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Abstract: In photoacoustic (PA) imaging, tissue absorbs specific wavelengths of light. The absorbed
energy results in thermal expansion that generates ultrasound waves that are reconstructed into im‑
ages. Existing commercial PA imaging systems for preclinical brain imaging are limited by imprecise
positioning capabilities and inflexible user interfaces. We introduce a new visible charge‑coupled
device (CCD) camera‑guided photoacoustic imaging (ViCPAI) system that integrates an ultrasound
(US) transducer and adata acquisition platformwith aCCDcamera for positioning. TheCCDcamera
accurately positions the US probe at the measurement location. The programmable MATLAB‑based
platform has an intuitive user interface. In vitro carbon fiber and in vivo animal experiments were
performed to investigate the precise positioning and imaging capabilities of the ViCPAI system. We
demonstrated real‑time capturing of bilateral cerebral hemodynamic changes during (1) forelimb
electrical stimulation under normal conditions, (2) forelimb stimulation after right brain focal pho‑
tothrombotic ischemia (PTI) stroke, and (3) progression of KCl‑induced cortical spreading depres‑
sion (CSD). The ViCPAI system accurately located target areas and achieved reproducible position‑
ing, which is crucial in animal and clinical experiments. In animal experiments, the ViCPAI system
was used to investigate bilateral cerebral cortex responses to left forelimb electrical stimulation be‑
fore and after stroke, showing that the CBV and SO2 in the right primary somatosensory cortex of
the forelimb (S1FL) region were significantly changed by left forelimb electrical stimulation before
stroke. No CBV or SO2 changes were observed in the bilateral cortex in the S1FL area in response to
left forelimb electrical stimulation after stroke. While monitoring CSD progression, the ViCPAI sys‑
tem accurately locates the S1FL area and returns to the same position after the probe moves, demon‑
strating reproducible positioning and reducing positioning errors. The ViCPAI system utilizes the
real‑time precise positioning capability of CCD cameras to overcome various challenges in preclini‑
cal and clinical studies.

Keywords: photoacoustic (PA) imaging system; charged‑coupled device (CCD) camera;
photothrombotic ischemia (PTI); primary somatosensory cortex of the forelimb (S1FL); cerebral blood
volume (CBV); oxygen saturation (SO2); cortical spreading depression (CSD)

1. Introduction
A recentWorldHealthOrganization report noted that ischemic stroke is one of the top

three causes of death worldwide [1]. Approximately 5.5 million people died of ischemic
stroke in 2016, and approximately 116.4 million people suffered permanent disability af‑
ter a stroke event [2]. These mortalities and disabilities have substantial emotional and
economic impacts on families and society. Therefore, tools for understanding stroke or
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related cerebral diseases are indispensable for improving preclinical brain research. Com‑
monly used stroke imaging systems include computed tomography (CT), magnetic reso‑
nance imaging (MRI), and positron emission tomography (PET) [3]. CT imaging systems
use X‑rays to penetrate the human body to obtain image signals, which are processed by
a computer to obtain a three‑dimensional image that can be postprocessed by software to
form image information for various sections [4]. MRI scans employ powerful magnetic
fields and radio waves to excite hydrogen atoms in the human body and generate detailed
images of the interior of the human body, which are then processed by computers to obtain
three‑dimensional images and postprocessed by software to determine image information
in various sections [5]. PET systems use isotope drugs (positron agents) that emit positrons
and generate positrons by decay, which then collide with negatively charged electrons in
tissues, resulting in positron annihilation events that release energy [3]. The detector iden‑
tifies the energy released in both directions to form images [4].

According to previous reports, PET and MRI are commonly used in animal stroke
models to observe the neuroprotective effects of drugs or electrical stimulation [6–8]. Ex‑
isting diagnostic imaging instruments, such as CT and MRI, have accurate positioning
capabilities, which can improve image positioning [9,10]. Since PET has no positioning
capability, PET systems can be combined with medical imaging instruments such as CT
or MRI to assist in positioning. For instance, PET‑CT and PET‑MRI systems are helpful
for presenting and investigating images [11]. Precise positioning is an indispensable tech‑
nology in both human and animal imaging research [12]. In summary, CT, MRI, PET‑CT,
and PET‑MRI have localization capabilities and can be applied in lesion diagnoses, and
photoacoustic systems must have accurate localization capabilities.

In recent years, photoacoustic (PA) techniques have been widely used in both pre‑
clinical and clinical settings [13–15], including tumor imaging [16,17], dermatology imag‑
ing [18], vascular imaging, musculoskeletal imaging, gastrointestinal imaging [19], and fat
tissue imaging [20]. These PA imaging systems have emerged as powerful scientific re‑
search tools. PA imaging combines great spatial optical resolution with high acoustic pen‑
etration to develop multifunctional hybrid imaging systems that utilize optical absorption
to produce high‑contrast tissue images. Therefore, ultrasound (US)/PA imaging technol‑
ogy can provide researchers with functional and structural information about angiogen‑
esis, hemoglobin oxygen saturation [8,13,21,22], and total hemoglobin concentration [14].
Thus, based on these characteristics and advantages, PA imaging is a powerful tool in
stroke research.

Since the focal point of our PAprobe is 10mm, the probemust be very close to the sam‑
ple. For a probe without charge‑coupled device (CCD) guidance, precise positioning is dif‑
ficult to achieve. Therefore, we combined the CCD camera with a photoacoustic platform
to achieve precise positioning in animal experiments. Because the cranial window of the
rat is only approximately 6× 8 mm, the field of view is small and blocked by the PA probe
and corresponding optical components, increasing the difficulty of accurate positioning
when the skull is removed from the rat. In previous positioning methods, a metal needle
is placed on a water tank, and the PA probe is used to scan the position of the metal needle.
The strongest ultrasonic signal of the metal needle indicates the target location; then, the
metal needle is removed. However, this system obtains inaccurate positioning, possibly re‑
sulting in errors that may offset the scan position. Thus, to solve this positioning problem,
we combined a PA systemwith aCCDcamera andused theCCDcamera to obtain real‑time
images to identify the position of the PA system B‑scan and achieve precise positioning. To
assess the imaging capabilities of the designed visible CCD camera‑guided photoacoustic
imaging (ViCPAI) system and the positioning capabilities of the CCD camera, in vitro car‑
bon fiber and in vivo animal experiments were carried out. For the ViCPAI system, precise
and reproducible positioning are both critical. The position of the bregma is difficult to de‑
termine after the skull is removed, resulting in inaccurate positioning. Therefore, before
the skull is removed, we use the bregma as a base point and introduce twomarks in the pri‑
mary somatosensory cortex of the forelimb (S1FL) area (A‑P: +1 mm; M‑L: ±4 mm); then,
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we apply the ViCPAI system to locate the target site and record the scan coordinates. After
the skull is removed, the automated three‑axis system is used to move the PA probe to the
prerecorded coordinates, thereby achieving positioning and reproducible positioning.

Moreover, we used photochemicalmethods to induce photothrombotic ischemic (PTI)
stroke. In addition to affecting brain functions, stroke also changes the behavior of rats.
To observe changes after PTI stroke, the blood vessels in the S1FL region in the right hemi‑
spherewere investigated. Since the right S1FL region responds to left forelimb stimulation,
the left forelimb of the rat was electrically stimulated, and changes in the cerebral blood
volume (CBV) and oxygen saturation (SO2) in the S1FL region were monitored before and
after PTI stroke. Because precise positioning is needed in the brain, we used a CCD camera
to locate the S1FL area. The PA probe was guided to a specific location, and the changes
in the CBV and SO2 in the bilateral cortex after left forelimb electrical stimulation were
recorded. Then, the CCD camera was used to guide the PTI to specific blood vessels, and
the changes in the CBV and SO2 in the bilateral cortex before and after the stroke were
observed. Ischemic stroke causes depolarizing waves, similar to cortical spreading depres‑
sion (CSD), which is called peri‑infarct depolarization (PID), resulting in secondary dam‑
age to the brain [23]. To study this problem, we used photoacoustic imaging to observe
the CSD induced by KCl. In addition, the CBV and SO2 were investigated to understand
CSDprogression, which is a novel tool for studying peri‑infarct depolarization. Finally, we
verified that the developed ViCPAI system could be applied to observe CSD in brain cor‑
tical regions and monitor PID progression after stroke. Thus, our photoacoustic imaging
system is a novel and powerful tool for studying stroke and PID.

2. Materials and Methods
2.1. Fiber Bundle‑Based Illumination Dual‑Modality Real‑Time Visible CCD Camera‑Guided
Photoacoustic Imaging System

Figure 1A shows the developed ViCPAI system. The Nd:YAG laser system used in
the PA system incorporates an adjustable optical parametric oscillator (OPO; SpitLight 600,
InnoLas Laser GmbH, Krailling, Germany) that produces light wavelengths ranging from
680 nm to 2400 nm. The OPO generates approximately 7 ns pulses at a 20 Hz repetition
rate. The system included an 18.5 MHz high‑frequency planar ultrasonic probe (L22‑14v,
Verasonics Inc., Washington, DC, USA)with a 128‑channel US platform (Vantage 128, Vera‑
sonics Inc., Washington, DC, USA) that received PA signals and transmitted and received
US signals. The US transducer has 1286 mm active elements, and a −6 dB fractional
bandwidth of 67%. This probe was combined with a CCD camera and a Sony IMX219
8‑megapixel sensor (Raspberry Pi camera V2, Raspberry Pi Foundation, Cambridge, UK).
The sensorwas 3.674× 2.760mm (1/4″ format) and capable of producing 3280× 2464‑pixel
static images. The CCD camera was mounted inside a 3D printed base, and a 3D printed
holder was used to combine the US transducer and CCD camera, as shown in Figure 1.
The CCD camera is used to obtain images and to precisely position the US transducer in
the desired region of interest (ROI).

The entire PA/US system was implemented using custom‑developed MATLAB soft‑
ware (MATLAB R2020a, MathWorks Inc., Natick, MA, USA). The movement of the scan‑
ning position was controlled using an in‑house scanning stage. Piezoelectric motors (LMR
Liner Motor Rob, Toyo Automation Co., Ltd., Tainan, Taiwan) drove the x‑ and y‑axes,
and the z‑axis was motorized and adjusted by a three‑axis platform (Sigma‑koki Co., Ltd.,
Tokyo, Japan). The acoustic waves received by the PA probewere processed at a frame rate
of 20 frames per second to reconstruct images on a computer screen. In PA imaging mode,
the energy density of the laser light in the sample surfacewas approximately 12~14mJ/cm2,
which is considerably less than the safety limit (20 mJ/cm2) determined by the American
National Standards Institute (ANSI) [14].
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Figure 1. Schematic diagram of the developed dual‑modality ViCPAI system with a laser‑induced
stroke system. (A) Illustration of the proposed ViCPAI system. The laser light source was a Nd:YAG
laser with an integrated tunable OPOwith light wavelengths ranging from 680 to 2400 nm. The OPO
produced approximately 7 ns pulses at a 20 Hz repetition rate. The system included an 18.5 MHz
high‑frequency planar US probe with 128 channels. The probe received PA signals and transmit‑
ted and received US signals. (B) The system included an 18.5 MHz high‑frequency planar ultra‑
sonic probe with a 128‑channel US platform for data acquisition. The US transducer had 1286 mm
active elements and a −6 dB fractional bandwidth of 67%. The system could receive PA signals
and transmit and receive US signals. The components were fixed on the same in‑house scanning
stage using a 3D‑printed holder. (C) The PA probe was combined with a CCD camera, and a Sony
IMX219 8‑megapixel sensor was used as a positioning tool to obtain real‑time images. The sensor
was 3.674 × 2.760 mm (1/4″ format) and had a 3280 × 2464‑pixel resolution for static images. The
CCD camera was mounted inside the 3D‑printed carrier, and a 3D‑printed holder was used to com‑
bine the US transducer with the CCD camera carrier. The CCD camera obtained real‑time images
and aided in precisely positioning the US transducer in the desired ROI. Then, the CW laser‑induced
PTI stroke and neurovascular activity were observed. (Abbreviations: US, ultrasound; PA, photoa‑
coustic; Nd:YAG, neodymium‑doped yttrium aluminum garnet; OPO, optical parametric oscillator;
TR, transducer).

A photograph of the developed PA probe and CCD camera system is shown in
Figure 1B. The two components were fixed on the same in‑house scanning stage by a 3D‑
printed holder [13,21]. The PA probe fiber bundles had rectangular output ends andmetal
circular input ends [24]. The acrylic water tank’s bottom had a rectangular cutout that was
used as an acoustic window to connect the PA probe to the sample. To ensure that water
did not leak from the cutout, the cutout was covered with a polyethylene film. A layer of
ultrasonic (US) gel was placed between the surface of the specimen and the polyethylene
filmwhen the PA probewas submerged in thewater tank. The axial and lateral resolutions
of the developed PA systemweremeasured by scanning a carbon fiber at a depth of 10mm
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and finding the full width at half maximum (FWHM). Our ViCPAI system had the axial
and lateral resolutions of 124 and 213 µm, respectively [21].

2.2. Preparation of the Craniotomy Animal Model
All procedures were performed in accordance with the Institutional Animal Care

and Use Committee (IACUC) of the National Health Research Institute (NHRI), Taiwan
(IACUCprotocol number: NHRI‑IACUC‑107100‑A, NHRI‑IACUC‑111023‑A). All animals
were maintained in a 12 h light/dark cycle at a constant temperature and humidity, and all
animals had unrestricted access to food and water. To compare the hemodynamic effects
and SO2 changes in the bilateral cortex of the S1FL area before and after PTI stroke induced
by electrical stimulation, 21 male adult Sprague Dawley (SD) rats (BioLASCO Taiwan Co.,
Ltd., Taipei, Taiwan) (total n = 21) weighing between 250 and 350 g were used in three
experiments: an electrical stimulation and PTI stroke experiment (n = 5), a 2,3,5‑triphenyl
tetrazolium chloride (TTC) experiment (control group n = 5, PTI group n = 5), and a KCl‑
induced CSD experiment (saline group n = 3, KCl group n = 3). The rats were anesthetized
with 1–3% isoflurane (Panion & BF Biotech Inc., Taipei, Taiwan) in oxygen and secured
on a stereotaxic frame (Stoelting Co., Wood Dale, IL, USA). Then, each skull was exposed
through an incision in the skin. A high‑speed drill was applied to expose an approximately
6 mm anterior‑posterior (A‑P) by 8 mm medial‑lateral (M‑L) cranial window centered at
the bregma to keep the dura intact for craniotomy.

2.3. Electrical Stimulation and PTI Stroke Protocols for PA Imaging
Electrical stimulation and PTI stroke were considered in the PA imaging experiment

(total n = 5). For PA electrical stimulation data collection, somatosensory evoked potential
(SSEP) was induced via a stimulator (Isolated pulse stimulator model 2100, A‑M Systems
Inc., Sequim,WA,USA) to generate amonophasic constant currentwith a 3ms pulsewidth,
a 10 mA intensity, and a 5 Hz frequency during the 5 min stimulation period. The needle
electrodes were implanted into the rat’s left forelimb, and peripheral sensory electrical
stimulation was administered to elicit neurovascular responses in the ischemic cortical re‑
gion of the primary somatosensory cortex (S1FL). The stimulation was applied for 5 min.
A schematic of the PA imaging system is shown in Figure 2A. Briefly, PA signals were
recorded for 30 min, with the 5 min before electrical stimulation was applied serving as
a baseline for calculations. As shown in Figure 2B, PA signals were recorded before and
after PTI stroke. The PTI‑induced stroke persisted for 30 min, which was followed by TTC
staining 24 h after PTI stroke [25,26].

For PTI stroke PA data collection, the vascular response (changes in SO2) before and
after ischemic stroke induction was compared to determine whether neural function was
impaired or improved after treatment. The hemodynamic changes were identified by ob‑
serving changes in the PA800 signal. In addition, the PA system was applied to assess
neurovascular responses to peripheral sensory stimulation after stroke induction.

2.4. The Positioning of the ViCPAI System In Vitro and In Vivo
First, we calibrated the positions of the ultrasonic probe and CCD camera to deter‑

mine their relative coordinates before positioning. We prepared the water tank, placed a
metal needle that was sensitive to ultrasound in the tank, and directed the CCD camera
at the metal needle. The images obtained by the CCD camera were sent to a computer in
real time. We used MATLAB to display a blue line in the center of the CCD camera screen,
as shown in Figure 3A. We aligned the center point of the “王” symbol in the CCD image
with the metal needle, which was placed horizontally in the water tank, and used the au‑
tomated three‑axis system to set the coordinates of this position as X = 0 µm and Y = 0 µm.
Then, the ultrasonic probe was moved to the position of the metal needle, and ultrasonic
probe signals were obtained in real time. The signal strengthwas used as a judgment basis,
and the three‑axis system was used to adjust the probe to the center of the screen and the
position where the signal was the largest. Then, the three‑axis system was used to record
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the current coordinates of the ultrasonic probe. The coordinates were X =−65,000 µm and
Y = 9300 µm. Therefore, we can obtain the origin coordinates based on the CCD camera
results and the relative coordinates based on the ultrasonic probe results. As long as the
device is not moved, the system does not need to be recalibrated.
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Figure 2. Protocols for electrical left forelimb stimulation and US/PA scans of selected blood vessel
and S1FL regions. (A) PA signals were collected for 30 min. The first 300 s was used to determine
the baseline level. Then, a constant 10 mA electrical stimulation with a pulse width of 3 ms was
provided at a frequency of 5 Hz for 300 s. (B) Experimental protocol timeline for PTI and electrical
stimulation experiments. ScanningUS and PA imageswere obtained in the S1FL region of rats before
PTI stroke, and electrical stimulationwas applied to observeCBVand SO2 changes in the S1FL region.
The baseline was collected for 5 min, followed by electrical stimulation for 5 min, and signals were
collected for 20 min after the end of the electrical stimulation. Thirty minutes after PTI‑induced
stroke, the ViCPAI system was used to collect PA signals in the S1FL region to observe the changes
induced by electrical stimulation. After 24 h, TTCwas used to observe the infarct size after PTI stroke.

In the in vitro experiment, after the carbon fiberwas arranged, we used a CCD camera
to align the center point of the “王” symbol on the screen with the carbon fiber, as shown
in Figure 3A. Then, we input the relative coordinates of the calibrated probe into the three‑
axis system, controlled the probe tomove to the appropriate coordinates, and activated the
ultrasonic probe to collect carbon fiber signals at this position, as shown in Figure 3B. In
the in vivo experiment, we used a CCD camera to locate the S1FL area in a rat and aligned
the line in the center of the “王” symbol on the screen with the skull on both sides of the
rat to mark the S1FL area in advance, as shown in Figure 3C. We set these coordinates
to X = 0 µm and Y = 0 µm, input the relative coordinates of the calibrated probe into the
three‑axis system, controlled the probe to move to the appropriate coordinates, and used
multiple wavelengths (750 nm, 800 nm, and 850 nm) to scan the rat brain. The CBVwas de‑
termined with the 800 nm wavelength, as shown in Figure 3D. The SO2 concentration was
determined with the 750 nm and 850 nm wavelengths; the oxyhemoglobin (HbO) and de‑
oxyhemoglobin (Hb) concentrations were converted to obtain the blood oxygen saturation
concentration, as shown in Figure 3E. The detailed conversion formula is introduced later.
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Figure 3. The positioning capability of the CCD camera was used to obtain the PA/US signals of
rats after craniotomy and analyze the CBV and SO2 values. (A) CCD camera view showing a pho‑
tograph of a carbon fiber sample. The blue lines serve as scale bars and position markers to aid in
positioning the US transducer. The four blue lines represent 10mm in length. (B) Three‑dimensional
reconstruction of a US carbon fiber image (scale bar: 2 mm). (C) Positioning of the CCD camera on
the brain of a rat after craniotomy. The scan area of +1 mm in the bregma is shown with the red
dotted line. The yellow frame indicates the PTI site for the PTI‑induced stroke, and the red frame
denotes the S1FL region (scale bar: 2 mm). (D) The US/PA CBV results of a rat after craniotomy. The
scan region is indicated by the red dotted line (scale bar: 1 mm). (E) The US/PA or SO2 results of
a rat after craniotomy (scale bar: 1 mm). (Abbreviations: US, ultrasound; PA, photoacoustic; S1FL,
primary somatosensory cortex of the forelimb; PTI, photothrombotic ischemia; CBV, cerebral blood
volume; CS, C‑scan).

2.5. Determining Blood Oxygen Saturation According to the PA Signals
PAdatawere acquired at the absorptionwavelengths dominated bydeoxyhemoglobin

(λ = 750 nm) and oxyhemoglobin (λ = 850 nm). The hemoglobin oxygen saturation (SO2)
was calculated as follows:

µλ
a = ελHbO[HbO] + ελHb[Hb] (1)

where [Hb] and [HbO] are the concentrations of deoxyhemoglobin and oxyhemoglobin,
respectively; ελHb and ελHbO are the molar extinction coefficients; and µλ

a is the PA sig‑
nal [27,28]. The following equation relates the optical absorption coefficient to the acous‑
tic pressure:

µλ
a =

P
ΓF

(2)
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where P is the acoustic pressure, Γ is the Grüneisen coefficient, and F is the optical flu‑
ence. Then, the following equation can be used to determine SO2 according to [Hb] and
[HbO] [8,21,22,24]:

SO2 =
[HbO]

[HbO] + [Hb]
(3)

2.6. An Animal Stroke Model of Photothrombotic Ischemia (PTI) for Focal Ischemic
Stroke Induction

Cerebral arterioles in a distal branch of the middle cerebral artery (MCA) in the right
S1FL areawere targeted in a focal ischemic strokemodel using a photothrombotic ischemia
technique [22]. The photosensitizer Rose Bengal (Sigma Aldrich, St. Louis, MO, USA)
was prepared at 10 mg/mL in saline and infused via tail vein injection [29]. The cerebral
arteriole was chosen for obstruction using a 5 mW continuous wave (CW) laser at 532 nm
and was illuminated for 30 min until a stabilized thrombus formed [30].

2.7. KCl‑Induced CSD
The KCl‑induced CSD experiment included two groups (total n = 6): a saline group

(n = 3) and the KCl group (n = 3). A 6 mm anterior‑posterior (A‑P) × 8 mm medial‑lateral
(M‑L) window centered on the bregmawasmade in the rat cranial window, and a hole was
created in the skull (A‑P = −5.0 mm, M‑L = +3.0 mm) to apply 0.9% saline (Taiwan Biotech
Co., Ltd., Taoyuan, Taiwan) or 4MKCl (PotassiumChloride, Crystal, Avantor Inc., Radnor,
PA, USA) dissolved in ddH2O [31]. Before the start of the experiment, we embedded cotton
and PE tubes in the hole and connected a 26 G needle with a syringe containing saline or
4 M KCl to the other end of the PE tube. First, to ensure that the ultrasonic probe did not
scan outside the desired range, the CCD camera‑guided PA system was used for precise
positioning, and the baseline was scanned with a wavelength of 800 nm for 5 min. Then,
saline or 4 M KCl was slowly injected into the hole, and the region was scanned with the
same 800 nm wavelength for 40 min.

2.8. TTC Staining
TTC (2,3,5‑triphenyl tetrazolium chloride; T8877‑25G, Sigma Aldrich, St. Louis, MO,

USA) stainingwas used to quantify the brain infarction. In addition, we used a TTC control
group (n = 5) and compared the infarct changes with those in the PTI stroke group (n = 5).
Twenty‑four hours after effective PTI introduction, the brains were sliced and incubated
with 2% TTC for 20 min in the dark [32]. ImageJ software (v.1.53, National Institutes of
Health, Bethesda,MD,USA)was used to evaluate the size of the ischemic infarction and the
integrated volume. When stained with TTC, healthy tissue becomes red, while damaged
tissue remains white.

2.9. Experimental Data Quantitative Analysis Method
In the PA electrical stimulation experiments, hemodynamic changeswere determined

by observing changes in the PA800 signals using an 800 nmwavelength laser. PA data were
acquired at the absorption wavelengths dominated by deoxyhemoglobin (λ = 750 nm) and
oxyhemoglobin (λ = 850 nm). By calculating the changes in the PA signals with wave‑
lengths of 750 nm and 850 nm, the relative blood oxygen saturation information can be
obtained. In the equation µλ

a = ελHbO[HbO] + ελHb[Hb], the [HbO] and [Hb] concentra‑
tions can be obtained by substituting the photoacoustic signal (µλ

a ) and molar extinction
coefficients (ελHbO and ελHb) into the formula and then using the SO2 = [HbO]

[HbO]+[Hb] formula,
allowing us to determine the SO2 value.

Since the laser in the PA system is affected by the temperature and humidity of the
environment, it is quite difficult to keep it constant. Therefore, we added a laser energy
sampling mirror to the laser system, sent the monitored energy to the PC for energy moni‑
toring and sampling, and included the change in the laser energy in the formula for SO2 to
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reduce the influence of the energy change on SO2. The PA energy compensation formula
is as follows [33]:

µλ
a (λ750) =

P
ΓF750

= F750·ελHbO[HbO] + ελHb[Hb] (4)

µλ
a (λ850) =

P
ΓF850

= F850·ελHbO[HbO] + ελHb[Hb] (5)

where F750 is the laser energy intensity of λ750 and F850 is the laser energy intensity of
λ850. A more accurate SO2 value could be obtained after a substitution into the formula.
The [HbO] and [Hb] concentrations could be obtained by substituting the PA signal (µλ

a )
and the molar extinction coefficients (ελHbO and ελHb) into the formula and then using the
SO2 = [HbO]

[HbO]+[Hb] formula, allowing us to determine the SO2 value after energy compen‑
sation. Then, the scan results in the S1FL region allowed us to determine the average
PA800 intensity and a relative blood oxygen saturation in this region. The largest S1FL
area was approximately A‑P + 1.0 mm and M‑L + 3.0 to +5.0 mm in the bregma [14]. Then,
PTI stroke was induced, and the changes in PA800 (i.e., CBV) intensity and relative blood
oxygen saturation over time before and after PTI stroke were observed. The CBV signal
and SO2 values were analyzed each minute. Then, the CBV signal and SO2 values at each
minute were averaged during the baseline, electrical stimulation, and post‑electrical stim‑
ulation measurements. Moreover, one‑way ANOVA was used in statistical analyses, and
a p‑value < 0.05 was regarded as statistically significant in this work.

We identified changes in theCBVandSO2 values before and after PTI stroke in specific
blood vessels. Then, the ROI in the S1FL region was circled, and quantitative analyses
were performed. In the quantitative analyses, we obtained images and data from five rats
before and after stroke. The data were used in statistical analyses, and p < 0.05 represents
a significant difference in the t‑tests.

3. Results
3.1. Obtained Significant Changes in CBV and SO2 after PTI Stroke through the Developed
US/PA Imaging System

First, to test the application of the developed PA system in stroke research, we in‑
duced PTI stroke in a particular blood vessel and observed the changes in the CBV and
SO2. After PTI stroke in the right brain, the CBV (p < 0.05) and SO2 (p < 0.05) in the right
brain area showed significant downward trends. The changes before and after stroke were
clearly obtained; thus, our proposed system can be used as a powerful tool for studying
stroke. Figure 4A shows white‑light images of the rat cranial window before and after
stroke. Figure 4B presents photoacoustic images of the CBV before stroke. Figure 4C
shows photoacoustic images of the SO2 concentration before stroke. Figure 4D provides
photoacoustic images of the CBV after stroke. Figure 4E shows photoacoustic images of
the SO2 concentration after stroke. Then, photoacoustic imaging signals of the CBV before
and after stroke were quantified. The left hemisphere CBV was not significantly differ‑
ent after stroke. However, in the right hemisphere, the CBV was 0.44 ± 0.02 before PTI
stroke, and after PTI stroke, the CBV was significantly decreased to 0.26 ± 0.13, as shown
in Figure 4F. A significant difference (p < 0.05, t‑test) is shown by the symbol “*”. The
data are shown as the mean ± SEM, and each group included five members. Moreover,
the SO2 photoacoustic imaging signals were quantified before and after stroke. The SO2
levels in the left hemisphere were not significantly different after stroke. However, in the
right hemisphere, SO2 was 70% ± 6.9% before PTI stroke, and after PTI stroke, the SO2
concentration was significantly decreased to 37% ± 2.0%, as shown in Figure 4G. A sig‑
nificant difference (p < 0.05, t‑test) is shown by the symbol “*”. The data are shown as the
mean ± SEM, and each group included five members.
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Figure 4. The CBV and SO2 values changed before and after PTI strokes in the selected blood vessels.
(A) White‑light images of the rat cranial window before and after stroke. The white frame indicates
the laser‑induced site for PTI stroke. The yellow frame indicates the scan area in the left hemisphere
of the rat (including the S1FL area), and the red frame indicates the scan area in the right hemisphere
of the rat (including the S1FL area). (B) Photoacoustic imaging of CBV before stroke. The white
frame indicates the laser‑induced site for PTI stroke. The yellow frame denotes the scan area in the
left hemisphere of the rat (including the S1FL area), and the red frame represents the scan area in
the right hemisphere of the rat (including the S1FL area). (C) Photoacoustic imaging of SO2 before
stroke. The white frame denotes the laser‑induced site for PTI stroke. The yellow frame is the scan
area in the left hemisphere of the rat (including the S1FL area), and the red frame is the scan area in
the right hemisphere of the rat (including the S1FL area). (D) Photoacoustic imaging of CBV after
stroke. The white frame is the laser‑induced site for PTI stroke. The yellow frame is the scan area
in the left hemisphere of the rat (including the S1FL area), and the red frame is the scan area in the
right hemisphere of the rat (including the S1FL area). (E) Photoacoustic imaging of SO2 after stroke.
The white frame is the laser‑induced site for PTI stroke. The yellow frame is the scan area in the
left hemisphere of the rat (including the S1FL area), and the red frame is the scan area in the right
hemisphere of the rat (including the S1FL area). (F) Quantifying CBV photoacoustic imaging signals
before and after stroke. The CBV in the left hemisphere showed no significant difference after stroke.
In the right hemisphere, the CBV was 0.44 ± 0.02 before PTI stroke and significantly decreased to
0.26± 0.13 after PTI stroke. A significant difference (p < 0.05, t‑test) is shown by the symbol “*”. The
data are shown as the mean ± SEM, and there are 5 members in each group. (G) Quantifying SO2
photoacoustic imaging signals before and after stroke. The SO2 levels in the left hemispherewere not
significantly different after stroke. In the right hemisphere, SO2 was 70% ± 6.9% before PTI stroke
and significantly decreased to 37% ± 2.0% after PTI stroke. A significant difference (p < 0.05, t‑test)
is shown by the symbol “*”. The data are shown as the mean ± SEM, and there are 5 members in
each group.

3.2. The Bilateral Cortex Changed in Response to Electrical Stimulation before Stroke
After electrical stimulation of the left forelimb and before stroke, the CBV and rel‑

ative SO2 in the S1FL area of the right brain increased due to electrical stimulation, as
shown in Figures 5A and 6A. The CBV increased from 0.55 ± 0.085 to 0.79 ± 0.036, and
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after the end of electrical stimulation, the CBV decreased from 0.79 ± 0.036 to 0.57 ± 0.05,
as shown in Figure 5B,C, while the relative SO2 level increased from 66.66% ± 0.577% to
85.33% ± 4.041% in response to electrical stimulation and decreased to 66.67% ± 3.786%
after electrical stimulation, as shown in Figure 6B,C. The results show that during electri‑
cal stimulation of the left forelimb, the CBV and relative SO2 in the brain both increased
significantly. Moreover, the CBV in the left S1FL region increased from 0.538 ± 0.074 to
0.578 ± 0.072 during electrical stimulation and decreased to 0.518 ± 0.025 after electrical
stimulation. Figure 5D,E show that the relative SO2 level increased from 66.0% ± 5.196%
to 68.66% ± 3.786% during electrical stimulation and decreased to 65.0% ± 6.557% after
electrical stimulation. However, as shown in Figure 6D,E, this change was not significant.
Thus, the results indicate that the right S1FL area responded to electrical stimulation of the
left forelimb, enhancing the changes in neurovascular function, while the left brainwas not
affected by electrical stimulation of the left forelimb, with no significant changes observed.

3.3. The Bilateral Cortex Changed in Response to Electrical Stimulation after Stroke
After focal stroke in rats, wemonitored the changes in the CBV and relative SO2 levels

in the S1FL area of the rat bilateral cortex in response to electrical stimulation of the left
forelimb, as shown in Figures 7A and 8A. After stroke, the CBV in the right brain increased
slightly from 0.337 ± 0.021 to 0.375 ± 0.029 during electrical stimulation, then decreased
to 0.36± 0.01, as shown in Figure 7B,C. Moreover, the relative SO2 level increased slightly
from 45.66% ± 11.846% to 48.24% ± 11.183% in response to electrical stimulation, then
decreased to 44.95% ± 10.954% after electrical stimulation, as shown in Figure 8B,C. The
changes in the CBV and relative SO2 levels were not significant. In addition, after stroke,
the CBV in the left brain increased slightly from 0.523 ± 0.128 to 0.572 ± 0.135 during
electrical stimulation, then decreased to 0.457 ± 0.204, as shown in Figure 7D,E. The rela‑
tive SO2 level increased slightly from 58.0% ± 13.021% to 60.33% ± 12.055% in response
to electrical stimulation, then decreased to 55.21% ± 15.395% after electrical stimulation,
as shown in Figure 8D,E. The results show that the right S1FL region did not respond to
electrical stimulation of the left forelimb after stroke. Thus, focal stroke caused neurovas‑
cular damage in the rat brain, with the CBV and relative SO2 levels in the left brain before
and after stroke and during electrical stimulation remaining essentially constant, with no
significant changes.

3.4. Quantification of the Infarct Volume after PTI Stroke
Twenty‑four hours after PTI, brain sections were stained with TTC, and the infarct

volume was quantitatively analyzed. An example image of TTC staining is shown in
Figure 9B. When stained with TTC, healthy tissue becomes red, while damaged tissue
remains white. Compared with the control group, the PTI stroke group had a significant
difference in infarct size. The PTI core position was 0 mm, and the average infarction
area reached up to 6.8% ± 0.335%, as shown in Figure 9C. The data are shown as the
mean ± SEM, and each group included five members.

3.5. KCl‑Induced CSD Can Be Monitored by the ViCPAI System
The ViCPAI system was used to guide the PA probe to the target position, and then

saline or KClwas used to observe CSD progression. Figure 10A shows that no CSDwas ob‑
served in the left hemisphere after saline injection in the right‑hemisphere cranial foramen.
Figure 10B indicates that no CSD was observed in the left hemisphere after KCl injection
into the skull hole in the right hemisphere. Figure 10C demonstrates that as expected, CSD
was not observed in either hemisphere, and the changes were not statistically significant.
Figure 10D shows that no CSD was observed in the right hemisphere after saline injection
into the skull hole in the right hemisphere. Figure 10E shows CSD progression in the right
hemisphere after KCl injection into the skull hole in the right hemisphere. According to
the statistical results, the KCl injection increased CSD by 4 ± 0.577 times on average, with
a significant difference compared with the saline group, as shown in Figure 10F. A signif‑
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icant difference (p < 0.05, t‑test) is shown by the symbol “*”. The data are shown as the
mean ± SEM, and each group included five members. Figure 10G shows that no CSD
was observed in the right hemisphere after saline injection into the skull hole in the right
hemisphere. Figure 10H demonstrates CSD progression in the right hemisphere after KCl
injection into the skull hole in the right hemisphere. According to the statistical results, the
KCl injection increased CSD by 5 ± 1.528 times on average, with a significant difference
compared with the saline group, as shown in Figure 10I. A significant difference (p < 0.05,
t‑test) is shown by the symbol “*”. The data are shown as themean± SEM, and each group
included three members.
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Figure 5. The CBV response in the bilateral cortex to electrical stimulation before stroke. (A) The
CBV response in the bilateral cortex during 1, 6, 8, 10, 20, and 30 min of electrical stimulation. The
left hemisphere of the rat is represented by the orange frame, and the right hemisphere is represented
by the red frame, both of which show the S1FL region. (B) The CBV trend diagram in the right S1FL
region in response to left forelimb electrical stimulation. The yellow frame indicates electrical stim‑
ulation. (C) The quantification of CBV in the right S1FL region in response to electrical stimulation
of the left forelimb. The baseline was 0.56 ± 0.04 before electrical stimulation. The CBV in the right
S1FL region increased significantly to 0.78 ± 0.01 during electrical stimulation. After electrical stim‑
ulation, the CBV decreased significantly to 0.58± 0.01, which is similar to the baseline. A significant
difference (p < 0.05, t‑test) is shown by the symbol “*”. The data are shown as the mean ± SEM, and
there are 5 members in each group. (D) The CBV trend diagram in the left S1FL region in response to
electrical stimulation of the left forelimb. The yellow frame indicates electrical stimulation. (E) The
quantification of CBV in the left S1FL region in response to electrical stimulation of the left forelimb.
The CBV in the left S1FL region showed no significant changes in response to electrical stimulation,
with values of 0.50± 0.01, 0.52± 0.01, and 0.49± 0.01 before, during, and after electrical stimulation,
respectively. The data are shown as the mean ± SEM, and there are 5 members in each group.
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Figure 6. The SO2 response in the bilateral cortex to electrical stimulation before stroke. (A) The
SO2 response in the bilateral cortex during 1, 6, 8, 10, 20, and 30 min of electrical stimulation. The
left hemisphere of the rat is represented by the white frame, and the right hemisphere is represented
by the yellow frame, both of which show the S1FL region. (B) The SO2 trend diagram in the right
S1FL region in response to electrical stimulation of the left forelimb. The yellow frame indicates
electrical stimulation. (C) The quantification of SO2 in the right S1FL region in response to electrical
stimulation of the left forelimb. The baseline was 64% ± 0.1% before electrical stimulation. The SO2
level in the right S1FL region increased significantly to 82% ± 2.4% during electrical stimulation.
After electrical stimulation, the SO2 level decreased significantly to 65% ± 0.1%, which is similar
to the baseline. A significant difference (p < 0.05, t‑test) is shown by the symbol “*”. The data are
shown as themean± SEM, and there are 5members in each group. (D) The SO2 trend in the left S1FL
region in response to electrical stimulation of the left forelimb. The yellow frame indicates electrical
stimulation. (E) The quantification of SO2 in the left S1FL region in response to electrical stimulation
of the left forelimb. The SO2 in the left S1FL region showed no significant changes in response to
electrical stimulation, with values of 63% ± 2%, 65% ± 1%, and 62% ± 3% before, during, and after
electrical stimulation, respectively. The data are shown as themean± SEM, and there are 5members
in each group.
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Figure 7. The CBV response in the bilateral cortex in response to electrical stimulation after stroke.
(A) The CBV response in the bilateral cortex during 1, 6, 8, 10, 20, and 30 min of electrical stimula‑
tion. The left hemisphere of the rat is represented by the orange frame, and the right hemisphere
is represented by the red frame, both of which show the S1FL region. (B) The CBV trend diagram
in the right S1FL region in response to electrical stimulation of the left forelimb. The yellow frame
indicates electrical stimulation. (C) The quantification of CBV in the right S1FL region in response
to electrical stimulation of the left forelimb. The CBV in the right S1FL region showed no significant
changes in response to electrical stimulation after PTI stroke, with values of 0.35 ± 0.01, 0.39 ± 0.02,
and 0.37 ± 0.01 before, during, and after electrical stimulation, respectively. The data are shown
as the mean ± SEM, and there are 5 members in each group. (D) The CBV trend diagram in the
left S1FL region in response to electrical stimulation of the left forelimb. The yellow frame indicates
electrical stimulation. (E) The quantification of CBV in the left S1FL region in response to electrical
stimulation of the left forelimb. The CBV in the left S1FL region showed no significant changes in
response to electrical stimulation, with values of 0.52 ± 0.11, 0.58 ± 0.12, and 0.45 ± 0.21 before,
during, and after electrical stimulation, respectively. The data are shown as the mean ± SEM, and
there are 5 members in each group.
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Figure 8. The SO2 response in the bilateral cortex to electrical stimulation after stroke. (A) The SO2
response in the bilateral cortex during 1, 6, 8, 10, 20, and 30 min of electrical stimulation. The left
hemisphere of the rat is represented by the white frame, and the right hemisphere is represented
by the yellow frame, both of which show the S1FL region. (B) The SO2 trend diagram in the right
S1FL region in response to electrical stimulation of the left forelimb. The yellow frame indicates
electrical stimulation. (C) The quantification of SO2 in the right S1FL region in response to electrical
stimulation of the left forelimb. The SO2 in the right S1FL region showed no significant changes
in response to electrical stimulation after PTI stroke, with values of 42% ± 5.3%, 44% ± 5.1%, and
41% ± 5.8% before, during, and after electrical stimulation, respectively. The data are shown as the
mean ± SEM, and there are 5 members in each group. (D) The SO2 trend diagram in the left S1FL
region in response to electrical stimulation of the left forelimb. The yellow frame indicates electrical
stimulation. (E) The quantification of SO2 in the left S1FL region in response to electrical stimulation
of the left forelimb. The SO2 in the left S1FL region showed no significant changes in response to
electrical stimulation, with values of 58% ± 7.3%, 59% ± 7.1%, and 56% ± 8.1% before, during, and
after electrical stimulation, respectively. The data are shown as the mean ± SEM, and there are
5 members in each group.
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Figure 9. The size of cerebral infarction after stroke was observed by TTC staining. (A) The protocol for TTC staining. The control group was subjected to TTC
staining 24 h after saline injection. The PTI group was subjected to TTC staining 24 h after injecting rose bengal to induce PTI stroke for 30 min. (B) TTC staining
showed that the control group had no infarct after sham PTI stroke. Twenty‑four hours after PTI stroke, TTC staining showed infarcts with white areas. Infarcts
appear within +2 mm and −2 mm of the PTI site, with the black frames indicating infarct areas. (C) Compared with the control group (black line), the PTI stroke
group (red line) had a significant difference in terms of infarct size. Infarcts were observed within +2 mm and −2 mm of the PTI site, while the PTI core position
was 0 mm, and the average infarction area reached up to 6.8% ± 0.335%, which was significantly different than the control group. A significant difference (p < 0.05,
t‑test) is shown by the symbol “*”. The data are shown as the mean ± SEM, and there are 5 members in each group.
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ent tools [11], such as PET-CT and PET-MRI. These systems can precisely target tissue, 
allowing researchers to determine appropriate treatments [35]. However, in this study, 
we required instruments that are suitable for small animal experiments with precise 

Figure 10. KCl‑induced CSD can be monitored by the ViCPAI system. (A,B) After saline and KCl
injection, respectively, into the skull hole in the right hemisphere, no CSD progression was observed
in the left hemisphere. (C,D) After saline and KCl injection, respectively, into the skull hole in the
right hemisphere, no CSD progression was observed in the right hemisphere after treatment with
saline, while CSD progression was observed in the right hemisphere after KCl treatment (the red ar‑
rows represent CSD numbers). (E,F) After saline and KCl injection, respectively, into the skull hole
in the right hemisphere, no CSD progression was observed in the SSS after treatment with saline,
while CSD progression was observed in the SSS after KCl treatment (the red arrows represent CSD
numbers). (G) In the left hemisphere, CSD progressionwas not observed after saline or KCl injection,
and there was no statistical significance. (H) According to the statistical results, KCl induced CSD
4 ± 0.577 times on average, with a significant difference compared with the saline group. A signifi‑
cant difference (p < 0.05, t‑test) is shown by the symbol “*”. The data are shown as the mean ± SEM,
and there are 3 members in each group. (I) According to the statistical results, KCl induced CSD
5 ± 1.528 times on average, with a significant difference compared with the saline group. A signifi‑
cant difference (p < 0.05, t‑test) is shown by the symbol “*”. The data are shown as the mean ± SEM,
and there are 3 members in each group.

4. Discussion
4.1. Visible CCD Camera‑Guided PA/US Imaging System Can Potentially Achieve
Precise Positioning

In neuroimaging, CT, fMRI, and PET techniques offer morphological views of the brain
with good spatial resolution, enabling multiparametric analyses of brain tissue characteristics
in terms of functional and structural information [34]. Therefore, instruments with different
functions should be integrated to emphasize the complementarity of different tools [11], such
as PET‑CT and PET‑MRI. These systems can precisely target tissue, allowing researchers to
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determine appropriate treatments [35]. However, in this study, we required instruments that
are suitable for small animal experimentswith precise positioning capabilities. The PA system
has a high spatial resolution and provides visual imaging information for observing cerebral
hemodynamics [36]. However, the existing PA system cannot locate regions, and the position
scanned by the PA probe must be determined manually.

The limited positioning capability of the PA system increases the difficulty of scan‑
ning specific areas in the rat brain. Since different brain regions in the rat are small and
located near one another, if the error exceeds 1 mm, the target location may not be ob‑
tained. Because the focal point of the photoacoustic probe is located at 10 mm, the probe
must be very close to the sample. For probes without CCD guidance, precise positioning
is difficult to achieve. Thus, we combined a CCD camera with the photoacoustic platform
to achieve precise positioning in animal experiments. Therefore, an accurate positioning
system is needed as an auxiliary to help the system locate the target area quickly and accu‑
rately. A 3D‑printed carrier was used to connect the CCD camera and PA system, and the
CCD camera was mounted on the carrier, as shown in Figure 1B,C. Since the PA system
was set up on an automated three‑axis system, the PA probe could act synchronously after
being combined with the CCD camera without affecting the positioning accuracy. Since
the minimum measurement precision required in the rat brain was 0.01 mm and the S1FL
area ranged from A‑P: +2.52 mm to −1.44 mm, the largest position in the S1FL area was
in A‑P: +1 mm. Moreover, the minimum step distance of the automated three‑axis system
was 1µm,which is sufficient for obtaining precise positioning. In summary, the automated
three‑axis system is very helpful for achieving precise positioning.

Since the distribution of blood vessels on the surface of each rat differs after cran‑
iotomy, theViCPAI systemmust achieve not only precise positioning but also reproducible
positioning. The position of the bregma is difficult to determine after craniectomy, and
the bregma cannot be accurately located. Thus, before the skull is removed, we made two
marks (A‑P: +1 mm; M‑L: ±4 mm) in the S1FL area based on the location of the bregma
and then located and recorded the current scan coordinates with the ViCPAI system. Af‑
ter skull removal, the PA probe was moved to the prerecorded coordinates by using the
automated three‑axis system, thus achieving reproducible positioning.

Then, in in vitro and in vivo experiments, the positioning ability of the ViCPAI system
was evaluated using carbon fiber and the rat brain, respectively, as shown in Figure 3. With
the guidance of the CCD camera, the PA probe can reach the target location and achieve
precise positioning results. In the stroke experiment, the ViCPAI systemwas used to assess
the changes in CBV and SO2 in cerebral hemodynamics before and after PTI stroke, as
shown in Figure 4. The results showed that theCBV and SO2 values decreased significantly
after PTI stroke.

4.2. Changes in Cerebral Hemodynamics in Response to Left Forelimb Electrical Stimulation
before and after PTI Stroke

To understand the functionality of the ViCPAI system, the system was applied in ani‑
mal experiments. The hemodynamic changes in the S1FL region in the brain in response to
electrical stimulation of the rat’s left forelimb were observed. The narrow blood vessels in
the S1FL area require precise positioning. Therefore, introducing a CCD camera to the PA
system assists in more accurately obtaining data in specific areas in animal experiments.

Before PTI stroke, the hemodynamic changes in the cerebral cortex in response to
left forelimb electrical stimulation were investigated, and the PA signals in the right hemi‑
sphere significantly increased in response to electrical stimulation (p < 0.05). The data are
shown as the mean ± SEM, and each group included five members. In contrast, the left
side of the brain had no significant changes, as shown in Figure 5. In terms of relative oxy‑
gen saturation, the SO2 concentration significantly increased only in the right hemisphere
during electrical stimulation (p < 0.05). The data are shown as the mean ± SEM, and each
group included five members. The left side of the brain showed no significant changes, as
displayed in Figure 6.
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After PTI stroke, the CBV associated with hemodynamics and the SO2 concentration
relative to oxygen saturation showed no significant differences in the bilateral cerebral
cortex in response to left forelimb electrical stimulation, as shown in Figures 7 and 8. Then,
24 h after PTI stroke, TTC staining was performed. The red part indicates viable cells, and
the white part indicates dead damaged cells. When the experimental and control groups
were compared, clear infarcts were observed after stroke, as shown in Figure 9.

4.3. Observation of KCl‑Induced CSD Progression with the ViCPAI System
In a previous study, strokewas shown to cause PID [35] thatwas similar to CSDwaves.

The main difference between CSD and PID is the method of induction. CSD waves are de‑
polarization waves generated by chemical, mechanical, or electrical stimulation of cortical
neurons that cause transmembrane changes in the ion concentrations of neuronal cells [37].
The main reason for this change is that potassium ions are outside cells, and potassium ac‑
cumulation causes potassium ions to move into neuronal cells, triggering neuronal depo‑
larization and transient increases in cerebral blood flow (CBF), local tissue oxygen tension,
and metabolic rate [38]. Ischemic stroke causes PID. The main reason is that the ischemic
core loses the oxygen, glucose, and nutrients transmitted by the blood; thus, neurons lack
the adenosine triphosphate (ATP) needed to maintain their functions, resulting in a lack of
ATP in the sodium–potassium pump, which is required for controlling the balance of cell
ions [39], causing potassium ions to accumulate outside the cell, which subsequently leads
to depolarization and increased permeability of the cell membrane.

In this study, we used the ViCPAI system to observe PID after PTI stroke. However,
due to hardware equipment limitations, it is difficult to use lasers to induce PTI stroke dur‑
ing PA scanning. Therefore, we simulated the progression of PID with the same method
as used in the KCl‑induced CSD experiments and investigated whether hemodynamic
changes could be observed. A hole for injecting saline or KCl was made in the lower right
corner of the cerebral cranial window, and hemodynamic changes were observed in the
left cerebral cortex, right cerebral cortex, and superior sagittal sinus (SSS) after injection of
saline or KCl. As a result, CSD progression could be monitored only in the right cerebral
cortex and SSS after KCl infusion. Compared with saline, p values < 0.05 were considered
significant in the right cerebral cortex and SSS, respectively. The data are shown as the
mean± SEM, and each group included three members, as shown in Figure 10. The results
show that the average CSD value in the right cerebral cortex was 4 ± 0.577, and the aver‑
age CSD value in SSS was 5 ± 1.528. The CSD results are the same as those in a previous
study by Amir Ghaemi et al. [40]. According to our results, CSD can be well detected by
the ViCPAI system. In addition, ECoG or other optical imaging systems can be used to
detect CSD, such as laser speckle contrast imaging (LSCI) and laser Doppler flowmetry
(LDF). We demonstrate that the proposed ViCPAI system is an emerging detection tool.

5. Conclusions
In this study, we combined a CCD camera and PA probe in an integrated system, al‑

lowing the PA probe to achieve precise positioning. The CCD camera was introduced as a
positioning tool to accurately deliver the ultrasonic probe to the desired measurement lo‑
cation. The ViCPAI UI interface and automated three‑axis system ensure that the PA probe
can be moved to the previous position coordinates, thereby achieving reproducible posi‑
tioning. This function is necessary for animal experiments and can improve positioning
when data are lacking. To examine the feasibility of the ViCPAI system, we investigated
focal PTI stroke in the right cerebral blood vessel and observed changes in the CBV and
SO2 of the blood vessels before and after stroke. The results showed significant decreases
in both CBV and SO2, confirming that our photoacoustic system can be applied in neuro‑
science research. Then, we used the developed photoacoustic system to observe changes in
the S1FL area of the bilateral cortex in response to left forelimb electrical stimulation before
and after stroke. Left forelimb electrical stimulation significantly increased the CBV and
SO2 in the right S1FL region before stroke. However, there was no significant change in
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the right S1FL region in response to electrical stimulation after stroke, indicating that the
function of the S1FL region is severely impaired by stroke. Moreover, the CBV and SO2 in
the S1FL area of the left brain did not change in response to electrical stimulation before or
after stroke. In future work, we will use the ViCPAI system to observe CSD progression in‑
duced by 1M and 4MKCl and PID progression induced by PTI stroke to confirmwhether
our photoacoustic system can be used to evaluate CSD and PID. Moreover, in future work,
we plan to introduce a laser fiber near the US probe, allowing us to simultaneously use
the laser to induce stroke while the US probe is scanning and record the PID progression.
In other words, from the baseline measurement to the PID measurements after induced
stroke, the probe will not need to move, thereby allowing uninterrupted scanning and en‑
suring the integrity of the experiment.
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