluorescence signal of the probe
changed along with the variation in the GSH concentration, and the detection of stroke
was achieved. Moreover, by adding ferrostatin-1 to the MCAO model, the fluorescence
enhancement verified that the stroke was accompanied by ferroptosis.

5. Conclusions and Outlooks

In view of the recent progress, fluorescent methods have been proven to be an ef-
fective approach for the quantitative detection of GSH. Through covalent reactions or
non-covalent interactions, the fluorescent sensing platforms for GSH can use fluorescent
organic compounds, fluorescent nanomaterials, or even fluorescent indicators coated with
non-fluorescent nanomaterials. Generally, due to the high sensitivity of fluorescent meth-
ods, the limit of detection for GSH is usually less than 1 µM. In addition, due to the specific
functionality of the thiol group, in most cases, the GSH can be selectively discriminated
among amino acids and metal ions. As a result of the high sensitivity and selectivity of
fluorescent GSH sensors, quantitative imaging with spatial and temporal resolution was
achieved. Moreover, methodologies related to fluorescent GSH sensing have also achieved
cancer diagnosis and the monitoring of neurological disease and stroke. Though great
efforts have been made, space for future improvement still remains. (1) One of the obstacles
that limit the practical application of fluorescence imaging is the disturbance of the tissue’s
autofluorescence. To minimize the effect of tissue autofluorescence on the GSH imaging,
the design of NIR fluorescent imaging systems could be a meaningful direction. (2) As
the concentration of GSH is relevant to cancer diagnosis, and the overexpressed GSH can
scavenge antitumor species (e.g., reactive oxygen species), the combination of GSH sensing
and GSH depletion performance could be a popular topic to facilitate cancer diagnosis and
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therapy simultaneously. (3) The development of fluorescent GSH sensors with spatial and
temporal quantification capability in cellular or even subcellular systems is challenging.
Though examples have been given, the in situ monitoring of GSH in specific tissues, which
benefits both disease diagnosis and related therapy, will offer new opportunities in this
field. (4) In addition to focusing on the functionality of GSH sensors and their related
biological applications, the bioavailability of corresponding sensing platforms should be
paid attention to, and novel strategies for their improvement should be developed.
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