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Abstract: The surface tailored metal oxide nanostructures for the development of non-enzymatic
sensors are highly demanded, but it is a big task due to the wide range of complexities during the
growth process. The presented study focused on the surface modification of the heterogeneous
morphology of cobalt oxide (Co3O4) prepared by the hydrothermal method. Further surface modi-
fication was conducted with the use of sodium citrate as a reducing and surface modifying agent
for the Co3O4 nanostructures through the high density of oxygenated terminal groups from the
citrate ions. The citrate ions enabled a significant surface modification of the Co3O4 nanostructures,
which further improved the electrochemical properties of the Co3O4 material toward the design
of the non-enzymatic ascorbic acid sensor in a phosphate buffer solution of pH 7.4. The morphol-
ogy and crystal arrays of the Co3O4 nanostructures were studied by scanning electron microscopy
(SEM) and powder X-ray diffraction (XRD) techniques. These physical characterizations showed
the highly tailored surface features of Co3O4 nanostructures and a significant impact on the crystal
properties. The electrochemical activity of Co3O4 was studied by chronoamperometry, linear sweep
voltammetry, and cyclic voltammetry (CV) for the detection of ascorbic acid. The linear range of the
proposed sensor was measured from 0.5 mM to 6.5 mM and a low limit of detection of 0.001 mM
was also estimated. The presented Co3O4 nanostructures exhibited significant surface roughness and
surface area, consequently playing a vital role toward the selective, sensitive, and stable detection of
ascorbic acid. The use of a low cost surface modifying agent such as sodium citrate could be of great
interest for the surface roughness and high surface area of nanostructured materials for the improved
electrochemical properties for the biomedical, energy storage, and conversion systems.

Keywords: Co3O4 nanostructures; sodium citrate; non-enzymatic approach; ascorbic acid sensor

1. Introduction

The physiological activities in living organisms are intensively governed by the pres-
ence of ascorbic acid (vitamin C), and an abnormal level of ascorbic acid concentration can
severely affect health and cause scurvy, followed by the formation of collagen. Ascorbic
acid is highly useful in our body for the development of the skin, immune, and tissue
system [1]. Importantly, ascorbic acid is a strong antioxidant and it drives the metabolism of
cholesterol effectively in the human body [2], hence its accurate and sensitive determination
is vital for practical applications. Conventional methods have been used to determine the
ascorbic acid from food and clinical samples [3,4], and these methods include chromato-
graphic [5] spectrophotometry [6], fluorimetry [7], NIR, MIR, and FT-Raman techniques [8].
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These conventional methods are associated with high cost, time taking, complicated, and
require well skilled people for the detection of ascorbic acid. Furthermore, electroanalytical
methods such as voltammetry [9–12], amperometry [13], and potentiometric [14] have been
used extensively due to their high potential, promising, and advantageous features such
as low cost, simple, highly sensitive, and accuracy toward the detection of analytes [15].
Electrochemical methods have been used through two methodologies for the development
of biosensors. First, the use of enzyme immobilization on electrocatalytic materials [16],
dye immobilization [17], and polymer coatings [18] for the determination of ascorbic acid.
Enzyme immobilization on electrocatalytic materials suffers from poor thermal stability,
enzyme spoilage, a complicated enzyme immobilization process, and a high consumption
of substrate molecules [19]. Second, recently, non-enzymatic methods have been intensively
used for the design of electrochemical sensors due to their several advantages such as
being highly sensitive, thermally stable, easy to operate, and fast response [20]. However,
non-enzymatic methods require efficient electrocatalytic materials for the sensitive and
selective detection of small biomolecules, hence this method is still at an early stage with
regard to its utilization in practical applications. Thus, new studies are always welcome
by researchers and industrialists for the synthesis of new functional materials with en-
hanced electrocatalytic properties for sensitive and selective electroanalytical applications.
Among the materials, transition metal oxides are a unique class of materials due to their
unique d-orbital configuration for the tailored catalytic properties for the development
of non-enzymatic sensors. Cobalt oxide (Co3O4), among the transition oxides, has been
highly investigated for its electrochemical applications for two decades due to its spinel
structure and mixed oxidation states for swift redox reaction kinetics. Moreover, it is low
cost, ecofriendly, and easy to prepare [21]. This is the reason why Co3O4 nanostructures
have been studied for a wide range of applications such as energy storage systems [22], het-
erogeneous catalysis [23], magneto resistive devices [24], and electrochromic thin films [25].
Aside from these applications of Co3O4 nanostructures, they have been potentially utilized
for the development of electrochemical sensors [26]. For example, Co3O4 nanostructures
have been employed for the development of glucose [27,28], lactic acid [29], ascorbic
acid [30], and urea [31] electrochemical sensors. The improvement in the electrocatalytic
properties of Co3O4 nanostructures was carried out by various methods such as doping,
developing composite structures, and surface modifications using different preparation
methods [19,20,31,32]. Despite these extensive efforts, the electrochemical performance of
Co3O4 nanostructures has been found to be poor toward the fabrication of efficient non-
enzymatic electrochemical sensors and their realization in real sample analysis. Therefore,
new types of simple and low cost approaches for the synthesis of Co3O4 nanostructures
have to be studied for the development of a new generation of non-enzymatic ascorbic
acid sensors. The use of oxygen rich oxygen terminated atoms of anionic species such as
citrate can be effectively used to evolve the morphology and change the number of surface
active sites on the surface of the material for the enhanced electrochemical properties of
Co3O4 nanostructures. The use of rich oxygenated terminal groups for enabling the surface
roughness of Co3O4 nanostructures has not been studied elsewhere. For this reason, we
employed sodium citrate due to its low cost reducing agent properties via oxygenated
terminals for the Co3O4 nanostructures. Furthermore, in this study, we highlighted the role
of citrate ions from sodium citrate with abundant oxygen terminals to create the roughness
on the surface of the Co3O4 nanostructures. Additionally, the presented study was carried
out in different ways to compare to our previous studies, where we directly utilized the
surface modifying agents in the precursors of the nanostructured material [31,32]. In these
studies, we did not highlight the surface roughness factor by the use of low cost and mild
reducing agents for the prepared nanostructured materials toward the development of
non-enzymatic sensors. Hence, the proposed research work was completely different from
our previous studies and this kind of strategy has not been reported to date. In the end,
the modified surface of the Co3O4 nanostructures played an important role in the sensitive
and selective detection of ascorbic acid using a non-enzymatic approach.
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2. Materials and Methods
2.1. Used Chemicals

Different chemicals such as cobalt sulfate, sodium citrate, urea, ascorbic acid, and 5%
Nafion were purchased from Sigma Aldrich Karachi, Pakistan, and all of them were of high
analytical grade. The preparation of the desired solutions was conducted with deionized
water. Prior to the experiments, the glassware was cleaned with deionized water and dried
at room temperature. The phosphate buffer solution of pH 7.4 was made with the use of
various salts such as 0.1 mM H3PO4, 0.1 mMNaH2PO4, 0.1 mM Na2HPO4, and 0.01 mM
NaCl in the deionized water. The pH of the phosphate buffer solution was adjusted using
0.2 M HCl and NaOH aqueous solutions.

2.2. Hydrothermal Preparation of Co3O4 Nanostructures Using Sodium Citrate as a Surface
Modifying Agent

First, the Co3O4 nanostructures were prepared by the hydrothermal method followed
by thermal annealing in air. The synthesis of the Co3O4 nanostructures was carried out with
the use of a cobalt precursor of 0.1 M cobalt sulfate and 0.1 M urea in 500 mL of deionized
water. The well dispersion of the cobalt precursor was obtained through mechanical
stirring with a glass rod for 10 min. Then, the cobalt precursor solution was covered with
an aluminum sheet and the hydrothermal process was performed at 90 ◦C to 95 ◦C for
5 h. The prepared cobalt hydroxide material was collected on ordinary filter paper and
washed several times with deionized water followed by drying at 60 ◦C overnight. Then,
the cobalt hydroxide phase material was kept in China clay made crucible and annealed at
500 ◦C for 4 h. Afterward, a typical Co3O4 nanostructure with a black color was obtained
and named as pristine Co3O4 (sample 1). Second, the Co3O4 nanostructures were treated
with sodium citrate for the purpose of surface modification. The choice of sodium citrate
was taken on the basis of a rich source of oxygenated terminals that could easily tailor the
surface roughness of the Co3O4 nanostructures. In the typical sodium citrate treatment,
5 g of the Co3O4 nanostructures were placed in a 100 beaker capacity with 20 mL of 0.1 M
sodium citrate. The reducing agent treatment was carried out at two different times such as
1 and 1.5 h. After this, the modified Co3O4 nanostructures were collected on the filter paper,
washed with deionized water, and dried overnight. The treated Co3O4 nanostructures
for 1 and 1.5 h were labeled as sample 1 and sample 2, respectively. Each step involved
during the synthesis of the surface modified Co3O4 nanostructures is shown in Figure 1.

2.3. Structural and Electrochemical Measurements for Ascorbic Detection on Citrate Derived
Co3O4 Nanostructures

The crystal quality aspects of the Co3O4 nanostructures were studied by powder
X-ray diffraction (PXRD) with measurement conditions of CuKα radiation (λ = 1.5418 Å)
at 45 kV and 45 mA. A low resolution scanning electron microscopy was used under the
experimental conditions of 20 kV to evaluate the surface morphology of the as prepared
Co3O4 nanostructures. The Co3O4 nanostructure catalyst ink was prepared by dissolving
10 mg of the Co3O4 nanostructures into 2.5 mL of deionized water and 0.5 mL of 5%
Nafion. Then, a homogenous catalyst ink was achieved in an ultrasonic bath for 10 min.
For the cleaning of the glassy carbon electrode (GCE), it was polished with alumina paste
(0.5 µm) and rubbed with silicon paper. Afterward, GCE was washed several times with
the deionized water. Then, the drop cast method was used to deposit 10 µL of Co3O4
nanostructures onto the GCE, which was labeled as the modified (MGCE) and used as a
working electrode. The electrochemical experiments were conducted with a three electrode
cell configuration involving the silver–silver chloride (Ag/AgCl, 3.0 M KCl) as the reference
electrode and platinum wire as a counter electrode. Keeping in mind the physiological pH
environment for the real sample analysis of ascorbic acid in the human body, here, we used
the phosphate buffer solution of pH 7.4. Furthermore, from the previous works, it has been
shown that the electrochemical detection of ascorbic acid is more favorable around a pH of
7.3–7.4. Different ascorbic acid concentrations were made in a phosphate buffer solution
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of pH 7.4. The phosphate buffer solution of pH 7.4 was used as a supporting electrolyte.
Different electrochemical modes were used such as cyclic voltammetry (CV), linear sweep
voltammetry (LSV), and chronoamperometry. The real sample analysis was also conducted
on the MGCE for the quantification of ascorbic acid from the human urine sample. The
real sample was collected by a healthy voluntary person from our laboratory and the
preparation was carried out by adding 1 mL of human urine sample in 19 mL of phosphate
buffer solution at pH 7.4. This was then analyzed by the presented non-enzymatic ascorbic
acid sensor.
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3. Results and Discussion
3.1. Morphology, and Crystalline Characterization of Oxygenated Terminals Treated
Co3O4 Nanostructures

The reaction mechanism of ascorbic acid onto the Co3O4 nanostructure takes place by
the transfer of two electrons and protons, as shown in Figure 2, and it has been generally
represented in previous studies [32,33]. The Nernst equation has been used to describe
the equal number of proton and electron transfer during the oxidation of ascorbic acid as
given under:

Nernst equation, Ep (V) = −0.059 (m/n) pH + E0 (1)

where Ep is the peak potential, m and n are the number of protons and electrons, respectively.
The ascorbic acid molecules were adsorbed on the modified GCE when it was inserted in
the ascorbic acid solution, then the applied potential favored the oxidation of ascorbic acid
into dehydroascorbic acid. At the same time, electrons and protons were produced, and
consequently, the free electrons contributed toward the enhanced conductance of MGCE
and also the electron transfer kinetics, as shown in Figure 2. During the electrochemical
reaction of ascorbic acid on MGCE of the Co3O4 nanostructures, the formation of cobalt(II)
hydroxide, and furthermore, its oxidation into CoOOH could be expected, hence such a
phenomenon is considered to monitor the detection of ascorbic acid using a non-enzymatic
approach. The morphology of the modified Co3O4 nanostructures was evaluated by SEM,
as shown in Figure 3. The SEM image of the pristine Co3O4 nanostructures without sodium
citrate (sample-1) exhibited a porous flower like structure with the dimensions of a few
microns, as shown in Figure 3a. However, the citrate ion treated Co3O4 nanostructures with
different time intervals at 1 and 1.5 h were also studied by SEM and their corresponding
SEM images are shown in Figure 3b,c. The citrate ions made the surface of the Co3O4
nanostructures relatively rough due to its reducing aspects of sodium citrate, and these
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changes were highly visible for samples-2 and -3 through the SEM images, as shown in
Figure 3b,c. The surface modification of the Co3O4 nanostructures after hydrothermal
synthesis has not been investigated and the present approach offers a facile approach for
the surface modification of nanostructured materials. The significant heterogeneity on the
surface of Co3O4 could be seen in Figure 3b,c, which could be useful for electrochemical
applications. These surface alterations were further proven to be an effective tool for
the development of a non-enzymatic ascorbic acid sensor in the presented work. To
investigate the purity and crystal quality of the as prepared Co3O4 materials, the powder
XRD technique was performed as shown in Figure 3d. The experiment was performed at
the 2 theta angle range with scanning from 30◦ to 80◦. The XRD study showed that there
was an effect on the intensity of the diffraction patterns when sodium citrate was used and
some of the reflections of Co3O4 became more intense, suggesting that an improved crystal
quality compared to the pristine Co3O4. The diffraction patterns of Co3O4 fully agreed with
the standard JCPDS card (96-900-5889). The Co3O4 samples were identified with cubic
crystal phase and there was no any other impurity in the samples, suggesting a high quality
of the as prepared Co3O4 material.
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3.2. Electrochemical Measurements for the Determination of Ascorbic Acid Using Surface Modified
Co3O4 Nanostructures

The CV curves at a scan rate of 50 mV/s were measured for the Co3O4 nanostructures
in the absence and presence of ascorbic acid in a phosphate buffer solution of pH 7.4. The
CV curves of the pristine Co3O4 nanostructures (sample-1) and surface modified Co3O4
nanostructures (sample-2, sample-3) deposited onto GCE were recorded in 0.1 mM ascorbic
acid, as shown in Figure 4a. The electrocatalytic properties of three samples of the Co3O4
nanostructures were studied by CV curves and sample-3 was found with an enhanced
oxidation peak current and well-shaped peak, as shown in Figure 4a. To further verify
whether the peak came mainly from ascorbic acid or electrolyte, we only tested sample-3
in the electrolyte without ascorbic acid and with the use of ascorbic acid, as shown in
Figure 4b. Sample-3 showed a non-Faradic process in the supporting electrolyte, however,
it had a described well-resolved oxidation peak in the ascorbic acid, suggesting its superior
redox electrochemical activity, as shown in Figure 4b. The surface area and excellent
compatibility of the newly prepared Co3O4 nanostructures with the surface of GCE all
played a vital role toward the superior performance during the non-enzymatic sensing
of ascorbic acid in the presented study. Moreover, an enhanced surface roughness and
improved catalytic properties of the Co3O4 nanostructures also played an outstanding role
in the sensitive detection of ascorbic acid. Furthermore, we studied the Faradic kinetics
of the Co3O4 nanostructures (sample-3) through CV curves at various scan rates ranging
from 10 to 80 mV/s in 0.1 mM ascorbic acid, as shown in Figure 5a. It was observed
that the oxidation peak current increased with each rise in the scan rate, suggesting the
well-behaved diffusion electrochemical process on the modified electrode. The plot of the
oxidation peak current enhancement with each scan rate was plotted against the square
root of the scan root as shown in Figure 5b, indicating the good analytical features of
the modified GCE [33,34]. The working range of the newly developed non-enzymatic
ascorbic acid sensor based on Co3O4 nanostructures was also evaluated in a phosphate
buffer solution of pH 7.4. Various CV curves measured at a scan rate of 50 mV/s in
the different concentrations of ascorbic acid are shown in Figure 6a. It was obvious that
the oxidation peaks increased linearly with each rise in increment in the ascorbic acid
concentration, verifying the sensitive signal of sample-3 against the ascorbic acid molecules.
The linear plot of the oxidation peak current of each CV curve was fitted against the
ascorbic acid concentrations and well-defined analytical fitting features were observed
through the regression coefficient of 0.99. This confirms the excellent analytical behavior
of the presented electroanalytical method based on Co3O4 nanostructures, as shown in
Figure 6b. A wide linear range of 0.1–6.5 mM ascorbic acid concentration was shown using
CV measurements. The low limit of detection was estimated by published work [35], and
it was found to be about 0.001 mM. The linear range and the low limit of detection of the
presented ascorbic acid sensor were superior to many of the published ascorbic acid sensors
using various nanostructured materials such as the Pt–Ti alloy [36–38]. In the CV curves,
the Faradic current was directly used to quantify the kinetics of the electrochemical process
occurring on the surface of the working electrode. Moreover, the peak current depends on
the speed at which the electrode material receives a number of molecules from the bulk
solution of analyte which are connected to mass transport. It has been shown that at a low
concentration of analyte, diffusion takes place without disturbance, hence peak shift could
not take place. However, diffusion is highly disrupted at higher concentrations, thus offers
a big barrier for favorable mass transport, which is compensated by disruptive diffusion.
Therefore, the reoccurrence of mass transport without the disturbance and electrochemical
reaction needs more potential, thus it causes a shift in the peak potential. Furthermore, the
electrochemical reaction needs a particular time span to assure the diffusion of reactive
species and the charge transfer on the surface of the working electrode. Therefore, the shift
in the potential could be attributed to the delay in the electrochemical process because of
the shortness of the given time compared to the time given to the electrochemical reaction
at a lower concentration or scan rate. The intersection of CV curves for the 6 mM and
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6.5 mM concentrations could be indexed to the shift in the peak potential toward low
overpotential for the 6.5 mM concentration, hence it seems that there is an intersection.
The calibration of various ascorbic acid concentrations was also made with the use of
linear sweep voltammetry (LSV), as shown in Figure 7a. It is clear that the CV results for
calibration were further found to be in good agreement with the LSV results and offer
another aspect of the sensitivity of the Co3O4 nanostructures. Interestingly, the LSV results
became very sensitive due to their higher working range from 0.1 to 6.5 mM, as shown by
the linear fitting of the oxidation peak current from the LSV curves versus the different
ascorbic acid concentrations (Figure 7b). Furthermore, the calibration plot was obtained
by using chronoamperometry, which is a more sensitive electrochemical method and the
observed results are shown in Figure 8a. Each chronoamperometric response suggests the
successive increase in the current related to a rise in the concentration of ascorbic acid,
indicating the excellent electrocatalytic properties of the Co3O4 nanostructures tuned by
the treatment of sodium citrate. We also plotted linear fitting through the increase in the
current during the chronoamperometric signal against various ascorbic acid concentrations,
as shown in Figure 8b. The linear fitting revealed the highly sensitive nature of the
Co3O4 nanostructures by demonstrating a linear range of 1–5 mM of ascorbic acid. The
chronoamperometry results suggest that each i–t curve response time is highly durable and
can be applied for certain periods of time for the detection of ascorbic acid.

Biosensors 2023, 13, x FOR PEER REVIEW 8 of 15 
 

the 6 mM and 6.5 mM concentrations could be indexed to the shift in the peak potential 
toward low overpotential for the 6.5 mM concentration, hence it seems that there is an 
intersection. The calibration of various ascorbic acid concentrations was also made with 
the use of linear sweep voltammetry (LSV), as shown in Figure 7a. It is clear that the CV 
results for calibration were further found to be in good agreement with the LSV results 
and offer another aspect of the sensitivity of the Co3O4 nanostructures. Interestingly, the 
LSV results became very sensitive due to their higher working range from 0.1 to 6.5 mM, 
as shown by the linear fitting of the oxidation peak current from the LSV curves versus 
the different ascorbic acid concentrations (Figure 7b). Furthermore, the calibration plot 
was obtained by using chronoamperometry, which is a more sensitive electrochemical 
method and the observed results are shown in Figure 8a. Each chronoamperometric re-
sponse suggests the successive increase in the current related to a rise in the concentration 
of ascorbic acid, indicating the excellent electrocatalytic properties of the Co3O4 nanostruc-
tures tuned by the treatment of sodium citrate. We also plotted linear fitting through the 
increase in the current during the chronoamperometric signal against various ascorbic 
acid concentrations, as shown in Figure 8b. The linear fitting revealed the highly sensitive 
nature of the Co3O4 nanostructures by demonstrating a linear range of 1–5 mM of ascorbic 
acid. The chronoamperometry results suggest that each i–t curve response time is highly 
durable and can be applied for certain periods of time for the detection of ascorbic acid. 

 
Figure 4. (a) Cyclic voltammogram of MGCE at a scan rate of 50 mV/s with the untreated S1, treated 
(S2 and S3) in 0.1 mM ascorbic acid. (b) Cyclic voltammogram of MGCE with sample-3 at a scan 
rate of 50 mV/s in 0.1 mM ascorbic acid and in the electrolyte. 

Figure 4. (a) Cyclic voltammogram of MGCE at a scan rate of 50 mV/s with the untreated S1, treated
(S2 and S3) in 0.1 mM ascorbic acid. (b) Cyclic voltammogram of MGCE with sample-3 at a scan rate
of 50 mV/s in 0.1 mM ascorbic acid and in the electrolyte.

The selectivity of the as prepared Co3O4 nanostructures toward ascorbic acid detection
was studied under the environment of competing interfering agents such as uric acid,
potassium ions, sodium ions, ethanol, lactic acid, urea, and glucose, as shown in Figure 9a.
For the selectivity measurement, 0.1 mM ascorbic acid solution and other interfering
agents were used and the standard addition method was used to record the change in the
oxidation peak current during the recording of CV curves, as shown in Figure 8a. From
this analysis, it is obvious that less than 3% change in the peak current was noticed with
the addition of these interfering species, consequently, the prepared Co3O4 nanostructures
showed a selective response toward the detection of ascorbic acid. Hence, the presented
non-enzymatic ascorbic acid sensor has a high capability to quantify ascorbic acid from
the complex matrices of real samples. The stability of the Co3O4 nanostructures was
also evaluated in 0.1 mM ascorbic acid by measuring different CV curves at the scan rate
of 50 mV/s, as shown in Figure 9b. The good stability could be attributed to the fact
that sodium citrate added the significant surface roughness of the Co3O4 nanostructures,
which firmly bonded with the surface of GCE, consequently resulting in the observation of
excellent stability. For better analytical representation, the same stability results of the CV
analysis were further described by a bar graph using an error bar, as shown in Figure 9c,
suggesting an acceptable relative standard deviation (RSD) value of less than 1%. From



Biosensors 2023, 13, 147 8 of 15

13 CV cycles of the same MGCE, this indicates the significant repeatable capability of the
electrode during the stability measurement.
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the consistency of CV analysis results.

To study the practical aspects of the as developed non-enzymatic ascorbic acid sensor
for the determination of ascorbic acid for human urine sample, we used the recovery
(%) method as given in Table 1. The recoveries of the proposed Co3O4/GCE were found
to be close to 100%. The stability and reproducibility could be seen from the relative
standard deviation (RSD) data as given in Table 1. All concrete values of RSD were less
than 1%, suggesting the potential practical application of the as developed MGCE for
the determination of ascorbic acid. It further confirms the real sample analysis of the as
presented non-enzymatic ascorbic acid sensor. The RSD (%) was calculated as the (standard
deviation/mean of measured data by 3 repeated measurements) ×100%.
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Table 1. Recovery (%) of ascorbic acid from the urine sample using the proposed Co3O4/GCE
non-enzymatic sensor.

Sample (Urine) Added (mM) Found (mM) Recovery (%) RSD (%)

1 0.523 0.521 ± 0.0085 100.38 0.471

2 1.084 1.091 ± 0.0068 100.64 0.563

3 1.532 1.541 ± 0.0075 100.58 0.524

For simplicity, we provided the comparison analysis of our presented results with the
reported works as shown in Table 2. The quantitative information about the performance of
the presented non-enzymatic ascorbic acid sensor was collected by the comparative analysis
as given in Table 2 [4,13–23,23–42]. From the previous studies about the determination of
ascorbic acid, it can be seen that the composite systems that were used are complicated and
highly expensive to characterize compared to the presented non-enzymatic ascorbic acid
sensor. The Co3O4 nanostructures (sample-3) demonstrated a wide linear range, which
was verified by different electrochemical modes, confirming their high potential toward
practical applications. This comparative analysis revealed a better performance of Co3O4
nanostructures (sample-3), which can be connected to the strong surface modification of
Co3O4 nanostructures by the citrate anions. The improved performance of the Co3O4
nanostructures could be attributed to the surface defects and surface roughness as verified
by SEM analysis. Moreover, the citrate ion treated Co3O4 nanostructures showed significant
crystal quality, thereby playing a vital role in driving the ascorbic oxidation reaction.

Table 2. The comparative study of the presented ascorbic acid detection results with the already
published results of ascorbic acid using different materials.

Electrode Material Linear Range
(µM)

Detection Limit
(µM) Reference

Pd/CNF-CPE a 50–4000 15 [26]

Chitosan–graphene 50–1200 50 [34]

OMC/Nafion b 40–800 20 [35]

Carbon nanotube voltametric 80–1360 20 [36]

Nitrogen doped graphene (NG)/GCE 5–1300 2.2 [37]

Au/Ru nanoshells/GCE c 5–2000 2.2 [2]

RGO/GCE d 30–350 14.8 [38]

Ferrocene methanol/CNTY 3–3000 1.32 [39]

MWCNT/CCE e 15–800 7.71 [40]

RGO–ZnO/GCE f 50–2350 3.71 [41]

RGO-CD-MWCNT-POM g 5–2000 0.84 [42]

Co3O4/GCE 500–6500 1 This work
a Palladium particles deposited on the carbon nanofiber and used for the modification of the carbon paste electrode.
b Ordered mesoporous carbon/Nafion composite film. c Gold nanoparticles functionalized beta cyclodextrin
graphene oxide onto the glass carbon electrode. d Reduced graphene oxide/glassy carbon electrode. e MWCNTs:
carboxylated multi-walled carbon nanotubes, PANI: polyaniline. f Reduced graphene oxide-ZnO/glassy carbon
electrode. g Reduced graphene oxide/β-cyclodextrin/multiwall carbon nanotubes/polyoxometalate.

4. Conclusions

In this study, we employed the low cost surface modifying agent of sodium citrate with
a high density of oxygenated terminals and it significantly modified the surface properties
of the Co3O4 nanostructures. Furthermore, the citrate ions enhanced the electrochemi-
cal properties of the Co3O4 nanostructures toward the development of a non-enzymatic
ascorbic acid sensor. The structural analysis was carried out using low resolution SEM
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and powder XRD techniques. The treated Co3O4 nanostructures exhibited a rough surface
compared to the pristine Co3O4 nanostructures, confirming the significant surface modi-
fications. The Co3O4 nanostructures were observed to have enhanced crystal properties.
The Co3O4 nanostructures have been proven to be an excellent protocol for the sensitive
and selective determination of ascorbic acid due to their strong surface roughness, high
surface area, and excellent compatibility with the surface of GCE. The linear range of
the Co3O4 nanostructures for the ascorbic acid detection was found to be from 0.5 mM to
6.5 mM using the CV and LSV electrochemical modes, respectively. Furthermore, the Co3O4
nanostructures were characterized with a low limit of detection of 0.001 mM, high stability,
and selectivity. The surface modification of Co3O4 nanostructures using oxygenated groups
is a facile, low cost, and ecofriendly approach for a wide range of applications such as
biomedical, energy conversion, and storage systems.
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