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Abstract: In recent years, semiconducting polymer dots (Pdots) have attracted much attention due
to their excellent photophysical properties and applicability, such as large absorption cross section,
high brightness, tunable fluorescence emission, excellent photostability, good biocompatibility, facile
modification and regulation. Therefore, Pdots have been widely used in various types of sensing and
imaging in biological medicine. More importantly, the recent development of Pdots for point-of-care
biosensing and in vivo imaging has emerged as a promising class of optical diagnostic technologies for
clinical applications. In this review, we briefly outline strategies for the preparation and modification
of Pdots and summarize the recent progress in the development of Pdots-based optical probes for
analytical detection and biomedical imaging. Finally, challenges and future developments of Pdots
for biomedical applications are given.
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1. Introduction

Nanomedicine is the study of the application of nanoparticles in the field of biomedicine,
and it has made progress in medical diagnosis and treatment, including biosensing, tissue
engineering, medical imaging, cell tracking, drug transporting and cancer optical ther-
apy [1–4]. Generally, biosensors can specifically detect analytes to provide physiological
information in a fast and accurate way, and point-of-care testing has become a medical
trend, as it greatly facilitates patient self-monitoring of health [5–8]. Apart from biosens-
ing applications, biological imaging helps to visualize the internal structures or enables
functional imaging for disease diagnosis, and multimodal imaging combines several imag-
ing methods to integrate the respective signal containing different aspects of biological
information for a more comprehensive diagnosis and accurate treatment [9,10]. With the
development of materials and principles, biosensing and bioimaging technologies have
received considerable attention due to their advantages of high resolution, real-time and
non-invasiveness [11–13]. However, since the properties of the materials could exert in-
fluence on the sensitivity and accuracy of biosensing and optical applications, traditional
small-molecule organic dyes suffer from inherent weakness such as short lifetime, poor
photostability and low absorption, which limit further biomedical applications [14–16].

Nanomaterials with better properties and performance have been developed and
widely used in the biological field [17–19]. Nanomaterials used to constitute biosensors
have great properties and performance due to their unique nanoscale and easily modifiable
characteristics, which benefit the energy transfer. On the other hand, nanomaterials for
contrast agents contribute to better penetration depth and conversion efficiency, resulting
in higher-quality imaging [20–22]. Typical luminescent nanomaterials include quantum
dots (Qdots) [23], carbon dots [24], upconversion nanoparticles (UCNPs) [25], aggregation-
induced emission (AIE) dots [26] and polymer dots (Pdots) [27]. In particular, Pdots have
demonstrated the utilization of optical and biosensing applications in recent years, such as
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super-resolution imaging [28,29], fluorescence imaging [30,31] and disease-related marker
detection [32,33]. Pdots are organic nanoparticles assembled from polymer chains with
π-conjugated systems, and the nanoscale size endows Pdots with unique properties, which
have attracted extensive attention. According to the definition given by Wu and Chiu [34],
the Pdots, specifically considered as a part of semiconducting polymer nanoparticles
(SPNs), are nanoparticles consisting of hydrophobic semiconducting polymers with a
volume or weight fraction more than 50% and a diameter generally less than 50 nm,
sometimes the particles size can be less than 30 nm. Pdots have shown characteristics of
large absorption cross section, high brightness, good photostability, low toxicity and various
forms of existence and modification, which are the basis of fluorescence probes for complex
biological applications, typically for fluorescence-based biosensing and bioimaging [35–37].

This review focuses on the fundamental content and recent advances of Pdots in
biosensing and bioimaging applications. The preparation and properties of Pdots are
briefly introduced. Modification and functionalization are basic and crucial parts of practi-
cal applications, which are related to the attachment of functional groups to the surface
of nanoparticles. Thus, several surface modification methods are also introduced. Many
Pdots have been presented for in vitro biosensing applications and therapy applications,
such as ion sensors [38], reactive oxygen species sensors [39], nucleic acid assays [40,41],
enzymatic activity assays [42], photodynamic therapy [43], photothermal therapy [44],
gene therapy [45] and chemotherapy [46], which are referred to in recent reviews [47–49].
Herein, we focus on the latest reported Pdots for point-of-care biosensing and in vivo
imaging (Figure 1). Pdots point-of-care biosensors, applied to disease-related-metabolites
assays, nicotinamide adenine dinucleotide (NAD) sensing, tumor markers quantification
and cancer diagnostics, are detailed to demonstrate their great potential in biosensing
and transducing techniques. Then, Pdots used as optical probes in bioimaging, such as
fluorescence imaging, photoacoustic imaging (PAI), afterglow imaging, chemiluminescence
imaging and multimodal imaging, are highlighted. The properties and biomedical applica-
tions of the Pdots summarized in this review are listed in Table 1. In the end, we share the
challenges and perspective in this field.
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Table 1. Pdots for biosensing and in vivo imaging.

Pdots λmax
abs (nm) λmax

em (nm) Φ (%) Application Ref.

DPA-CNPPV 294 627 10.8 NADH sensing [50]
PD4Gx 380 425, 672 11.5 Glucose monitoring [51]

PF-TC6FQ ~360 ~670 N.A. PSA detection [52]
PFCN ~390 ~450 N.A. AFP detection [52]
PFO ~350 ~490 N.A. CEA detection [52]

APNs 700 720 N.A. Cancer and allograft [53]
ASPNC ~440 680 N.A. Exosomes sensing [54]

NIR MEH-PPV 504 776 N.A. Fluorescent imaging [55]
m-PBTQ4F 946 1123 3.2 Fluorescent imaging [56]

RET2IR NPs 503 778 0.18 Fluorescent imaging [57]
Pdots-C6 745 1055 N.A. Fluorescent imaging [58]
SPN-PT 1064 N.A. N.A. Photoacoustic imaging [59]

DPP-BTzTD ~1000 N.A. N.A. Photoacoustic imaging [60]
SPNs ~490 780 N.A. Afterglow imaging [61]

SPPVN 500, 775 775 51.0 Afterglow imaging [62]
SPN-NIR 452, 773 507, 775 2.12 Chemiluminescent imaging [63]

SPNRs 450, 460, 580 520, 540, 700 2.7 ± 0.014 Chemiluminescent imaging [64]
rSPN2 ~680 840 N.A. Multimodal imaging [65]

PPE Gd-SPNs 388 440, 470 22.0 Multimodal imaging [66]
Au-NP-Pdots 525 ~440, 460 18.0 Multimodal imaging [67]

N.A.: Not applicable.

2. Semiconducting Polymer Dots

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

2.1. Methods of Preparation

As different preparation methods generate the Pdots with different sizes and per-
formance, it is critical to choose the corresponding method to obtain suitable size and
properties according to various application scenarios. The main preparation methods in-
clude the direct polymerization method, miniemulsion method, nanoprecipitation method
and self-assembly method. Direct polymerization, referring to the preparation of Pdots
from low molecular weight monomers by chemical reactions, offers a wide range of options
for size and structure since it also applies to the polymers that are insoluble in organic
solvents [68]. Miniemulsion and nanoprecipitation methods dissolve conjugated polymers
in organic solvents and interact with water [69,70]. The self-assembly method requires
stirring of the solution to mix conjugated polymers and reagents for functionalization. In
this part, nanoprecipitation and miniemulsion methods are mainly illustrated (Figure 2).

During the preparation process of the miniemulsion method, the conjugated polymers
or monomers to be polymerized are dissolved in a water-immiscible organic solvent [71].
Under vigorous sonication or stirring, it forms microemulsion droplets with aqueous
solutions containing surfactants. Finally, stable and uniformly-dispersed Pdots are obtained
by removing the organic solvent. In particular, the surfactants are used to avoid aggregation
of microemulsion droplets. The concentration of polymers and surfactants in the mixed
solution can affect the size of Pdots.
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In the nanoprecipitation method, conjugated polymers and amphiphilic polymers
are dissolved in a water-miscible organic solvent. Then, the mixed solution is rapidly
injected into water under vigorous sonication, and the nanoprecipitation occurs during
this process. Pdots with great water dispersibility are obtained by removing the organic
solvent. The biggest difference between the miniemulsion and nanoprecipitation meth-
ods is the solvent. The nanoprecipitation method uses a water-miscible organic solvent
such as tetrahydrofuran (THF), while the miniemulsion method uses a water-immiscible
organic solvent such as chloroform. Typically, both methods use surfactants or amphiphilic
polymers to increase the yield of nanoparticles. The size of the Pdots depends on the con-
centration of conjugated polymers in the organic solvents, which ranges from 5 to 50 nm,
while the miniemulsion method often gives larger Pdots (larger than 40 nm). In addition,
different kinds of amphiphilic polymers can realize different modifications for Pdots in the
process of preparation. Liu’s group fabricated uniform Pdots by a microfluidic-assisted
nanoprecipitation process with a coaxial microfluidic glass capillary mixer [72]. Wu’s group
used the nanoprecipitation method to prepare functional Pdots with carboxyl groups on
the surface for further bioconjugation [73]. Further, they combined photo-crosslinking
technology to prepare Pdot-based nanocavities, nanoellipsoids, triangular nanorings and
nanowires [74–76].

2.2. Properties and Performance

The critical factors to evaluate the quality of fluorescent probes are absorption cross
section, quantum yield, emission rate and photostability. Absorption cross section is
used to describe the ability of Pdots to absorb a photon of a particular wavelength and
polarization. Studies have shown that the peak absorption cross section of single particles
(15 nm in diameter) is about 10–100 times of CdSe Qdots [77]. Moreover, another key
property, called quantum yield, is the ratio of the number of photons emitted to the number
absorbed; the typical value is below 40% due to aggregation-induced self-quenching [78],
and high quantum yield can reach 50–80%. It is generally considered that the brightness of
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fluorescent molecules depends on the product of absorption cross section and quantum
yield. Photostability is assessed by the photobleaching quantum yield calculated from
the ratio of photobleaching photons number to the photons absorbed number. Typical
photobleaching quantum yield ranges from 10−4 to 10−6 [79]. Additionally, different kinds
of Pdots have been proven to have low toxicity, thus Pdots are widely used in biological
applications [80]. Several relevant research results about properties of Pdots are given in
Figure 3.
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Figure 3. The properties of Pdots. (A) A photograph of various Pdots emitted by ultraviolet light.
(B) Absorption and emission spectra of various Pdots. Reproduced from Ref. [34] with permission.
(C) Single-particle images and intensity distributions of Qdot 655 and PBdots. Reproduced from
Ref. [81] with permission. (D) Fluorescence imaging of MCF-7 cells incubated with anti-EpCAM
primary antibody and Pdot-lgG conjugates. The bottom panels show the imaging of cells incubated
with Pdot-lgG alone. (E) Fluorescence intensity distributions for Pdot-streptavidin-labeled MCF-7
cells and Qdot 565-streptavidin-labeled MCF-7 cells. Reproduced from Ref. [82] with permission.
(F) Ultrabright FRET-based Pdots with simultaneously high absorption cross section and quantum
yield. (G) Combined fluorescence microscopy images of MCF-7 cells labeled with PEP/PFPV Pdot-
streptavidin and biotinylated primary antibody. Reproduced from Ref. [83] with permission.

The improvement of properties is a constant proposition in biological applications of
Pdots. Recently, Zhang et al. reported fluorescence resonance energy transfer (FRET)-based
Pdots with both large absorption cross section and high quantum yield [83]. By choosing
acceptors that had a greater spectral overlap with donors or mixing different kinds of Pdots
to create cascade FRET Pdots, they obtained ultrabright blue-, green- and red-emitting Pdots
that were among the brightest Pdots reported in the visible region. In other examples, Kuo
et al. found that the photostability of Pdots can be improved by adding 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) or 2-(N-morpholino)ethanesulfonic acid (MES)
buffer to quench photoinduced radicals, which aided long-term cell tracking in biological
imaging [84]. Chang et al. also designed low-toxic cycloplatinated Pdots, used as a
photocatalyst to strengthen the photocatalytic efficiency and stability [85].

2.3. Surface Modification and Biological Functionalization
2.3.1. Encapsulation Method

Silica encapsulation is widely used for surface modification, as other functional groups
could be easily attached to silica, which encapsulates particles in a 2–3 nm shell [86,87]. This
method greatly promotes biological functionalization of Pdots. However, the silica shell is
possible to hydrolyze in biological environments, and the amino groups used to stabilize
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silica-encapsulated Pdots (10–20 nm in diameter) also cause nonspecific adhesion between
Pdots and the cell surface. Another way for surface modification is to encapsulate Pdots
using poly (lactic-co-glycolic acid) (PLGA) [88,89] or phospholipids [90,91], which increases
nanoparticle stability and reduces nonspecific adhesion. However, the size of nanoparticles
modified by PLGA (230–270 nm) and phospholipids (80–100 nm) is too large to apply
at the cellular and subcellular levels. Furthermore, the low concentration of fluorescent
polymers eventually limits the brightness of nanoparticles, which causes the failure of the
encapsulation method to take full advantages of the Pdots.

2.3.2. Amphiphilic Polymer Coprecipitation Method

Chiu’s group developed some effective functionalization methods [34,82]. They pre-
added amphiphilic polymers in organic solvents, and then prepared Pdots by nanopre-
cipitation. In this process, amphiphilic polymers covered the surface of the hydrophobic
nanoparticles, and their hydrophobic ends were randomly bound to hydrophobic Pdots,
while the hydrophilic ends were exposed to water. As a result, Pdots with hydrophilic
groups were formed to covalently link biomolecules for biological conjugation and function-
alization. For example, an amphiphilic polymer, polystyrene-polyethylene glycol-carboxyl
(PS-PEG-COOH), was used for surface modification of Pdots [82]. The average diameter of
the product was about 15 nm, and more than 80% of the constituents were significantly
effective fluorophores. These research results indicated that this strategy can generate
efficient nanoparticle probes, since neither the size nor fluorescent properties of Pdots
were affected.

Wu et al. used another amphiphilic polymer, poly (styrene-co-maleic anhydride)
(PSMA), to realize biological functionalization [73]. The hydrophilic ends were hydrolyzed
in an aqueous environment to form Pdots with carboxyl groups, which facilitated further
subsequent bioorthogonal labeling by click chemistry (Figure 4A). Dynamic light scattering
(DLS) and transmission electron microscopy (TEM) measurements showed the typical
image and hydrodynamic diameter (~15 nm) of functionalized Pdots. Among different
functional groups on the Pdots surface, the carboxyl-functionalized Pdots had a significant
increase in mobility in the gel electrophoresis (Figure 4B).

2.3.3. Direct Functionalization

In the above modification methods, functional molecules are non-covalently linked
to Pdots, which is the main reason for functional molecules falling from the surface of
Pdots, which ultimately affects the performance of functionalized Pdots. To overcome these
drawbacks, Zhang et al. developed an alternative direct functionalization method, in which
Pdots covalently link functional groups [92]. They synthesized conjugated polymers with
different percentages of carboxyl groups and used them directly to prepare functionalized
Pdots to avoid extra surface modification procedures. Moreover, they found that the
degree of functionalization influences the stability and performance of Pdots. In addition,
the low carboxylic acid group density (2.3%) brings the greatest properties, including
fluorescence brightness, colloidal stability, non-specific absorption and compact internal
structure. Yu et al. reported a cross-linking strategy to form functionalized Pdots with
enhanced labeling efficiency and sensitivity for cellular assays (Figure 4C) [93]. In addition,
Zhang and Chen et al. developed facile strategies with an optical stimulus to covalently
link polyethylene glycol and/or carboxyl functional groups to the Pdots (Figure 4D) [94,95],
and demonstrated effective bioconjugation of these functionalized photocross-linkable
Pdots for specific cellular labeling.
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3. Application of Pdots Biosensors in Point-of-Care Diagnostics

Point-of-care diagnostics are analytical assays outside the laboratory in order to ensure
the convenience of fast testing for target analytes in patients with the same accuracy
as laboratory tests. Recently, Pdots-based biosensors have been used for point-of-care
diagnostics due to their superior photophysical properties and efficient energy transfer or
electron transfer.

FRET has facilitated tremendous advances in biosensing for point-of-care applications.
FRET is a phenomenon in which energy is non-radiatively transferred from a donor flu-
orophore to an acceptor fluorophore, where the fluorescence of the acceptor is emitted
while the fluorescence of the donor is quenched. Nanoscale Pdots enable efficient energy
transfer, as the efficiency of FRET strongly depends on the distance between donor and
acceptor [96]. Additionally, FRET in Pdots biosensors could enhance the brightness of
Pdots and obtain high absorption cross section and great photostability [97]. Specific dyes
are added into Pdots to realize corresponding FRET-based biosensing [98], which could be
applied to detect various metabolites and physiological information [95], including reactive
oxygen species [99–101], pH [102], temperature [103,104] and metal ions [105,106]. In this
review, Pdots-based biosensors for biomolecule detection are mainly discussed.

3.1. Nicotinamide Adenine Dinucleotide (Oxidized Form: NAD+; Reduced Form: NADH)

NADH plays an extremely important role in redox reactions as a coenzyme in enzyme-
catalyzed reactions associated with physiological processes [107]. The variation of NAD+

and NADH concentration is one of the manifestations of diseases such as cancer, epilepsy
and Parkinson’s disease [108–110]. Biosensors, realizing the convenient and accurate
measurement of NAD+ and NADH concentrations in point-of-care, can promote research
advances in the diagnosis of related diseases.

Chen et al. developed a series of Pdots for ratiometric NADH sensing [50], including
PFO, PDHF, PFBT, PFBTTBT, PFTBT and DPA-CNPPV Pdots (Figure 5A), which were
prepared by the nanoprecipitation method with PSMA. For DPA-CNPPV, the emission
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maximum was exhibited at 627 nm with excitation at 385 nm. In the presence of NADH,
electron transfer from excited DPA-CNPPV to NADH caused fluorescence quenching of
DPA-CNPPV Pdots, which was manifested as a decrease in emission intensity at 627 nm.
Since NADH in solution had a blue emission (peak at 458 nm), while DPA-CNPPV hardly
absorbed in the blue region, there was almost no energy transfer from NADH to DPA-
CNPPV. In short, with the increasing concentration of NADH, the emission intensity
decreased at 627 nm and increased at 485 nm in the physiological range (0–2 mM, Figure 5B).
For other Pdots, for example, the absorption of PFBT in the blue region caused less color
contrast, which was not favorable for ratiometric sensing. On the other hand, the NADH-
sensitive DPA-CNPPV Pdots had shown great performance in terms of photostability,
response time, selectivity (Figure 5C) and reversibility.
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Figure 5. DPA-CNPPV Pdots for reversible ratiometric NADH sensing. (A) The preparation of
DPA-CNPPV Pdots by nanoprecipitation. (B) Emission spectra of DPA-CNPPV Pdots with 0–2 mM
NADH. (C) Selectivity of DPA-CNPPV to NADH versus 10 other analytes. (D) Calibration curve
of DPA-CNPPV Pdots in the range of 0–2 mM NADH. R = I458 nm/I627 nm; R0 = R in the absence of
NADH. (E) DPA-CNPPV Pdots at 0–2 mM NADH with excitation at 365 nm. (F) Ratiometric imaging
taken by smartphone for NADH in vivo measurement. DPA-CNPPV were injected into two locations
of mice with or without NADH (0.1 µmol). Heatmap images of blue/red-channel intensities ratios
are shown on the right, with a high ratio (red) indicating high concentration of NADH. Reproduced
from Ref. [50] with permission.

A DPA-CNPPV Pdots probe used for NADH measurement in vivo showed the po-
tential for point-of-care testing. The emission proportion of the DPA-CNPPV Pdots probe
changed with the increasing NADH concentration, and the true-color photographs were
taken by smartphone for further analysis. The blue/red ratio, with a linear response to
NADH concentration, was considered as a key parameter for NADH sensing, which was
calculated by dividing the true-color photographs into blue and red channels (Figure 5D,E).
Applying this protocol to mice (Figure 5F) enabled ratiometric NADH sensing.
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3.2. Disease-Related Metabolites

Metabolites assays play a key role in early disease diagnosis and management for
the reason that its blood levels are closely related to the disease or injuries; for example,
phenylalanine in phenylketonuria, glucose in diabetes, tyrosinase in tyrosinemia, glutamate
during ischemic strokes, galactose in galactosemia and leucine in maple syrup urine disease.
However, it cannot reliably detect most metabolites, hindering disease diagnosis and
management [111]. To address this issue, many researchers have developed new methods
for stoichiometric-based metabolite detection using Pdots biosensors.

3.2.1. Glucose

According to the International Diabetes Federation, an estimated 8.8% of adults aged
20–79 had diabetes in 2015, and the proportion is expected to rise to 10.4% by 2040 [112].
Diabetes is a metabolic disease with increased concentration of blood glucose. Long-term
high blood glucose can cause great damage to the heart, kidneys and nervous system of
diabetic patients. Blood glucose management is a vital part of diabetes treatment, including
instant sampling detection and dynamic real-time monitoring.

Recently, functionalized Pdots covalently linked to glucose oxidase (GOx) have been
used as biosensors for real-time monitoring due to their excellent properties and outstand-
ing detection results [113]. In the presence of analytes, internal oxygen is depleted to
translate the oxygen concentration into a fluorescent (or phosphorescent) signal. Based
on this principle, Wu’s group developed an ultrasensitive Pdots transducer that enables
wireless glucose monitoring [51]. The transducer was mainly composed of phosphorescent
dyes, GOx and Pdots functionalized by PSMA (Figure 6A). PDHF was selected as the light-
harvesting host. In addition, the oxygen-sensitive Pd(II) meso-tetra (pentafluorophenyl)
porphine (PdTFPP, D4) was doped in PDHF Pdots. The glucose biosensor (PD4Gx) was
formed by binding GOx to carboxyl groups on the surface of PDHF. FRET between PDHF
and D4 caused changes in emission light in the presence of glucose, since GOx-catalyzed
oxidation of glucose causes changes in oxygen levels. Upon ultraviolet (UV) excitation, the
blue fluorescence from PDHF Pdots was quenched, and the glucose biosensors showed
red phosphorescence from D4. The emission spectrum of solutions with different glucose
concentrations are shown in Figure 6B. With increasing glucose concentration, the ratio
of blue and red light changed, causing the sensors to emit different colors. During the
experiment, they implanted PD4Gx sensors subcutaneously in mice, took photographs of
the light-emitting part with a smartphone and found that the luminescent images were
obviously altered after glucose infusion. Glucose concentrations were acquired by com-
paring the calibration curve (Figure 6C) with the emission ratio obtained from true-color
image processing. Data from the continuous monitoring of the P4DGx glucose sensors were
in good agreement with the discrete measurements from commercial blood glucometers
(Figure 6D), indicating that this ultrabright Pdots transducer enabled dynamic real-time
wireless monitoring of blood glucose in living mice.

However, there are some drawbacks that can be improved in the above research.
Hydrogen peroxide was produced during the process of glucose oxidation, resulting in
photobleaching that degraded glucose sensor performance (Figure 6E), reducing enzymatic
activity and generating cytotoxicity. Thus, Sun et al. developed their research approach to
construct Pdots-based glucose sensors with an enzymatic cascade system (Pdots-GOx/CAT)
by adding catalase to the above sensors to rapidly decompose hydrogen peroxide and
improve the photostability and biocompatibility of glucose sensors [114]. Figure 6F,G
shows the performance of this Pdots-GOx/CAT glucose transducer, which indicates an
excellent long-term sensing ability for monitoring glucose. However, the reaction of
peroxide decomposition, physical activity and pathological factors changed oxygen levels
in tissues, thereby affecting the accuracy of glucose concentration. Therefore, Sun et al. also
proposed an assumption to prepare a second oxygen-sensitive Pdots sensor not coupled
with GOx, for the purpose of measuring the altered oxygen levels outside the glucose
biosensor and further correcting the changes to improve the accuracy of the results [115].
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The feasibility of this method had been demonstrated by numerical simulations and in vivo
experiments. Other problems arising from implantable Pdots sensors were the aggregation
and migration of nanoparticles in subcutaneous tissue, which was possibly caused by the
direct implantation of free Pdots, and affected the detection of luminous intensity. Liu
et al. proposed an injectable hydrogel implant to disperse Pdots evenly in it. The hydrogel
remained at the implant site for one month without migration. The findings suggest that
this method can be used for long-term glucose monitoring [116].
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Figure 6. Pdots transducer used for wireless glucose monitoring. (A) The design and detection
principle of PD4Gx. (B) Emission spectra of PD4Gx in a series of PBS solutions with different glucose
concentrations. (C) Calibration curve by comparing red/blue ratio with standard glucose values.
(D) Real-time detection for glucose concentration by PD4Gx transducer (black) and commercial
glucose meter (red). Reproduced from Ref. [51] with permission. (E) Response curves of the Pdot–
GOx transducer with different concentrations of exogenous hydrogen peroxide. (F) Response curves
of the Pdot–GOx/CAT transducer with different CAT/GOx ratios. (G) Liner relationship between
glucose concentration and emission ratio of Pdot-GOx/CAT with 5-fold CAT/GOx ratio. Reproduced
from Ref. [114] with permission.

3.2.2. Phenylalanine

Phenylketonuria (PKU) is a metabolic genetic disorder that causes a defect in pheny-
lalanine hydroxylase, preventing the conversion of phenylalanine to tyrosine and increasing
blood phenylalanine levels [117]. This mechanism typically results in neurological damage
in infants and children with PKU. PKU screening for newborns and management of blood
phenylalanine levels in PKU patients have received much attention.

Chen et al. designed a metabolite biosensor consisting of NADH-sensitive Pdots
and phenylalanine dehydrogenase (PheDH) [118]. On the basis of this biosensor, a paper-
based point-of-care assay for blood phenylalanine levels was developed for PKU screening.
Phenylalanine underwent oxidation catalyzed by PheDH to form phenylpyruvate and
NADH. In the presence of NADH, red fluorescence was quenched and blue fluorescence
was emitted. The emission intensities ratio at 458 nm and 627 nm showed an 18.9-fold
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change in concentration, from 0 to 2400 µM. In the process of the assay, plasma samples
were added into test paper with lyophilized buffer containing modified Pdots, NAD+

and PheDH. The blood phenylalanine concentrations were calculated from the emission
intensity ratio of the blue and red channel. The performance of Pdots biosensors applied
to a healthy person (60 µM) and a classic PKU patient (1200 µM) showed a significant
difference in the ratio of blue and red channel intensity. Moreover, the error caused by
endogenous NADH was corrected by analyzing samples both in the presence and absence
of PheDH. The difference in concentrations obtained in the absence and presence of PheDH,
respectively, was considered to be the exact blood phenylalanine concentration. The
measurement result of plasma samples with phenylalanine were obtained by using a digital
camera. Such a system can be promoted to the concentration measurement of any other
metabolite oxidized by NAD+ or reduced by NADH.

3.3. Tumor Markers

Immunochromatographic test strips (ICTS) have become an important tool for point-
of-care testing (POCT) of tumor markers. Especially, ICTS based on multicolor Pdots
with excellent fluorescent properties can be used for multiplex detection of target analytes.
Chan’s group developed a series of Pdots-based ICTS for the detection of multiple tumor
markers [52,119,120]. For the simultaneous detection of prostate-specific antigen (PSA),
α-fetoprotein (AFP) and carcinoembryonic antigen (CEA) in a single test strip, Fang et al.
developed ICTS based on PF-TC6FQ/PFCN/PFO Pdots, which emit red, green and blue
fluorescence, respectively [52]. The test strip consists of an absorbent pad, conjugate
pad, sample pad and nitrocellulose membrane. Pdot–antibody conjugates, prepared by
conjugation of Pdots functionalized with carboxyl groups and PSA/AFP/CEA antibody,
respectively, were added into the conjugate pad of the test strip (Figure 7A). The control
lines and test lines in the nitrocellulose membranes were modified with a caption antibody
and bare lgG, respectively. The absorbent pad, conjugate pad and sample pad were then
sequentially adhered to the nitrocellulose membrane to assemble the test strips. Samples
dropped on the sample pad would move due to the capillary force. Regardless of the
presence of target tumor markers, Pdot–antibody conjugates connected with the bare lgG in
the control line to emit fluorescence to indicate the validity of test strip. In addition, in the
presence of target tumor markers, Pdot–antibody conjugates were specifically captured by
the corresponding caption antibody in the test line and also emitted the specific fluorescence,
which gave the positive results. In the absence of target analytes, no emission can be
observed in the test line, which gives the negative results. The multiplexed detection of
PSA/AFP/CEA was obtained by direct observation with the naked eye under ultraviolet
light, as shown in Figure 7B.

Quantitative detection should be calculated according to the fluorescence intensity
ratio of the test line to the control line (T/C). With the increasing of tumor markers con-
centration, the fluorescence brightness of the test line enhanced, while that of the control
line decreased. The reason for this phenomenon was that the number of Pdot–antibody
conjugates was certain in a test strip; the more Pdot–antibody conjugates were bound to the
test line in the presence of tumor markers, the less were bond to the control line, resulting in
the comparison of fluorescence intensity of these two lines. According to the study results,
the fluorescence ratio of T/C was linearly related to the log [PSA/AFP/CEA] concentration
in the range of 3–15 ng/mL. The limit of detection was two orders of magnitude lower
than that of conventional detection methods, which indicated that Pdot-based ICTS was
beneficial for early diagnosis, rapid screening or regular monitoring of cancer.

Other types of test strips have been developed to improve the detection performance
and expand the range of applications. You et al. used Pdot–Au hybrid nanocomposites,
formed from Pdots and Au nanorods, with dual colorimetric and fluorometric readout
abilities, for rapid screening (colorimetry) and accurate detection (fluorometry) of PSA [119].
The calibration curve of quantitative performance for PSA of this Au650@Pdot immunoas-
say platform is given in Figure 7C. A drop of whole blood could realize the detection of
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PSA, since the plasma was captured by the sample pad, whereas conventional testing
requires pretreatment of whole blood. Yang et al. reported another dual-modal Au@Pdot-
based immunoassay for the detection of CEA and cytokeratin 19 fragments (CYFRA21-1)
in the blood of non-small-cell lung cancer patients [120]. The test line was simultaneously
modified by the two corresponding caption antibodies, causing four different types of lu-
minous modals with two luminous lines, representing four detection results (Figure 7D,E).
Similarly, this Au@Pdot-based ICTS had good linearity in the quantitative analysis for
CYFRA21-1 and CEA detection.
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Figure 7. Multiplexed ICTS based on Pdots for detection of CEA/AFP/PSA. (A) The structure
and principle of multiplexed ICTS for detection of multiplexed tumor markers. (B) Photographs
of detection results with multiplexed tumor markers concentration (0/0/5, 0/5/0, 5/0/0, 5/5/5
ng/mL). Reproduced from Ref. [52] with permission. (C) The calibration curve of the Au650@Pdot
immunoassay platform with 3–10 ng/mL PSA. Reproduced from Ref. [119] with permission.
(D,E) Photographs of Au@Pdot-based test strips with samples containing different concentrations of
CYFRA21-1 and CEA obtained under ambient light (D) and UV light (E). Reproduced from Ref. [120]
with permission.

3.4. Cancer and Allograft Rejection

Polymer nanoparticles can be used for detecting biomarkers related to cancer and
allograft rejection in early diagnosis. An advanced method for in vivo imaging and therapy
utilizes the interconversion between nanoparticles and small molecules, since it has lots of
advantages such as deeper penetration and broader biodistribution due to the small size of
molecules, longer retention at the disease site of nanoparticles formed by the biomarker-
activated conversion, fast clearance and specific sensitivity [121–123]. Pu’s group recently
reported the activatable polyfluorophore nanosensors (APNs) with biomarker-activated
renal clearance and fluorescence response for bioimaging and urinalysis, which consisted of
protease-reactive peptide brushes, cascaded self-immolative linker and caged fluorophore
units [53]. Cathepsin B and granzyme B, corresponding with tumor status and lymphocyte
activation in allograft rejection, were chosen to be the biomarkers of APNs. In the intrinsic
state, APNs were non-fluorescent and accumulated at the disease site. Then, in the activated
state, which was caused by the presence of disease-related biomarkers, the protease released
the renal-clearable fluorophore fragments. These fragments were further cleared though
the kidneys for fluorescent urine analysis. The high renal clearance efficacy and specificity
testing of biomarkers made APNs-based urinalysis superior to other detection methods.
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3.5. Exosomes

Exosomes, extracellular vesicles containing protein, DNA and RNA from the cells
that secrete them, take part in cell communication and are involved in pathogenesis of
several diseases, including cancer, neurodegeneration and infections [124]. Therefore, they
have recently been used in new assays for disease-related biomarker identification and
therapeutic response monitoring. Development of biosensors for exosome detection is
significant for early cancer diagnosis. Lyu et al. reported the first near-infrared (NIR)
afterglow nanosensor for multiplex differentiation of cancer-related exosomes, which
consisted of a complex (ASPNC) formed by an NIR semiconducting polyelectrolyte with a
quencher-tagged aptamer [54]. Poly(phenylenevinylene)-based (PPV-based) Pdots were
used as the backbone for afterglow luminescence, while an NIR 1O2 photosensitizer, tetra-
phenylporphyrin (TPP), was added into the PPV backbone for red-shift emission and
afterglow signal amplification. The side chains on PPV, cationic quaternary ammonium
groups, enabled the formation of ASNPC with the black hole quencher 2 (BHQ-2)-tagged
aptamer. The fluorescence and afterglow signals of ASPNC were both quenched due to
the electron transfer between PPV and BHQ-2. However, in the presence of exosomes, the
specific binding between exosomes and the designed aptamer hampers the electron transfer
and activates the fluorescence and afterglow signals. In their studies, a comparison of the
limit of detection (LOD) and of afterglow signal with fluorescence signal indicated that
afterglow detection enabled the minimization of background interference and achieved an
LOD two orders of magnitude (~93-fold) lower than fluorescence detection. By orthogonally
assaying of five kinds of exosomes at the expression levels of four biomarkers, they showed
the recognition ability of this afterglow nanosensor and suggested that the different BHQ-
2 targeted aptamers mediated the specific binding of ASPNC for potential orthogonal
analysis of multiplex exosomes.

Additionally, Jiang et al. developed a method using exosomes labeled with Pdots for
superresolution mapping with location error less than 5 nm and excellent optical adjustable
duty cycles [125]. In their studies, the switch-on frequency of Pdots were tuned to obtain
the structure of a large number of exosomes within a few minutes. A combination of two
Pdots and one fluorophore that conjugated antibodies against three different tetraspanins
on a seminal exosome were used for multicolor superresolution mapping to simultaneously
achieve high throughput and high imaging quality of three tetraspanins. This method
can also be applied to understand the structure of other similar biological vesicles, which
promotes the application of vesicles in disease diagnosis.

4. Application of Pdots Optical Probes in Bioimaging

Optical imaging plays a critical role in disease diagnosis, which includes fluorescence
imaging, PAI, afterglow imaging, chemiluminescent imaging, bioluminescence imaging,
multiphoton imaging and harmonic imaging. Traditional materials for bioimaging have
limitations such as low brightness, photobleaching and toxicity, while Pdots are considered
as potential bioimaging materials due to their high brightness and good biocompatibil-
ity [126–128].

4.1. Pdots for Fluorescence Imaging

Fluorescence imaging enables tumor imaging, cell labeling and targeting, vascular
structure imaging, etc. This imaging technology requires no ionizing radiation and enables
real-time imaging with targetability and high spatial resolution to provide the exact location
and silhouette of the targeted object. In particular, NIR fluorescence imaging allows in vivo
fluorescence imaging with deeper penetration in biological tissue and less background
fluorescence than visible-light fluorescence imaging. An ideal NIR fluorescent agent applied
for targeting optical probes should work in the NIR window (NIR-I at 700–900 nm and NIR-
II at 1000–1700 nm) and have great photophysical properties, such as brightness, quantum
yield and photostability and sufficient strokes shift [125,126]. Indocyanine green (ICG) and
methylene blue (MB) are commonly used as NIR fluorescent agents. However, ICG and
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MB lack sufficient targetability against tumors and the ability of specific conjugation, with
low quantum yield and poor photostability [129–132]. Thus, NIR fluorescent Pdots have
developed as fluorescence probes in fluorescence imaging due to their good targetability
and low background fluorescence and have been applied in lymph node localization [57],
tumor imaging [58] and cancer cell tracking and imaging [133].

NIR fluorescent Pdots can be used for cell labeling to track cell migration non-
invasively. Xiong et al. prepared NIR fluorescent Pdots for long-term tumor cell tracking
in vivo [55]. They doped the NIR dye, silicon 2,3-naphthalocyaninebis(trihexylsilyloxide)
(NIR775), into poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV)
to prepare the fluorescent nanoprobes. FRET between MEH-PPV as a donor and NIR775
as an acceptor achieved NIR emission, with the absorption peak at 504 nm dominated
by MEH-PPV and the emission peak at 776 nm dominated by NIR775. Additionally, the
optimal weight ratio of NIR775 to MEH-PPV (0.012:1) decreased the self-quenching and
provided the highest efficiency. In their study, 20 µg of NIR Pdots were used to treat
2 × 105 HeLa cells, and then cells were injected into nude mice. The fluorescence of NIR
Pdots remained at 75% after 7 days and 28% after 23 days. According to their research
results, NIR Pdots proved to have proper strokes shift for reducing errors caused by back-
ground fluorescence, weak cytotoxicity evaluated by CCK-8 assays, long-term labeling
ability and photostability, which indicated the potential of NIR Pdots-based nanoprobes in
the field of in vivo tumor imaging. Furthermore, Feng et al. developed an ultrasmall Pdots
with excellent specificity and fast clearance for targeted tumor cell imaging, suppressing
nonspecific cell uptake that limited the targetability and sensitivity of nanoprobes [134].

Based on the application of NIR fluorescent Pdots for labeling and tracking of targeted
cells, in vivo tumor imaging technology has expanded and developed new methods by
several improved strategies. Liu et al. developed a fluorination method of Pdots for high
brightness in the NIR-II window, which promoted the application of NIR-II probes in brain
tumor imaging [56]. They fluoridated PBTQ (m-PBTQ4F) to improve its photophysical
properties by using semiconducting polymer synthesized with benzodithiophene (BDT) as
a donor and triazole [4,5-g]-quinoxaline (TQ) as an acceptor and changing the quantity and
location of the fluorine substituent on the TQ acceptor. The m-PBTQ4F showed excellent
fluorescence intensity and photostability compared to ICG and IR26 NIR fluorophores
(Figure 8A–C) due to the nanoscale fluorous effect. To assess the quality of m-PBTQ4F used
in in vivo fluorescence imaging, they used m-PBTQ4F Pdots for tail-vein injection to show
the whole-body vasculature structure of C57BL/6 mice in both prone and supine positions
(Figure 8D). In addition, in the prone position, blood vessels in the back were observed
clearly, which indicated that m-PBTQ4F Pdots could successfully display in vivo vascula-
ture for tumor fluorescence imaging, since microvascular proliferation and pleomorphic
vessels are one of the typical characterizations of malignant brain tumors [135]. The blood
vessels were evenly distributed in the normal brain, whereas they were unevenly and chaot-
ically distributed in brain tumors. Therefore, the brain tumors were revealed by vascular
structure images obtained from NIR-II fluorescent imaging using m-PBTQ4F Pdots.

4.2. Pdots for Photoacoustic Imaging

PAI is a non-invasive biomedical imaging technique that involves the energy conver-
sion from biological tissue. The photoacoustic (PA) contrast agents in the biological tissue
absorb energy when they are irradiated by pulsed laser, and then generate ultrasound
signals due to transient thermoelastic expansion, which is also referred to PA signals. PA
images with high selectivity and penetration depth can be reconstructed by detecting the
PA signals containing information about light absorption characteristics. The intensity
of PA signal depends on the internal competition of the PA contrast agents between flu-
orescence emission and non-radioactive heat dissipation. Pdots have been used as PA
contrast agents for PAI since Pdots have high photothermal conversion efficiencies and PA
intensity [136–140].
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4.2.1. Amplification of PA Signal from Pdots

To reduce the toxicity, many design strategies have been developed to amplify the PA
signal, which aids to decrease the dosage of PA contrast agents formed by Pdots [141,142].
Adapting the structure of Pdots is one of the design strategies to amplify the PA signal.
Guo et al. designed a series of Pdots by using different electron acceptors and planar
electron donors, which demonstrated the high photothermal conversion efficiencies and
signal-to-background ratio (SBR) of 47 in PAI for tumors in vivo at a depth of 3.2 mm [143].
Dong et al. also prepared PTIGSVS nanoparticles with a high photothermal conversion
efficiency of 74% that proved to be a superior PA contrast agent. Another way to amplify
the PA signal is to enhance the non-radioactive heat dissipation by strengthening the
fluorescence quenching [144]. Lyu et al. developed an intraparticle molecular orbital
engineering approach to induce electron transfer with light irradiation, causing enhanced
heat production, which increased the PA signal intensity of Pdots by 2.6-fold and maximum
photothermal temperature by 1.3-fold [145]. For some Pdots with original faint fluorescence,
accelerating the heat dissipation can also enhance the PA signal intensity. Zhen et al.
reported that Pdots with a silica layer on the surface simulatively improved the fluorescence
and PA brightness due to the higher interfacial thermal conductance between the silica
layer and water [146]. Duan et al. also developed CP-IO nanocomposites in which the
additional heat production and faster heat dissipation caused by IO nanoparticles resulted
in amplification of the PA signal. The above research progress indicates that Pdots for PA
contrast agents have potential development space and application prospects for PAI [147].

4.2.2. Pdots for NIR-II PAI

NIR-II PAI usually has higher SBR and penetration depth compared to NIR-I imaging
due to reduced light attenuation and lower absorption by biological tissues in the NIR-II
window. Recently, Numerous research studies have demonstrated that the Pdots-based
NIR-II PA contrast agents have increased SBR and penetration depth, as well as a higher
maximum permissible exposure and image resolution [148–151]. In addition, metabolizable
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ability related to biotoxicity is another key property of NIR-II PA contrast agents for in vivo
PAI, which is an issue to be researched.

Jiang et al. designed a group of metabolizable NIR-II Pdots contrast agents that were
easily degraded by relevant enzymes in phagocytes to ultrasmall metabolites, which were
cleared out by hepatobiliary and renal excretions after PAI [59]. Three different Pdots
(SPN-OT, SPN-PT and SPN-DT) were obtained from three corresponding semiconduct-
ing polymers encapsulated into poly(ethyleneglycol)-methyl ether-block-poly(lactide-co-
glycolide) (PLGA–PEG) by nanoprecipitation. The obtained Pdots had peak absorption at
about 1079 nm and an average hydrodynamic diameter of about 30 nm. The PA spectrum
of obtained Pdots ranged from 680 nm to 1064 nm, while the PA amplitude of blood proved
to significantly decrease at 1064 nm, indicating these Pdots had increased SBR in PAI due
to the background noise from blood, which decreased at 1064 nm in the NIR-II window.
SPN-PT was detected for the metabolism and clearance processes as a representative Pdot.
Myeloperoxidase (MPO) in phagocytes efficiently degraded semiconducting particles, and
lipase in phagocytes catalyzed the hydrolysis of ester linkages of PLGA-PEG. After com-
bined treatment of MPO and lipase, the hydrodynamic diameter of SPN-PT reduced from
30 nm to about 1 nm. The degradation product was fluorescent and then expelled from
phagocytes, as shown in Figure 9A. The NIR-II fluorescence signal of degraded products of
SPN-PT in the cytoplasm of cells was detected using a confocal laser scanning microscopy
(Figure 9B), and the fluorescence was obviously observed after 48 h of incubation, which
indicated the degradation in phagocytes was efficient and successful. They then delivered
SPN-PT into living mice to study the clearance pathways inside the organism. The fluores-
cence signal of blood reached a maximum on the first day, then, that of urine dominated
by renal clearance also reached a maximum on the second day, as shown in Figure 9C.
Subsequently, the signal from the liver reached the top on the fourth day (Figure 9D), and,
finally, feces on the fifth day. Such a sequence demonstrated that SPN-PT was successfully
degraded in living mice and cleared out though the renal pathway in the beginning and
hepatobiliary pathway later. To investigate the NIR-II PA ability of SPN-PT, they used a
superficial tumor modal and a deep transcranial brain vasculature modal via vein injec-
tion of SPN-PT. The PA amplitude of tumor region and brain vasculature both increased
(Figure 9E), making it easier to observe the structure of superficial tumor and brain blood
vessels. All the results indicated that these Pdots were efficient NIR-II contrast agents for
PAI in vivo and had great biosafety ensured by renal and hepatobiliary clearance.

Men et al. also reported metabolizable highly absorbing NIR-II Pdots for PAI-guided
photothermal therapy (PTT), with ultrasmall size at 4 nm, good biocompatibility and photo-
stability, high photothermal conversion efficiency and tumor ablation capability [60]. These
metabolizable and ultrasmall Pdots were prepared by a conjugated polymer, Poly([2,5-bis(2-
decyltetradecyl)-2,5-dihydropyrrolo [3,4-c]pyrrole-1,4-dione-3,6-dithienyl]-co-[6-(2-ethylhexyl)-
[1,2,5]thiadiazolo [3,4-f]benzotriazole-4,8-diyl]) (DPP-BTzTD), and PSMA though the nano-
precipitation method. The particle size revealed by DLS of the obtained DPP-BTzTD S-Pdots
was 4 nm, and L-Pdots were 25 nm. The NIR spectra of obtained S-Pdots and L-Pdots showed
high absorption in the NIR-II region.

DPP-BTzTD S-Pdots exhibited good photothermal properties. The temperature varia-
tion of S-Pdots at different power densities integrated the laser-power-dependency of the
photothermal effect. In addition, the rapid temperature increases of S-Pdots at different
concentrations also showed the concentration dependency of the photothermal heating
effect. The photothermal stability of S-Pdots was assessed by five repeated laser on/off
cycles with NIR-II laser irradiation, while the highest temperature was detected within the
same range. The photothermal conversion efficiency of S-Pdots was calculated to be 53.1%.
Furthermore, the PAI capability of S-Pdots was demonstrated by in vitro phantom tests.
The PA signal intensities of S-Pdots were detected at different concentrations from 50 to
200 µg mL−1 to show the linear relationship between PA signal intensity and concentration
of S-Pdots. The in vivo PAI performance of S-Pdots was inspected by monitoring the PA
intensities at the tumor site at designed time points of a 4T1 tumor-bearing nude mice



Biosensors 2023, 13, 137 17 of 26

modal. The PA intensity peaked 2 h post injection and stabilized at 24 h post injection,
which also revealed the increased metabolizable ability of the S-Pdots. DPP-BTzTD S-Pdots
showed the potential utility for NIR-II contract agents with ultrasmall particle size, high
photothermal conversion efficiency, rapid excretion and strong PA signal.
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metabolism process of Pdots in phagocytes. (B) Confocal images of cells incubated by SPN-PT at
different time points. (C) Variation of fluorescence intensity with time in the urine of living mice
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4.3. Pdots for Afterglow Imaging

In addition to the imaging methods mentioned above, other luminescence imaging
including afterglow imaging [152], chemiluminescent imaging [153] and bioluminescence
imaging [154] provides different imaging characteristics and advantages. Such methods
realize imaging decrease background interference caused by irradiation light in fluorescence
imaging, causing higher SBR of images. Pu and co-workers have developed a series of
polymer nanoparticles for afterglow imaging. Afterglow materials emit light long after
ceasing to provide excitation light. Thus, the fluorescence from afterglow materials and
biological tissues can be separated to obtain better images. Miao et al. presented Pdots
with a diameter less than 40 nm, emitting luminescence at 780 nm with a half-life of
about 6 min. Such afterglow Pdots were demonstrated to be more than 100-fold brighter
than inorganic afterglow materials in afterglow intensity, and 127-fold higher than NIR
fluorescence imaging in SBR of living mice tumor imaging [61]. Xie et al. reported self-
assemble poly(p-phenylenevinylene) derivatives for metastatic tumor afterglow imaging
in living mice, which detected the xenograft tumors with volumes of 1 mm3 and tiny
peritoneal metastatic tumors [62]. These afterglow nanoparticles also showed the potential
utility for oxygen partial pressure imaging due to the oxygen-sensitive afterglow property.
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4.4. Pdots for Chemiluminescent Imaging

Electrochemiluminescent and chemiluminescent Pdots for imaging generate light
without light irradiation, which significantly reduces the background interference and
photodamage [155]. Zhen et al. developed Pdots doped with naphthalocyanine dye for
detection of hydrogen peroxide with intraparticle chemiluminescence resonance energy
transfer, realizing the ultrasensitive imaging for hydrogen peroxide in several mouse
modals [63]. Moreover, Cui et al. firstly reported Pdots activated by superoxide anion to
generate the chemiluminescent signal for in vivo imaging in cancer immunotherapy [64].
Pdots accumulated into tumors and produced the chemiluminescent signal corresponding
with the concentration of superoxide anion.

4.5. Pdots for Multimodal Imaging

Pdots with dual imaging capabilities have been developed since the multimodal
imaging attracts much interest in biological imaging. In relevant studies, the designed
Pdots served as fluorescent probes and gave other forms of imaging signals, such as
signals in PAI, magnetic resonance imaging (MRI), computed tomography (CT) imaging
and singlephoton emission computed tomography (SPECT) imaging to offer the location
or physiological information of the detection area for better diagnosis and treatment
effects [156–160]. Lyu et al. reported reaction-based Pdots (rSPNs) with a sulfenic acid
reactive group (1,3-cyclohexanedione) on the surface [65]. Figure 10A,B shows the PA
maximum intensity projection images and fluorescence images of tumors in living mice
injected with rSPNs via the tail vein. rSPNs with intense NIR absorption and fluorescence
made it possible to achieve fluorescence imaging and real-time PAI for protein sulfenic
acids in tumors.

Multimodal Pdots for fluorescence and MRI have also been developed.
Hashim et al. reported bifunctional Gd-Pdots prepared by semiconducting polymers,
amphiphilic phospholipids and gadolinium-containing lipids, and measured their fluo-
rescence quantum yield, extinction coefficient and MRI T1-weighted relaxation times in
water [66]. Figure 10C shows the photograph, IVIS image and IVIS processed image of
living mice injected with Gd-Pdots, the red fluorescence from Gd-Pdots and green fluo-
rescence from mice were distinguished from each other. The linear correlation between
relaxation rate values (R1) and gadolinium concentration of Gd-Pdots at 3T and 7T was
calculated and plotted in Figure 10D. The fluorescence and magnetic resonance properties
of Pdots indicated their potential utility for dual modal fluorescence imaging and MRI.

Additionally, Sun et al. reported small Pdot nanocomposites containing gold nanopar-
ticles to demonstrate the practicality of Pdot-Au nanoparticles for dual-modal imaging
involving fluorescence from Pdots and scattering from Au [67]. They used Au passivated
by hydrophobic molecules and semiconducting polymers in tetrahydrofuran to prepare
Au-NP-Pdots by nanoprecipitation. Au-NP-Pdots inside mammalian cells were imaged by
a fluorescence microscope equipped with dark field optics (Figure 10E). Au nanoparticles
were useful in long-term tracking and imaging in dark field mode since there was no
photobleach. However, the nanoscale cellular organelles strongly scattering light made it
difficult to distinguish from Au nanoparticles. In the presence of Pdots, the bright spots in
fluorescence mode had corresponding bright spots in dark field mode so that the Au-NP-
Pdots that generated both the fluorescence and scattering signals were differentiated from
other cellular features.
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Au-NP-Pdots inside mammalian cells. Reproduced from Ref. [67] with permission.

5. Conclusions and Outlooks

Pdots have become an important material for point-of-care testing and in vivo imag-
ing, which greatly assist the diagnosis and treatment of diseases. In this review, several
preparation methods are described to demonstrate ways to obtain Pdots with different
ranges of particle diameter. In addition, Pdots have excellent photophysical properties and
performance, including large absorption cross section, high quantum yield, good photo-
stability and low toxicity. Moreover, recent studies have reported different approaches to
further improve these properties. In addition to the size and performance, Pdots can be
adapted to special application aims and environments though several modification and
functionalization methods. All these methods mentioned in this review indicate that the
size, properties and function of Pdots can be tuned for practical applications, suggesting
greater utility compared to the traditional materials. For biosensing application, Pdots
biosensors based on FRET or electron transfer have been used for the detection of glucose,
phenylalanine, NAD and tumor markers, all of which have shown good assay results with
convenient, accurate and rapid characteristics. For in vivo bioimaging applications, Pdots
can be used as optical probes for fluorescence imaging or as contrast agents for NIR-II PAI,
which not only have deeper penetration depth, higher brightness, better resolution and
higher contrast efficiency, but also exhibit rapid metabolic capacity relevant for biosafety.
Such a large range of applications and outstanding results have proven the significance of
Pdots for point-of-care diagnostics and in vivo bioimaging.
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Considering the highly homogeneous product landscape, Pdots-based diagnostic
techniques have great potential in the sensing and imaging markets. However, Pdots for
disease diagnosis and treatment are mainly in the research stage, which still have some
distance from clinical application. In this period of rapid development in the materials
sector, relevant research on Pdots needs to constantly combine new techniques and explore
more applications. In our opinion, future work in this field mainly includes the following
aspects: (1) To develop a large-scale, eco-friendly and low-cost method for the prepara-
tion of Pdots. (2) Optimizing biofunctionalization strategies to obtain smart Pdots-based
probes with stimuli-responsive targeting. (3) Pdots with ultra-small particles (<10 nm)
and uniform particle size that are particularly suitable for the development of optical
transducers. Furthermore, for in vivo applications, the ultra-small-size Pdots can further
enhance biodistribution and rapid metabolism. The biological metabolism of nanoparticles
is currently the biggest problem limiting their clinical application. (4) The exploration of
NIR-II Pdots can improve the penetration depth of light in biological tissues. Although
NIR-II imaging and therapy have received considerable attention, biosensing applications
of the NIR-II window are largely unexplored. (5) Emerging hybrid nanocomposites com-
posed of organic and inorganic nanomaterials are expected to endow the nanosystems of
Pdots with complementary multimodal imaging modalities and synergistic therapeutics.
(6) Computational simulations can also help us design functionalized Pdots for specific
biomedical applications. With the rapid development of artificial intelligence, it will be
more effective to design rational Pdots for clinical translation.
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