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Abstract: Electrochemical immunosensors have attracted immense attention due to the ease of mass
electrode production and the high compatibility of the miniature electric reader, which is beneficial
for developing point-of-care diagnostic devices. Electrochemical immunosensors can be divided into
label-free and label-based sensing strategies equipped with potentiometric, amperometric, voltam-
metric, or impedimetric detectors. Emerging nanomaterials are frequently used on electrochemical
immunosensors as a highly rough and conductive interface of the electrodes or on nanocarriers of
immobilizing capture antibodies, electroactive mediators, or catalyzers. Adopting nanomaterials
can increase immunosensor characteristics with lower detection limits and better sensitivity. Re-
cent research has shown innovative immobilization procedures of nanomaterials which meet the
requirements of different electrochemical immunosensors. This review discusses the past five years
of advances in nanomaterials (metal nanoparticles, metal nanostructures, carbon nanotubes, and
graphene) integrated into the electrochemical immunosensor. Furthermore, the new tendency and
endeavors of nanomaterial-based electrochemical immunosensors are discussed.

Keywords: affinity reaction; immunosensors; nanomaterials; electrochemistry

1. Introduction

Biosensors, consisting of a biomolecular recognition part and a transducer part, can
selectively and sensitively quantify the concentration of a target analyte in complicated
samples. The recognition part can be classified into catalytic elements, such as enzymes
and whole cells, and affinity elements, such as antibodies, recombinant proteins, and syn-
thetic recognition molecules, including peptides, oligonucleotides, peptide nucleic acids,
aptamers, G-quadruplexes, molecularly imprinted polymers, etc. [1]. Immunosensors
using antibodies as biorecognition elements have become the most widely used analytical
device and testing strip for the requirement of clinic diagnostics, drug residue, microbial
contamination in foods, and environmental toxin monitoring. Unlike the request of sub-
strate addition for enzymatic catalysis, the antibody–antigen immunoreaction can directly
produce the effect of physical signals (charges, weight, impedance, or optical absorbance)
on a transducer. Moreover, the immunosensors generally have a superior specific reaction
and a lower dissociation constant to analytes than aptasensors. Electrochemical transducers
have attracted huge attention in constructing immunosensors due to the advantages of
inexpensive cost, good compatibility with miniature and portable electrical readers, and
ease of large-scale electrode production. Electrochemical immunosensors provide good
selectivity and sensitivity when using a variety of signal probes, including enzymes, redox
mediators, and nanomaterials, for amplifying immunoreaction results. Multiple electro-
chemical methodologies, including potentiometry, cyclic voltammetry (CV), differential
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pulse voltammetry (DPV), square wave voltammetry (SWV), anodic stripping voltammetry
(ASV), and electrochemical impedance spectroscopy (EIS), are frequently used to quantify
the immunoreaction results. Many reviewing works have elucidated the advanced develop-
ment of electrochemical immunosensors in the detection issues of tumor markers [2], cancer
biomarkers [3–5], cytokine tumor necrosis factor [6], microbial pathogens (bacteria and
viruses) [7–9], anti-inflammatory drugs [10], pesticides and herbicides [11], antibiotics [12],
and aflatoxin [13]. These biomarkers, inflammation factors, drug residues, and pathogens
are required to be detected at an ultralow concentration (<ng/mL) in practical use, implying
requirement of ultrasensitive immunosensors. Therefore, improving the sensing properties
and lowering the detection limit becomes essential for immunosensor construction.

In the past twenty years, nanoscale materials have had exponential growth. The nano-
material adoption has also affected the development of electrochemical immunosensors.
Scheme 1 shows the comparisons and features before and after merging nanomaterials in
electrochemical immunosensors. The goals of applying nanomaterials in electrochemical
immunosensors can be considered from two aspects. One is the promotion of the electron-
transfer rate, which can increase the electrocatalytic ability of electrodes for electroactive
probes and reduce the impedance of the electrode/electrolyte interface to amplify the redox
current. The other is to supply a high surface-to-volume ratio, which can increase the
number of biorecognition molecules immobilized on electrode surfaces and the number
of labels adsorbing on nanomaterials, resulting in the amplification of immunological
interaction. Generally, the nanomaterial-modified electrodes and nanomaterial-conjugated
labels can improve the sensing characteristics to obtain more sensitive immunosensors.
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The operational strategies of electrochemical immunosensors can be divided into
label-free and label types. In a label-free format, the analyte (antigen) concentration
is directly quantified after forming antigen-antibody complexes, which can hinder the
electron-transfer rate and diffusive flux of mediators in the electrode/electrolyte interface
to obtain a decreasing current detected by CV, DPV, or SWV and an increasing impedance
measured by EIS. Therefore, label-free immunosensors are vital to require high conduc-
tivity and large surface-to-volume ratio nanomaterials to provide a higher initial current
for subsequent current decrement. In contrast, label-type immunosensors, such as sand-
wich immunoreaction, adopt nanomaterial-labeled detection antibody (DAb) and capture
antibody (CAb) immobilized on an electrode surface to increase the selectivity and sen-
sitivity. The nanomaterial-conjugated DAb can bind to the antigen caught by the CAb
of the electrode surface. The DAb-conjugated nanomaterials can act like a nanocarrier,
which may have modification of the electroactive mediators and catalyzers, to promote the
redox efficiency of mediators or the catalytical capacity of substrates for electrochemical
response amplification.

This review summarizes a variety of nanomaterial-based electrochemical immunosen-
sors reported in recent articles over the last five years [14–17]. Importantly, we discuss the
effect and usage of nanomaterials (such as gold nanoparticles (AuNPs), gold nanostruc-
tures (AuNSs), carbon nanotubes (CNTs), graphene (GR), graphene oxide (GO), reduced
graphene oxide (RGO), dendrimers, quantum dot (QD), silver nanoparticles (AgNPs),
and their nanocomposites) on electrochemical immunosensors. As shown in Figure 1,
the scheme shows the significant issues of fabricating an ultrasensitive electrochemical
immunosensor, including the types of used nanomaterials, operational strategies of im-
munoassay, adequate electrochemical methods, and sensor applications.
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2. Immunoreacting Strategies and Electrochemical Detection

In addition to adopting nanomaterials to promote the sensing results, the adequate
combination of immunoreacting strategies and electrochemical detection techniques can
obtain more straightforward immunoreacting procedures, shorter response time, fewer
reagents, more significant signals, and superior selectivity. The detecting techniques can
be classified as label-free and label-based methods. The label-free detection is suitable for
directly quantifying the results of one-step antigen-CAb immunoreaction. The required
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electrochemical techniques have potentiometric, DPV, SWV, and EIS, frequently reported in
previous studies. The label-based methods are suitable for the sandwich and competitive
immunoreaction by using the catalyzer-labeled DAb or DAb-conjugated nanomaterials to
report the antigen-CAb immunoreaction. Amperometry, DPV, SWV, and ASV are the main
electrochemical techniques for this method.

2.1. Label-Free Electrochemical Immunosensor

In label-free immunoassay, the electrochemical detector can directly quantify the
bound antigen number by measuring the change on the surface potential, redox current of
mediators, or the electron-transfer rate of mediators after immunoreacting concentration-
varied antigens. Different electrochemical or electric detectors can sense the change in the
electrochemical properties of the electrode/electrolyte interface.

2.1.1. Potentiometry-Based Immunosensors

The bound antigens may cause a potential shift of the electrode surface, increase the
thickness of the biorecognition layer, and produce steric hindrance to ionic flux from the
bulk electrolyte to the ion-selective membrane. Potentiometry and field-effect transistor
(FET) techniques are sensitive to the potential change of the electrode surface. The po-
tential shift results from the charged functionality accumulation, such as NH2+, NH3+,
COO−, PO4

3−, of analytes on the electrode/electrolyte interface or the blocking effect
of antigen–antibody immunoreaction on the ionic flux. The electronic detecting mecha-
nism and electrode fabrication of immune FET devices can be referred to in these review
works [18–20]. In principle, silicon-based nanowires, CNT, 2D nanomaterials (GR, MoS2),
and conductive polymer can be used as the gate electrode for antibody immobilization.
After immunoreaction, the drain current is related to the change in the gate potential. It is
worth noting that the extended gate organic electrochemical transistors, using a conductive
polymer as the hole or electron channel, have great potential for developing flexible and
wearable biosensors [21].

In contrast, potentiometry presents an intuitive detection to monitor the equilib-
rium potential of the working electrode versus a reference electrode with a high input
impedance voltammeter and a concentration difference between the inner and outer of the
ion-selective membrane. Silva et al. [22] fabricated a disposable paper-based potentiometric
immunosensor for label-free detection of Salmonella typhimurium. The potential shift of
poly(3,4-ethylene dioxythiophene): polystyrene sulfonate (PEDOT: PSS)-coated paper is
derived from the blocking effect of the ionic flux caused by Salmonella-antibody conjugation.
Similarly, Silva deposited AuNPs on an ion-selective membrane for anti-Salmonella immo-
bilization. The potential shift was attributed to the blocking effect of the antigen-antibody
conjugation in the ionic flux [23]. Generally, the real-time potential drift can be instantly
measured by potentiometry, as shown in Figure 2.
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2.1.2. Voltammetry-Based Immunosensors

Voltametric techniques, including CV, normal pulse voltammetry, DPV, SWV, AC
voltammetry, and ASV, control the potential between a working electrode and a reference
electrode to measure the redox current. Among these techniques, CV, DPV, and SWV
are frequently applied in electrochemical sensors [24] and label-free affinity biosensors.
The addition of mediators, such as negatively charged [Fe(CN)6]3−/4− [25] or positively
charged [Ru(NH3)6]3+ [26] in the electrolyte, are vital for label-free detection [27], as shown
in Figure 3a. Furthermore, the mediators, such as methylene blue [28], Prussian blue [29,30],
thionine (Thi) [31,32], or ferrocene [33], can also be co-immobilized in the nanomaterial-
based modification layer of electrodes to probe the change in the interfacial impedance
of the electrodes (Figure 3b). For example, Farzin et al. [32] grafted Thi and anti-prostate-
specific antigen (PSA) CAb on the histamine-GO/multiwalled CNT (MWCNT)/glassy
carbon electrode (GCE) as a mediator to probe the immunoreaction of prostate-specific
antigen (PSA) directly. The reductive peak current of Thi measured by DPV was inversely
proportional to the PSA concentration. The electroactive mediators immobilized on an
electrode surface could not only supply a native redox signal but also amplify the redox
current of [Fe(CN)6]3−/4−. Dong et al. [29] electrodeposited Prussian blue and the anti-
organophosphorus pesticides CAb-adsorbed AuNPs on screen-printed carbon electrodes
(SPCEs) to increase the surface conductivity of the immunosensor, which is beneficial for ob-
taining a sensitive DPV peak current of [Fe(CN)6]3−/4−. Furthermore, different mediators
can be co-immobilized on electrode surfaces to produce a synergistic effect. Zhao et al. [30]
deposited AuNPs–Prussian blue composites and Thi on a GCE to construct a sensitive cap-
saicinoids immunosensor with a limit of detection (LOD) of 0.01 ng/mL. The Thi/Prussian
blue–AuNPs/GCE could produce a larger DPV peak current of [Fe(CN)6]3−/4− than the
Prussian blue–AuNPs/GCE and the TH/GCE.
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Figure 3. Scheme of detection mechanism of the label-free electrochemical immunosensors with medi-
ators spiked in the electrolyte (a) or the modification layer (b). (c) The illustration shows the decrease
of peak current with the analyte immunoreaction when performing DPV or SWV measurement.

The antigen–antibody conjugation could increase steric hindrance and electrostatic in-
fluence of the biorecognition layer, which decreases the electron-transfer rate and diffusive
flux of the mediators. The mediator response to the interfacial change of affinity biosensors
can be measured by voltammetry. However, the CV signal involves capacitive and Faradaic
currents, which lower the signal-to-noise ratio. In contrast, DPV can reduce the effect of
non-Faradaic current and diffusion-controlled behavior on the measured current to obtain
a peaked shape output, as shown in Figure 3c. In a reversible system, the peak potential
of DPV is close to the formal potential. After the affinity reaction, the peak current height
decreased with increasing concentration of the nonconductive antigen. Lan et al. [25]
placed platinum nanoparticle (PtNP)-decorated RGO@polystrene nanospheres on a glassy
carbon electrode (GCE) for anti-carcinoembryonic antigen (CEA) immobilization. DPV was
used for the label-free detection with an inverse correlation between the peak current of
[Fe(CN)6]3−/4− and the CEA concentration. Verma et al. [34] developed a label-free im-
munosensor for detecting the oral cancer biomarker IL8 by utilizing AuNP-RGO-modified
indium tin oxide (ITO) electrodes. CV and EIS were used to realize the effect of nano-
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material modification on the electrochemical properties of electrodes during preparation.
DPV was used to obtain the relation between the peak current of [Fe(CN)6]3−/4− and the
IL8 concentration. Presently, DPV is the most prevailing voltammetry for the detection of
electrochemical affinity biosensors.

SWV is reverse pulse voltammetry, which obtains the current difference between the
forward and reverse sampling current during the staircase potential shift. For a reversible re-
action, SWV is more sensitive than DPV because the reverse pulses near the formal potential
can produce a reducer to increase the anodic current, which enlarges the current difference.
SWV has a similar waveform to that of DPV (as shown in Figure 3c). Moreover, SWV is more
compatible with mediator-immobilized detection (Figure 3b) than mediator-suspended
detection (Figure 3a) in label-free immunosensors because the antibody immobilization and
the surface blocking would increase the interfacial impedance. The phenomenon may cause
a considerable over-potential to the redox reaction of suspension-type mediators, reducing
the contribution of reverse current to the current difference of SWV. Zheng and Ma immo-
bilized methylene blue on an alginate calcification layer and then deposited AuNPs-RGO,
peptide, and albumin-Pd-polydopamine (PDA) nanocomposite for the label-free detection
of metalloproteinase-7. The SWV peak current of methylene blue was sensitive to the mod-
ification procedures and metalloproteinase-7 concentrations [35]. Moreover, Li et al. [5]
reviewed the development of electroactive species-based immunosensors, which is interest-
ing for further study.

2.1.3. EIS-Based Immunosensors

EIS is another prevalent electrochemical technique for label-free detection of affinity-
based biosensors. It can examine sensitively the slight change in the electrochemical
properties of the electrode/electrolyte interface, including the electron-transfer kinetics
and the diffusive flux. The EIS operation is to superimpose a frequency-varied AC voltage,
typically 5 or 10 mV, on the equilibrium potential of a redox couple, commonly using
equimolar [Fe(CN)6]3−/4−, as shown in Figure 4a. The EIS data can be plotted in a Bode
plot, the magnitude (|Z|) and phase (θ) of impedance versus frequencies, or a Nyquist
plot, the imaginary part (Z”) to the real part (Z’) of the impedance [36]. Figure 4b, (the
without-analyte curve), shows a typical Nyquist plot obtained from EIS measurement
at a bare electrode or a modification-loose immunosensor. The semicircle and linear
regions of the Nyquist plot are associated with the electron-transfer kinetics measured
at high frequencies and the diffusion behavior obtained at low frequencies, respectively.
The semicircle radius approximates half of the electron-transfer resistance (Ret). The
Randles equivalent circuit, consisting of four elements—the solution resistance (Rs), the
diffusion-related Warburg impedance (Zw), the pure capacitance of the electrical double
layer (Cdl), and Ret, shown in Figure 4c—is used to explain the electrochemical properties
of electrode/electrolyte interface.

Furthermore, after reacting analytes on a dense modification immunosensor, the steric
hindrance and the electrostatic repulsion of the modification layer to the negatively charged
mediator, [Fe(CN)6]3−/4−, can cause a high impedance with a slow electron-transfer rate
and little diffusive behavior. The Nyquist plot only presents a semicircle (the with-analyte
curve of Figure 4b). The Zw can be eliminated from the Randles circuit. Moreover, due to
the complex biorecognition layer, the constant phase element (CPE) was used to replace
the Cdl to elucidate the inhomogeneity of the electrode surface. The impedance of the CPE
can be presented by ZCPE(ω) = Z0 (jω)−α, where Z0 is a constant, j is an imaginary number,
ω is the angular frequency, and 0 < α < 1. When α is closer to 1, the CPE becomes more
capacitive. A simplified parallel equivalent circuit with Ret and CPE, called 1R//C, as
shown in Figure 4d, is used to represent the interfacial impedance. Empirically, the change
in Ret value is more sensitive than the CPE value in the Faradic impedance measurement.
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Several strategies, such as nanocomposite deposition [37], the linker layer of low
surface impedance [38], antibody-oriented immobilization [39,40], and convective trans-
portation of analytes [41], have been reported to increase the sensing properties of EIS-based
immunosensors. The nano-structured or nanomaterial-deposited surface can increase the
electrode area to immobilize more antibodies. Ganganboina et al. [37] cast GR quantum
dots@Au-polyaniline nanowires on a Pt electrode for impedimetric detection of CEA with a
limit of detection (LOD) of 0.01 ng/mL. The types and deposition methods of nanomaterials
used for electrochemical immunosensors are explored in Section 3 in detail, Nanomaterials
for Electrode Modification.

2.2. Label-Based Electrochemical Immunosensor

Label-based immunosensors can be achieved by sandwich immunoreaction or compet-
itive immunoreaction. The enzyme- or redox species-labeled DAbs report the antigen–CAb
conjugation. Horseradish peroxidase (HRP) [42], glucose oxidase (GOD) [43,44], or alkaline
phosphatase (ALP) [45], are conjugated to DAb to catalyze the corresponding substrates,
and then the products are frequently detected by amperometry or voltammetry, as shown
in Figure 5a. Otherwise, redox-labeled (such as ferrocene and methylene blue) DAb can
be directly detected to quantify the antigen–CAb immunoreaction without adding exter-
nal mediators or substrates in the electrolytes [46]. The detecting procedures are more
straightforward and faster than the enzyme-labeled DAb.
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The other labeled-based strategies are to use magnetic beads (MBs), metal NPs, GR,
CNTs, or dendrimers as carriers for the simultaneous immobilization of DAb and elec-
troactive species (such as enzymes, redox species, and soluble metals). After conjugating
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the antigen via the DAb, the carrier complex presents a synergistic effect to amplify the
electrochemical signals, as shown in Figure 5b. Amperometry, voltammetry, or EIS are used
to quantify the sandwich immunoreaction. Sadassivam et al. [47] adopted MBs as a carrier
for immobilizing anti-carbohydrate antigen (CA125) CAb and HRP. After immunoreact-
ing CA125 with the CAb-HRP@MBs, the collected complex of CA125/CAb-HRP@MBs
was reacted with the aptasensors. Amperometry, CV, and EIS were used to quantify the
CA125 concentration. Furthermore, electroactive metal NPs (Ag, Cu, Ce, and Pt) can
be used as catalyzers to amplify the immunoreaction signal selectively, as shown in the
left part of Figure 5b. Chen et al. [48] synthesized Ag@CeO2-Au nanocomposites as a
carrier for DAb co-immobilization to perform sandwich immunoreaction on an anti-CEA-
modified immunosensor. The cerium (III) and silver (I) autocatalytic reactions supplied a
potential-selective signal to quantify the DAb-CEA-CAb immunoreaction.

Using soluble NP labels is a fascinating strategy with the native redox signal of soluble
NPs as a probe for immunoreaction quantification, as shown in the right part of Figure 5b.
For example, Liao et al. [49] synthesized RGO/Co3O4-Ag@PDA for immobilizing anti-
CEA DAb, which immunoreacted with the CAb/AuNP/GCEs. The AgNPs are oxidized
to Ag+ in positive potential scanning, and then Ag+ and Cl− are combined to form an
insoluble AgCl salt to adhere to the electrode surface. Subsequently, AgCl is reduced to
AgNPs and Cl− in the reverse potential scan, as shown in Figure 6a. The redox behavior
of AgNPs immobilized on the nanocarrier can be a signal to probe the magnitude of
sandwich immunoreaction.
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with (red line) or without (black line) 3 mM H2O2. Redrawn from [49].© Elsevier publishing.

Moreover, H2O2 addition can promote AgNP oxidation to obtain an increased reduc-
tion peak current, as shown in Figure 6b. The label-based nanocomposite types and their
applications in electrochemical immunosensors are comprehensively discussed in Section 4,
Nanomaterials Used as Labels.

3. Nanomaterials for Electrode Modification

Many nanomaterials, such as AuNPs and nanostructures (NSs), CNTs, GR, dendrimers,
and their nanocomposites, have been applied in immunosensor fabrication. The conductive
metal NPs, NSs, and CNTs can effectively increase the conductivity and roughness of the
electrode surface. Dendrimers can form a 3D structure and have massive functionalities for
antibody immobilization, promoting the number of bound antibodies [50]. Nanomaterial-
modified electrodes are beneficial for developing label-free and label-based immunosensors.
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This section focuses on the fabrication and sensing properties of AuNPs/AuNSs, CNTs,
and GR-modified immunosensors.

3.1. Using AuNPs/AuNSs

AuNPs have been extensively used in electroanalytical chemistry and immunoassay
because of their high surface-to-volume ratio, fast electron-transfer capabilities, and good
biocompatibility. The surface of bare AuNPs is feasible for direct antibody adsorption. For
example, Zhao et al. [51] used chemical vapor deposition to deposit GR on a monolithic 3D
Ni foam and then directly deposited AuNPs on the GR/Ni foam via electroless deposition
in an HAuCl4 solution through Au3+ reduction and Ni oxidation. The AuNPs/GR/Ni
foam can adsorb antibodies as an electrochemical immunosensor. Yun et al. [52] also
used electroless plating to form an AuNS layer on a pattered gold thin-film electrode
for immobilizing protein A, which can adsorb the Fc portion of CAb. After performing
sandwich immunoreaction with HRP-conjugated DAb, the immunosensors presented an
LOD of 0.63 ng/mL in prohibitin 2 (PHB2)-spiked white blood cell lysates.

Furthermore, electrodeposition is an effective method for placing AuNPs and AuNSs
on a conductive substrate. Beitollahi et al. [42] deposited AuNPs on an ionic liquid and
graphite-mixed electrode for anti-prolactin CAb immobilization. Anti-prolactin DAb
labeled with HRP was used to form sandwich immunoreaction for amperometric detection
of human prolactin. The AuNPs were used to promote conductivity and surface area
of electrodes for the thiolated linker binding, which can covalently bind CAb. In our
previous works [38,53], the AuNS was formed on pre-oxidized screen-printed carbon
electrodes (SPCEs) to increase the SPCEs roughness via two-step electrodeposition. The
high rough AuNS/SPCEs-based immunosensors presented a greater sensitivity and a much
lower LOD (4 fg/mL) than that (3 pg/mL) obtained at a planar Au disk electrode-based
salbutamol immunosensor. The results indicate that AuNS deposition effectively increases
the electrode roughness to lower the LOD significantly. Another strategy for immobilizing
AuNPs on electrode surfaces is to adopt Au–S covalent bond and electrostatic adsorption.
Specific thiolated groups (–SH) and positively charged groups of self-assembled monolayers
(SAMs), polymers, and dendrimers are used for AuNP immobilization [54]. It is worth
noting that SAM modification presents a simple way to immobilize AuNPs. Table 1 lists the
sensing results of AuNPs or AuNS-based immunosensors, which showed ultralow LOD
for different targets.

To further increase the number of AuNPs bound on the electrode surface, layer-
by-layer assembled dendrimers are effective strategies for AuNP immobilization [55,56].
Amine-terminated polyamidoamine dendrimers have many functional groups at the periph-
ery, encapsulating AuNPs in the dendrimers to the electrode surface [55]. Losada et al. [56]
prepared AuNPs on ferrocenyl-dendrimer film on a GCE, which can directly oxidize
NO2

− to NO2 for electrochemical determination of nitrite. We expect the mediator-AuNPs-
dendrimer to be used as a nanocarrier for DAb immobilization to enlarge the antigen-CAb
binding signal without adding an external mediator after sandwich immunoreaction.

Furthermore, electrodes modified with 3D nanostructures can provide an ultrahigh
rough surface for biomolecule immobilization. Several methods of arranging 3D nanos-
tructures on electrode surfaces have been applied to immunosensors [57]. Li et al. [58]
constructed cucurbituril derivative-mediated 3D AuNPs structures for developing an
impedimetric sensor for the label-free detection of 3-phenylpropylamine. Furthermore,
AuNP formation can also accompany other metal reductions to form alloy nanoparticles.
Li et al. [59] adopted 60Co gamma irradiation to prepare RGO-PtAu nanocomposite sus-
pension. Then the Pt-AuNPs/RGO/GCEs were fabricated as immunosensors for label-free
CEA detection via SWV.
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Table 1. Deposition methods of AuNPs or AuNSs for immunosensor fabrication.

Preparation
Methods Electrodes Sensing

Strategies/Techniques LOD LR Refs.

Electrodeposition
Anti-

prolactin/AuNPs/carbon
paste electrode

Sandwich reaction with
HRP-DAb and
prolactin/DPV

12.5 mIU/L 25.0–2000.0 mIU/L [42]

Electrodeposition Anti-NSE/AuNPs-
MoS2-rGO/GCE 1

Sandwich reaction with
DAb/ CoFe2O4-Ag, and

NSE by SWV
3 fg/mL 0.01–1.00 pg/mL [60]

Electrodeposition Anti-HSA/AuNPs/PpPD/
PEDOT-PSS-Fc /SPCEs 2 Label-free/DPV 0.54 fg/mL 1–10 ng/mL [61]

Electroless plating Anti-
PHB2/PA/AuNS/AuE

Sandwich reaction with
HRP-Dab and
PHB2/SWV

40 pg/mL 0–10 ng/mL [52]

Electrostatic
adsorption

Anti-CA153/PPy-AuNPs-
luminol/ITO 3

Label-free/EIS & electro-
chemiluminescence

5.8 × 10−4

U/mL
0.001–700 U/mL [62]

Multi-layer
electrostatic
adsorption

Anti-PSA-GSH-
AuNPs/PEI/PVS/
PEI/MUA/AuE 4

Label-free/EIS 0.17 ng/mL 0.1–20 ng/mL [63]

1 Anti-NSE: anti-neuron-specific enolase antibody; 2 Anti-HSA/AuNPs/PpPD/PEDOT-PSS-Fc: anti-human
serum albumin/AuNPs/poly(para-phenylenediamine)/poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate)-
ferrocene nanocomposite; 3 Anti-CA153/PPy-AuNPs-luminol: anti-carbohydrate antigen 153/polypyrrole-
luminol-AuNPs; 4 Anti-PSA-GSH-AuNPs/PEI/PVS/PEI/MUA: anti-prostate specific antigen-glutathione-
AuNPs/poly(ethyleneimine)/poly(vinylsulfonicacid)/poly(ethyleneimine)/mercaptoundecanoic acid.

3.2. Using CNTs

CNTs have interesting chemical and physical properties, including high electrical
conductance, large surface area, good biocompatibility, and functionalization potential.
They have garnered considerable attention in electrochemical immunosensors [64,65]. CNTs
have considerable molecular weight, conductivity, and high surface area, which allows
CNTs to be placed alone, mixed with polymers, deposited with conductive materials (metal
or GR), or electropolymerized with monomers for the surface deposition of electrodes.
The CNT-hybrid nanocomposites can directly attach to electrode surfaces due to van der
Waals force attraction. GO, RGO, or metal nanoparticles are commonly mixed with CNTs
to produce a synergistic effect to enhance the electrochemical response [66].

In addition, CNT composites with Teflon, poly(l-arginine), Nafion, or chitosan (CS) can
provide a simple and flexible method for fabricating immunosensors [67,68]. The CNT ink
can be directly dripped on an electrode to produce a highly conductive and rough surface
of the electrodes for antibody immobilization. For example, Sun et al. [69] chemically de-
posited AuNPs on polyethyleneimine (PEI)-coated MWCNTs for protein A immobilization.
The Fc fragment of CAb can directionally adsorb anti-kidney bean lectin (KBL) on the
AuNPs-PEI-MWCNT/GCEs to increase the binding efficiency of KBL. Deiminiat et al. [70]
synthesized carboxylic acid-functionalized MWCNTs(COOH-MWCNTs) to form COOH-
MWCNTs-AuNPs nanocomposite for anti-bisphenol A (BPA) aptamer modification, which
can perform label-free detection of BPA in mineral water, orange juice, and milk. The metal
NPs decorated on CNTs can increase the binding sites of biorecognition molecules and pro-
mote redox response. Shahrokhian et al. [71] developed a sensitive voltammetry sensor for
determining isoxsuprine based on the MWCNT/AgNPs-modified GCEs. The anodic peak
current response of AgNPs measured by LSV is more sensitive than the native oxidative
current of isoxsuprine. Xing et al. [72] electrodeposited Prussian blue on COOH-MWCNTs-
coated GCE. The Prussian blue metal-organic framework (MOF)/COOH-MWCNTs/GCEs
presented excellent stability, reproducibility, and recovery for the CV-based detection of
bisphenol B in actual river samples. Ultrasonication is an effective method of preparing
CNT-based nanocomposites for electrode modification [73,74].
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Furthermore, electropolymerization can locally deposit CNTs on the surface of the
working electrode. Mixing electroactive monomers, such as pyrrole [75,76] and ani-
line [77], with CNTs is essential for electropolymerization. Aydın et al. [75] mixed SWCNT
and oxiran-2-yl methyl 3-(1H-pyrrol-1-yl) propanoate monomer (Pepx) prepared from 1-
pyrrolepropionitrile via the two reaction steps of hydrolysis and esterification and electrode-
posited the conductive SWCNTs-PPepx nanocomposite on an ITO electrode for antibody
immobilization. The preparation procedures are shown in Figure 7. The EIS-based calretic-
ulin immunosensor presented excellent linear ranges of 0.015–60 pg/mL and an ultralow
LOD of 4.6 fg/mL. The different fabrication methods of CNT-based immunosensors and
their sensing performance are compared in Table 2. In summary, CNTs can be used as an
excellent conductive substrate and mixed with GR, metal NPs, MOFs, charged polymers,
or redox polymers to form hybrid nanocomposites to present synergistic reactions for
promoting the binding number of antibodies and facilitating electrochemical detection,
which show greatly promising potential in sensing applications.
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Table 2. Preparation of CNT-based nanocomposites for immunosensor fabrication and their sensing
properties.

CNT Hybrid
Preparation Methods Electrodes Sensing Strategies LOD LR Refs.

Chemical reduction of
AuNPs on MWCNT

Anti-KBL/PA/AuNPs-
PEI-MWCNTs/GCE Label-free/DPV 23 ng/mL 0.05−100 µg/mL [69]

Chemically synthesized
COOH-

MWCNTs/AuNPs

Anti-BPA
aptamer/COOH-

MWCNTs/AuNPs/AuE
Label-free SWV 114 pg/mL 22.8–2283 pg/mL [70]

Ultrasonication
α-fetoprotein/N-GQD 1

@SWCNTs/Anti-
AFP/BSA/GCE

Label-free/CV and EIS 0.25 pg/mL 0.001–200 ng/mL [73]
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Table 2. Cont.

CNT Hybrid
Preparation Methods Electrodes Sensing Strategies LOD LR Refs.

CNTs/PEI/GE 2 via LBL
fashion

CA19-9/PEI-
CNTs/EDC-NHS Label-free/EIS 0.35 U/mL 0.05–0.5 U/mL [78]

RGO/CNF and
RGO/CNT via
sonication and

hydrothermal reaction

RGO-CNT-Thi/anti-
CA125/AuNPs/GCE

Sandwich
reaction/DPV 0.28 pg/mL 1–3.2 ng/mL [74]

Electropolymerization Anti-calreticulin/
SWCNTs-PPepx /ITO Label-free/EIS 4.6 fg/mL 0.015–60 pg/mL [75]

Electropolymerization Anti-CysC/PPy-CNTs/
IDE 3

Label-
free/Capacitance 28 ng/mL 30–300 ng/mL [76]

1 N-GQD: nitrogen doped graphene quantum dot; 2 CNTs/PEI/GE: CNTs/polyethyleneimine/Gold electrode;
3 Anti-CysC/PPy/CNTs/IDE: anti-cystatin-C/polypyrrole/CNTs/interdigitated electrode.

3.3. Using GR/RGO

Immunosensors constructed by GR-based nanocomposites have attracted attention
due to 2D structures, fast electron transportation, large surface area, and good biocom-
patibility. However, some inherent disadvantages of GR need to be overcome, such as
hydrophobicity and easy aggregation in an aqueous solution. Several surface modification
strategies, such as metal nanoparticle deposition, strong acid oxidation, and polymer mix-
ture, are used to improve the hydrophilicity and increase the biocompatible binding sites
of GR-based composites [79,80]. Sun et al. [81] used chemical vapor deposition to grow
vertical GR on a GCE and electrodeposited AuPtNPs on the vertical GR nanosheets as
binding sites of CAb for label-free detection of alpha-fetoprotein (AFP). Low et al. [82] used
a solvothermal method to prepare GR/zinc oxide nanocomposites as the interface of an
electrochemical genosensor to detect a single standard RNA. Salimi et al. [83] synthesized
amine-functionalized GR using a hydrothermal method in NH3 and sodium bisulfite. An
RNA probe could be immobilized on amine-GR/GCE for label-free EIS-based detection
of miRNA-155.

Compared to GR, GO has superior hydrophilicity and more accessible surface func-
tionality for modifying biorecognition molecules due to its abundant oxygen-containing
functional groups, such as hydroxyl and epoxy groups on its basal plane and a carboxyl
group at its edge. GO can be prepared from graphite powder via the strong oxidation of
HNO3, KMnO4, and H2SO4 according to the method reported by Hummers and Of-
ferman [84]. Subsequently, the COOH-GR slurry was drop-casted on SPCEs for the
electrodeposition of 2-aminobenzylamine, and then 1-ethyl-3-(3-dimethylminoprpyl) car-
bodiimide (EDC)/N-hydroxysuccinimide (NHS)-activated CAb was immobilized on the
2-aminobenzylamine/COOH-GR/SPCEs. EIS was used to quantify the direct immunore-
action of parathion. Furthermore, the bottom-up syntheses can also produce GO, such
as chemical vapor deposition and epitaxial growth on silicon carbide wafers [85]. The
high hydrophilicity of GO makes it easy to suspend in an aqueous solution for preparing
GO-based nanocomposites. Yuvashree et al. [86] mixed GO and CS to modify a GCE
to produce an H2O2 sensor. GO has also been used as a substrate for gold nanocrystal
deposition to exhibit synergistic behavior for the electrocatalytic reaction of dopamine, uric
acid, and 4-aminophenol [87]. Pal and Khan electrodeposited AuNPs on a GO-coating Pt
electrode to enhance the conductivity. EDC–NHS mixture was used to activate the GO
surface for immobilizing anti-PSA CAb. DPV was performed for the label-free detection
of PSA [88].

However, the weaker conductivity of GO due to higher sp3 carbon and abundant oxy-
gen groups hinders its application in constructing an electrochemical immunosensor [89].
Therefore, the procedures to transfer GO to RGO become vital for electrochemical biosen-
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sors. Currently, many studies are developing controllable strategies, including chemical
reduction and electro-reduction, to fabricate RGO-based immunosensors [90,91]. Jozghor-
bani et al. [92] chemically reduced GO in an ascorbic acid and ammonium hydroxide
mixture and dripped the RGO onto GCE for anti-CEA immobilization. The high con-
ductivity and roughness of RGO/GCE are beneficial for the label-free detection of CEA
immuno-reaction through CV and EIS. Figure 8 represents a single-step assembly of an
AuNPs/RGO-based SWV-detected immunoassay for detecting an endometriosis biomarker
in clinical diagnosis [93].
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In addition to the GR, GO, and RGO, exfoliated graphite nanoplatelets, composed of
stacked 2D graphene sheets, have high conductivity and roughness suitable as a surface
modifier of an electrode due to the SP2 hybridized carbons. Zanato et al. [94] deposited
AgNPs-Nafion on the surface of exfoliated graphite nanoplatelets and adsorbed the anti-
microcystin-LR antibody to form a nanocomposite. Subsequently, the nanocomposite was
dripped onto a cleaned GCE as an immunosensor for label-free detection of microcystin-LR
by using SWV and EIS measurement. The AgNPs can be directly oxidized as a probe to
indicate antigen–antibody conjugation. Exfoliated graphite nanoplatelets supply a large
surface for more AgNP adsorption, drastically increasing the background signal. The
peak current of SWV decreased with increasing microcystin-LR concentration with LR of
0.5–500 ng/mL and LOD of 0.017 ng/mL. As mentioned in Nanda et al. [95], GO-based
electrodes have been shown to have wide applications due to the advantages of good
flexibility for soft electronics, different oxygen-containing functionalities for biomolecule
immobilization, and excellent conductivity, as shown in Figure 9.
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4. Nanomaterials Used as Labels

In sandwich immunoreaction, enzymes or redox species can be directly conjugated
with DAb as a probe to report the antigen–CAb interaction. Due to the size, functionality,
and bioactivity of DAb, the bound number of the electroactive probe or catalyzer has a
practical limit. Furthermore, the chemicals used for the probe conjugation may damage
the DAb immunoactivity. In contrast, nanomaterial carriers can supply a large surface
for immobilizing DAb and different electroactive species to amplify the antigen–CAb im-
munoreaction signal. The nanomaterial carriers can provide a biocompatible surface for
DAb and a high-conductive interface for electrochemical detection. According to the func-
tions, the probe species conjugated on the nanomaterial carriers can be divided into three
categories: (1) enzyme [47,96,97] or electroactive catalyzer [98–101] with the addition of
reactants in the electrolyte; (2) electroactive species with direct redox reaction [48,102–104],
(3) metal NPs oxidized to form soluble metal ions after strong-acid dissolution [105–108].
The nanomaterial carriers conjugated with different electroactive species and DAb present
excellent specificity through sandwich or competitive immunoreactions and reduce the
signal interference induced by non-specific adsorption on the final electrochemical results

4.1. Nanomaterial Carriers with Enzymatic/Electroactive Catalyzer

Nanomaterials simultaneously conjugated with enzymes and DAb are one of the most
prevalent strategies to amplify the signal of antibody–antigen interactions through substrate
catalysis to produce electroactive products. HRP [96], GOx [43,44], and lactate oxidase
(LaOx) [97] frequently accompany DAb to be immobilized on nanomaterial carriers. Table 3
shows the different substrates added to the electrolyte and the related electroactive products.
In these sandwich immunosensors, the product concentration is proportional to the number
of immunoreacted antigens, the enzyme-conjugated complex, and the catalyzing time.
Therefore, an intuitive current increase can be obtained by voltammetry and amperometry.
Furthermore, metal NPs are used as an alternative for substrate catalysis, especially for
H2O2 reduction. Trimetallic yolk-shell Au@AgPt nanocubes [98], Fe3O4/Au@AgNPs [99],
Au@SiO2/Cu2O nanoparticles [100], and Au@Ag-Cu2O [101] were used to enhance H2O2
reduction. High electrocatalytic metals, such as Pt, Ag, and Cu2O, play an essential
role in H2O2 electroreduction. The other nanomaterials of the nanocomposites present a
synergistic effect on electrocatalysis due to their high conductivity and electron density.
In contrast, the electrocatalytic metal-based sandwich immunosensors exhibit superior
sensing properties compared to the enzyme-conjugated sandwich immunosensors with
lower LOD and wider LR, as shown in Table 3. The phenomenon is attributed to the better
catalytic efficiency of the electrocatalytic metal NPs.

4.2. Nanomaterial Carriers with Electroactive Species for Direct Redox Reaction

After sandwich immunoreaction, direct electron transfer of redox species from the
DAb-conjugated nanomaterial carriers to the electrodes is a more straightforward detecting
method than enzymatic/electroactive catalyzer-based detection. Redox species, such as
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methylene blue [28], Thi [102], ferrocene [33], toluidine blue (TB) [103], AgNPs [48,49], and
Cu-based NPs [104], are co-immobilized on nanomaterials with DAb to supply an electro-
chemical signal. The voltametric peak current significantly increases when the DAb-labeled
nanomaterial carriers react with the antigen conjugated on the CAb-immobilized electrodes.
However, the non-specific adsorption of nanomaterial carriers may cause a false positive
signal due to the large contact area and molecular size. Table 3 compares the sensing prop-
erties of immunosensors after sandwich immunoreaction with the different kinds of redox
species-conjugated nanomaterial carriers. Among the redox species, AgNPs present excel-
lent oxidative signals through direct electrooxidation of Ag-Ag+ [48] or H2O2-enhanced
oxidation [49], which can reach sub-Pico molar level LOD. Liao et al. [49] developed a
dual catalytic signal enhancer based on external H2O2 and AgNPs co-immobilized on the
anti-CEA DAb, Co3O4, and polydopamine (PDA)-modified RGO. The LOD of the CEA im-
munosensors was as low as 0.17 pg/mL. The results show that AgNPs can be a promising
electroactive probe to report immunoreaction intensity directly. Krishnan et al. [109] fabri-
cated HRP/Thi dual-labeled mesoporous silica nanospheres conjugated with Au nanorod
and DAb, which immunoreacted with CEA and the CAb/NiO@Au/GR-modified ITO
electrode. The dual signal amplification permitted CEA detection with 5.25 fg/mL LOD
using DPV detection.

4.3. Nanomaterial Carriers with Soluble NPs

The semiconductor NPs conjugated on nanomaterial carriers, such as CdS [105,108]
and CdSe [106,107], can be dissolved by strong acids, such as HCl, and HNO3, to release
Cd2+ ions. Then ASV is used to detect sensitively the reduction signal of metal ions.
Tocco et al. [105] conjugated CdS nanocrystals on phage capsid to detect molinate herbicide
in river water using CAb/polynitroaniline-modified GCE. After performing sandwich
immunoreaction, a 0.1 M HCl solution was added to obtain Cd2+, which can be detected
by square wave ASV. Qin et al. [108] prepared the CAb/β-cyclodextrin-graphene sheets
(CD-GS) nanocomposite/GCEs and the DAb-ZnO-MWCNTs nanocarrier, respectively.
After performing the sandwich immunoreaction with the antigen of human heart-type
fatty-acid-binding protein (FABP), Cd(NO3)2 and thioacetamide were used to deposit
CdS on the ZnO surface chemically, and then HNO3 was used to produce Cd2+ as a signal
reporter. In these studies, the soluble NPs can be initially immobilized on the nanocarrier for
sandwich immunoreaction or subsequently deposited on the nanocarrier immunoreacted
with antigens and immunosensors. This chemically depositing CdS technique is feasible
to control the number of CdS NPs and suitable for different nanocarriers, which shows
promising potential for ultrasensitive detection of analytes. The immunosensors adopted
with different soluble metal NPs are compared in Table 3.

Table 3. Deposition methods by labeled nanomaterials for immunosensor fabrication.

Label-Based
Nanomaterials Analyte/Electrodes Sensing Strate-

gies/Techniques LOD LR Refs.

Anti-HFA 1 DAb &
HRP/COOH-MWCNT

HFA/CAb-
biotin/streptavidin/SPCE

H2O2/HRP/hydr-
oquinone/amperometry 16 pg/mL 20–2000 pg/mL [96]

Anti-CA125
DAb/AuNP-LaOx 2

CA125/CAb/CS-
AuNP/MWCNT-

GO/GCE

H2O2/LaOx/lactic
acid/amperometry 2 mU/mL 0.01–100 U/mL [97]

Anti-CEA DAb/MoS2
NFs/Au@AgPt YNCs 3

CEA/CAb/MoS2/
Au@AgPt YNCs/GCE

Enhanced H2O2
reduction via

AgPt/amperometry
3.09 fg/mL 1 × 105 –100 ng/mL [98]
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Table 3. Cont.

Label-Based
Nanomaterials Analyte/Electrodes Sensing Strate-

gies/Techniques LOD LR Refs.

Anti-CEA DAb/GR
sheet-

Fe3O4/Au@Ag/Ni2+
CEA/CAb/AuNPs/GCE

Enhanced H2O2
reduction via

Ni2+/amperometry
69.7 fg/mL 1 × 10−4–100 ng/mL [99]

Anti-CEA
DAb/Au@SiO2/Cu2O

CEA/CAb/Ag/g-C3N4
4 /GCE

Enhanced H2O2
reduction via

Cu2O/amperometry
3.8 fg/mL 1 × 10−5−80 ng/mL [100]

Anti-PSA
DAb/Au@Ag-Cu2O

PSA/CAb/
Au@N-GQDs/GCE

Enhanced H2O2
reduction via

Cu2O/amperometry
3 fg/mL 1 × 10−5−100 ng/mL [101]

Anti-cTnI DAb/N,S-
cGO/L-lys/AuNR@Pt

MBs/Thi 5

cTnI/CAb/
AuNR@PDA/GCE

Direct reduction of
Thi/ amperometry

and DPV
16.7 fg/mL 5 × 10−5–250 ng/mL [102]

Anti-CEA
DAb/Ag@CeO2

core-shell-Au NPs
CEA/CAb/AuNPs/GCE Ag-CeO2 direct

redox/CV & EIS 32 fg/mL 1 × 10−4–5 ng/mL [48]

Anti-CA125 DAb-TB/
Suc-CS@MNP 6

CA125/CAb/PAMAM 7

/AuNP-3D
RGO-MWCNT

Direct reduction of
TB/SWV 6 µU/mL 0.0005–75 U/mL [103]

Carbaryl
hapten@CuNP-CS

Carbaryl/CAb/
AuNP/GCE

Direct oxidation of
CuNPs after immuno-

competition/linear
sweep ASV

0.05 ng/mL 0.5–20.0 ng/mL [104]

Anti-CEA DAb/RGO/
Co3O4-Ag@ PDA CEA/CAb/AuNP/GCEs

Ag-Ag+ redox with
H2O2

enhancement/DPV
0.17 pg/mL 0.0005–80 ng/mL [49]

CdS nanocrystals/phage
Molinate/14D7

CAb/polyn-
itroaniline/GCE

CdS-Cd2+ with HCl
dissolution/square

wave ASV
34 pg/mL 0.1–10 ng/mL [105]

Anti-casein biotin-
CAb/Streptavidin/

CdSe/ZnS QDs

Bovine casein/Bovine
casein/Sb2O5-
SnO2/SPCEs

CdSe-Cd2+ after
immuno-competition

with HCl
dissolution/ASV

0.07 % (v/v)
0.1–10% (v/v) Cow’s
milk in ewe/goat’s

cheese
[106]

anti-HE4
CAb/CdSe/ZnS QDs

HE4 8

/DAb/MBs/Hg/SPCEs

CdSe-Cd2+ after
immuno-competition

with HCl
dissolution/ASV

2 pM 20–40 nM [107]

Anit-FABP DAb/CdS-
ZnO-MWCNTs

FABP/CAb/
CD-GS/GCE 9

CdS-Cd2+ with HNO3
dissolution/ASV

0.3 fg/mL 1.3–130 ng/mL [108]

1 HFA: human fetuin A; 2 LaOx: lactate oxidase; 3 MoS2 NFs/Au@AgPt YNCs: MoS2 nanoflowers/trimetallic
yolk-shell Au@AgPt nanocubes; 4 g-C3N4: graphitic carbon nitride; 5 Anti-cTnI/cGO/L-lys/Au@Pt MBs/Thi:
anti-cardiac troponin I/nitrogen/sulfur co-doped graphene oxide/L-lysine/Au nanorod@Pt core-shell multi-
branched nanoparticles/thionine; 6 TB/Suc-CS@MB; toluidine blue /O-succinyl-chitosan-magnetic nanoparticles;
7 PAMAM: polyamidoamine; 8 HE4: human epididymis protein 4; 9 FABP/CD-GS/: human heart-type fatty-acid-
binding protein/β-cyclodextrin-graphene sheets.

5. Other Trends and Challenges in Electrochemical Immunosensors

In recent years, new electrochemical immunosensors have not only focused on nano-
materials used in the fabrication of electrodes or labels but also on practical aspects, such
as low-cost, disposability and mass produced electrodes, antifouling for non-specific ad-
sorption, high surface nanocarriers, multi-targets detection in one sensing interface, and
microfluidic integration for rapid or high-throughput detection. We present some previous
studies as examples to elucidate the trends and challenges.
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(1) Although GCE is durable and frequently used for immunosensor construction, SPCEs,
possessing the benefits of low cost and ease of massive production, present great
promise to develop disposable immunosensors. The nanocarrier can be dripped on
the SPCEs as substrate for antibody immobilization. Wei et al. [110] synthesized
RGO/Prussian blue/core-shell Au@PtNPs as a nanocarrier for drop-coating SPCEs.
The anti-hepatitis B antibody could be directly adsorbed on the nanocarrier surface,
and the Prussian blue served as an electron-transfer mediator. After immunoreac-
tion with the hepatitis B surface antigen, the label-free LOD measured by DPV was
80 pg/mL. Furthermore, Malla et al. [111] fixed a magnet to the backside of SPCEs for
adsorbing HRP-CAb-modified MBs conjugated with parathyroid hormone antigen
and then performed the catalysis of H2O2 and hydroquinone with SWV detection to
obtain an LOD of 11.56 pg/mL. The drip-coating fixation or the magnetic adsorption
of CAb-modified nanocomposite carriers on SPCEs can simplify the preparation of
SPCE-based disposable immunosensors. Although SPCEs are prevailing in the devel-
opment of disposable point-of-care testing strips, the activation or the peroxidation
procedures of the SPCE surface still take up much time before use. Oxygen plasma
treatment is an alternative for mass production. Subsequently, a sealing package for
long-term storage is essential after plasma treatment.

(2) Preventing the effect of non-specific adsorption on label-free electrochemical im-
munosensors from versatile molecules of actual samples is an essential issue. An-
tifouling materials, such as poly(ethylene glycol) and zwitterionic polymers [112],
block the electrode surface to reduce non-specific adsorption. Wang and Hui elec-
trodeposited polyaniline nanowires on a GCE to produce a highly rough surface, and
photopolymerized zwitterionic poly(carboxybetaine methacrylate) (polyCBMA) on
the polyaniline nanowire to obtain a hierarchical structure. After chemical activation,
the anti-CEA antibody was covalently immobilized on polyCBMA without extra
surface blocking. The DPV-based immunosensors presented an ultralow LOD of
3.05 fg/mL and an impressive antifouling ability from cow’s milk, saliva, bovine fetal
serum, and human serum [113]. The modification technique of antibody and poly-
CBMA supplies promising potential for the antifouling treatment of immunosensors.

(3) Multiplexed detection in clinical diagnosis, agricultural pesticide/herbicide residue,
and environmental toxins has considerable importance due to their excellent analyti-
cal efficiency compared with parallel single-analyte assays. Two kinds of multiplexed
detecting strategies have been developed. One is to use different multi-detectors
placed on the same substrate. Serafín et al. [114] separated immobilized anti-tau
protein (tau) CAb and anti-TAR DNA-binding protein 43 (TDP-43) CAb on the two
3D-Au-PAMAM-modified working electrodes of the SPCEs. After sandwich im-
munoreaction, the HRP-conjugated DAb can quantify the tau and TDP-43 in raw
plasma samples by catalyzing the H2O2/hydroquinone reaction with amperometric
detection. Furthermore, Salahandish et al. [115] developed dual-immunosensors
for the label-free detection of SARS-CoV-2 nucleocapsid protein by EIS. The other
multiplexed technique uses biorecognition molecules, tagging different electroactive
mediators on the identical sensing interface. Shen et al. [116] tagged anthraquinone
on the VEGF-aptamer, methyl blue on the IFN-γ aptamer, and ferrocene on the TNF-
α-aptamer to achieve multiplex detection, respectively. The three kinds of aptamers
were biotinylated to immobilize them on the single streptavidin/GO/AuE. Then,
SWV was performed to obtain the redox signal of anthraquinone, methyl blue, and fer-
rocene at −0.45 V, −0.26 V, and 0.25 V before and after the label-free immunoreaction.
Compared to the single electrode immobilized by multi-CAbs, the multi-electrodes
with different CAb immobilization are easier to control the density of CAbs to obtain
better sensing properties.

(4) The immunosensors integrating fluidic transportation can promote immunoreac-
tion efficiency in shorter immunoreaction time and reduce detecting procedures.
Lin et al. [41] fabricated an impedimetric affinity sensing chip integrated with an AC
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electrokinetic flow vortex. The protein A-antibody affinity time can reach the plateau
in 8 min with AC electrokinetic flow. The corresponding EIS-Ret value of the affinity
plateau was 2.26 times larger than that obtained in an unstirred solution. Further-
more, the paper-based immunoassay becomes an exciting alternative for constructing
disposable, low-cost, and eco-friendly analytical devices due to flexibility, lightness,
capillary-driven flow, and affordability in an austere environment. Shu et al. [117]
utilized a paper-based electrochemical immunosensing device for the label-free detec-
tion of AFP. The Ni-Co MOF nanosheets were modified with CNT and streptavidin
and then coated onto a GR-printed working electrode for biotinylated CAb immobi-
lization. After immunoreaction with samples conducted through vertical flow, the
H2O2/hydroquinone mixture was dripped to produce a DPV signal via Ni-Co MOF
catalysis. Furthermore, Boonkaew et al. [118] constructed triple three-electrode SPCEs
in triple channels in an identical substrate to form multiplexed electrochemical paper-
based analytical devices (ePADs), as shown in Figure 10. Three kinds of antibodies
were respectively immobilized on the different GO/SPCEs to capture C-reactive pro-
tein (CRP), cardiac troponin I (cTnI), and procalcitonin (PCT) of the cardiovascular
disease biomarkers. After immunoreaction, the redox solution was dripped into the
central inlet and conducted to the sensing region via lateral flow for DPV detection.
The multiplexed ePADs can detect C-reactive protein, cTnI, and PCT with correspond-
ing LODs of 0.38 ng/mL, 0.16 pg/mL, and 0.27 pg/mL, respectively. The design
and fabrication of ePADs have promising potential in constructing a multiplexed
point-of-care testing device.
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6. Conclusions

This work reviews the articles related to the sensing strategies of electrochemical
immunosensors using nanomaterials. AuNPs, AuNS, CNTs, and GR-based nanomaterials
can be used in label-free immunosensors as the CAb-immobilization substrate to supply a
highly conductive and rough surface or a mediator-embedded interface. Potentiometry,
voltammetry, and EIS are suitable for label-free immunosensors. Furthermore, nanomate-
rials can be used as a carrier for the immobilization of DAb, catalyzers, redox mediators,
or soluble metal NPs, which act as a nanocomposite label in a sandwich or competitive
immunoreaction to amplify the signal of antigen–CAb conjugation. Amperometry and
voltammetry are frequently used to quantify the immunoreaction results. It is worth noting
that the combination of the soluble metal NP-modified nanocarrier and ASV detection can
produce the best sensitivity and lowest LOD.

Emerging techniques, including the cost-effective production of electrodes, antifoul-
ing treatment, multiplexed detection, disposable and environment-friendly paper-based
substrates, microfluidic integration, and miniature potentiostat chips, drive electrochemical
immunosensors to present versatile applications in practical fields. Moreover, the nano-
material characteristics of high roughness, good biocompatibility, electrocatalysis, and
excellent conductivity, can promote the emerging electrochemical immunosensors with
more distinguished sensing properties.
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