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Abstract: Gelatin is a natural protein from animal tissue with excellent biocompatibility, biodegrad-
ability, biosafety, low cost, and sol–gel property. By taking advantage of these properties, gelatin is
considered to be an ideal component for the fabrication of biosensors. In recent years, biosensors with
gelatin have been widely used for detecting various analytes, such as glucose, hydrogen peroxide,
urea, amino acids, and pesticides, in the fields of medical diagnosis, food testing, and environmental
monitoring. This perspective is an overview of the most recent trends and progress in the devel-
opment of gelatin-based biosensors, which are classified by the function of gelatin as a matrix for
immobilized biorecognition materials or as a biorecognition material for detecting target analytes.
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1. Introduction

A biosensor, which commonly consists of a bioreceptor, a transducer, and a signal
processing unit, is an innovative analytical device that detects chemical or biological ana-
lytes and transduces them into measurable signals via a physiochemical process [1,2]. The
bioreceptor can generate signals via interaction with analytes, such as glucose, hydrogen
peroxide, and urea. Then, the transducer will convert these biorecognition signals into
quantitative signals, which are processed and displayed by the signal processing unit [3].
Due to their excellent sensitivity to biological substances, biosensors have been widely
applied for medical diagnosis, food testing, and environmental monitoring [4]. The history
of biosensors dates back to 1962, when Clark and Lyons, from the Cincinnati Children’s
Hospital, developed the first glucose enzyme electrodes to monitor the oxygen consumed
during an enzyme-catalyzed reaction [5]. Based on this principle, Updike and Hicks de-
veloped a miniature glucose transducer by taking advantage of the high sensitivity of the
oxygen electrode and the specificity associated with enzyme analysis [6,7]. In the following
decades, with the rapid development of biotechnology, biosensors gradually became a
hot research area and created a large amount of innovation. With biosensors gradually
becoming part of people’s lives, the requirements of high sensitivity, high stability, low cost,
functional diversification, miniaturization, intelligence, and integration for biosensors are
constantly increasing. Therefore, it is still a promising field full of challenges and opportu-
nities. Biosensors can be classified into different categories according to the difference in
transducers, including electronic biosensors, optical biosensors, calorimetric biosensors,
and piezoelectric biosensors [8]. Based on the differences in bioreceptors, biosensors can
also be classified as enzyme biosensors, microbial biosensors, immunological biosensors,
and DNA biosensors [9].

Considering their wide application in biological fields, biosensors always require
their components to possess good biocompatibility to maintain the biological activity
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of the biorecognition element and to ensure the stability of the test results. Gelatin is a
natural protein derived from the collagen of animal skin, bone and tendon through partial
hydrolysis. It is widely used in food, medicine, cosmetics, and agriculture because of its
unique structure and biological character [10]. Gelatin and gelatin-based composites are
ideal materials for fabricating biosensors due to their good biocompatibility, environmental
friendliness, and low cost. In particular, its good film-forming property endows gelatin with
the ability to immobilize biorecognition materials without decreasing the sensitivity and
stability of biosensors. Furthermore, the sensitivity of gelatin to protease could also provide
a possible approach toward the development of protease biosensors. By taking advantage
of these unique physical and chemical properties of gelatin, gelatin-based biosensors could
be used for in situ biomarker detection in living systems without side effects [11]. Since
the 1980s, many biosensors with gelatin and gelatin-based composites have been prepared
for the detection of glucose [12], protease [13], urea [14,15], aspartame [16], and hydrogen
peroxide [17,18].

In this perspective, we examine the research status of biosensors prepared with gelatin
and gelatin-based composites and introduce the most recent trends and progress in different
applications. We discuss them in two categories according to the main functions of gelatin
and gelatin-based composites in biosensors: (1) as a matrix for immobilized biorecognition
materials and (2) as a biorecognition material for detecting target analytes. In addition, we
outline the main challenges and opportunities of gelatin-based biosensors regarding their
further development and application.

2. Gelatin as a Matrix for Immobilized Biorecognition Materials

Immobilization of biorecognition materials is one of the key questions in the design
of suitable biosensors that improves the catalytic activity and stability of biosensors [19].
Gelatin is considered an ideal matrix for immobilizing biorecognition materials to achieve
the high stability and long life of biosensors owing to its good biocompatibility, unique
sol–gel property, and good film-forming capacity [20].

The crosslinking of gelatin is an important process in preparing a gelatin-based matrix.
Glutaraldehyde is widely used in the crosslinking of gelatin due to the fact that it is
easily available, inexpensive, and has a high efficiency in the stabilization of collagenous
materials [21]. The crosslinking of gelatin with glutaraldehyde involves the reaction of free
amine groups of lysine or hydroxylysine residues of polypeptide chains with aldehyde
groups of glutaraldehyde [22]. In addition, some studies indicate that crosslinked gelatin
using glutaraldehyde presents better stability and biocompatibility than with the use of
other crosslinking agents, such as carbodiimides, epoxy compounds, and genipin [21].

Gelatin-immobilizing biosensors can be divided into enzymatic and nonenzymatic
biosensors. Their applications in the fields of medical diagnosis, food testing, and environ-
mental monitoring will be discussed in this section.

2.1. Medical Diagnosis

Highly sensitive glucose biosensors have been developed for the prompt detection
of glucose in body fluids to achieve rapid diagnosis and real-time monitoring of dia-
betes [23,24]. Sungur et al. reported that gelatin is a suitable carrier system and coating
material in glucose biosensor manufacturing [25]. Glucose oxidase (GOx) was immobilized
onto gelatin by crosslinking with chromium (III) acetate. The developed biosensor was
repeatedly used more than 15 times within a period of 2 months without losing its accuracy.
Mesoporous carbon is a valuable material in the construction of biosensors due to its good
electrical conductivity and high thermal and mechanical stability. Zeng et al. loaded Pt
nanoparticles and GOx into mesoporous carbon and immobilized it on the surface of glassy
carbon electrode with a gelatin coating [26]. Glutaraldehyde was used as a crosslinker that
reacted with the amino groups of both GOx and gelatin to generate covalent linkages, lead-
ing to the formation of a three-dimensional network that improved the current response
and stability of biosensors. In addition, benefiting from the protection of mesoporous
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carbon to GOx, this biosensor presents high thermal and long-term stability. Gouda et al.
found that the addition of lysozyme enhances the long-term operational stability of a
glucose and sucrose biosensor based on a gelatin-immobilized enzyme [27].

Considering the importance of L-arginine in protein synthesis and many biochemi-
cal reactions, the detection of L-arginine in physiological fluids is highly desired. Kara-
caoğlu et al. immobilized arginase and urease on the surface of pH electrodes by us-
ing a glutaraldehyde-crosslinked gelatin membrane [28]. Under 25 °C, the biosensor
demonstrated a linear range of response with an arginine concentration between 0.025 and
0.310 mM and a response time of 10 min. In addition, the developed biosensor displayed
great advantages with its simplicity and portability.

Urea is a major metabolic product of protein, and its level in body fluids is regarded
as an indicator of kidney and liver diseases [29]. Therefore, the determination of urea has a
significant meaning in biomedical fields [30]. Srivastava et al. purified urease from pigeon
pea seeds and immobilized it on gelatin beads via crosslinking with glutaraldehyde [31].
The best immobilization (75%) was achieved under the conditions of 30 mg/mL gelatin,
0.414 mg of enzyme/bead, and 1% (v/v) glutaraldehyde at 4 ◦C. When the beads were
stored in 50 mM tris/acetate buffer (pH = 7.3), the half-life of the enzyme was 240 days,
and there was no leaching of the enzyme over 30 days. In addition, it could be reused more
than 30 times without the loss of enzyme activity. Panpae et al. immobilized urease on
gelatin beads via crosslinking with a diluted aqueous glutaraldehyde solution [32]. The
biosensor’s electrodes, prepared with the immobilized beads, presented good sensitivity,
long lifetime (more than 2 months), and good reproducibility for blood serum samples.

By using the method of crosslinked gelatin immobilization, many enzyme-based
biosensors were developed for medical diagnosis, such as Pt/zein/gelatin-GOx biosen-
sors (Figure 1a) [33], three-electrode array biosensors (Figure 1b) [34], Pt-PANI@Fe2O3-
GA biosensors (Figure 1c) [35], gelatin/GOx-Pt glucose biosensors (Figure 1d) [36], and
AsOx/GB-ZnO/ITO ascorbic acid biosensors (Figure 1e) [37].
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Figure 1. Biosensors for medical diagnosis with gelatin matrix. (a) Pt/zein/gelatin-GOx biosensors-
design and fabrication [33] (copyright (2021) Wiley-VCH GmbH); (b) a reusable DIY three-electrode
base plate for microfluidic electroanalysis and biosensing [34] (copyright (2021) American Chemical
Society); (c) schematic of the biosensor elaboration using PANI@Fe2O3 [35] (Copyright (2018) by the
authors); (d) the gelatin/GOx-Pt glucose biosensor fabrication procedure and possible gelatin–GOx
conjugations during biocatalyst immobilization [33] (copyright (2020) The Royal Society of Chemistry
2020); (e) proposed electrochemical reaction and synthesis of AsOx/GB-ZnO/ITO bioelectrode [37]
(copyright (2015) Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

In recent years, the application of gelatin methacryloyl (GelMA) in biosensors has
attracted broad attention from researchers. As a chemically modified gelatin, GelMA has
high mechanical stability, good biocompatibility, high permeability, ease of chemical modi-



Biosensors 2022, 12, 670 4 of 14

fications, and low cost-effectiveness as well as a simple and fast crosslinking process [38].
Darvishi et al. presented a hybrid hydrogel composed of Ni-NPs-RGO and GelMA hy-
drogel as a biosensor for the nonenzymatic detection of glucose [39]. The hydrophilic
functional groups on the surface of the GelMA could inhibit the agglomeration of Ni-RGO
in aqueous solution. The large electroactive surface area, porous structure, 3D conductive
networks, and hydrophobic interaction between graphene and GelMA molecules endowed
the biosensor with high electrochemical performance.

2.2. Food Testing

Packaged food may spoil due to the biological, chemical and physical alterations that
can occur during processing, packaging, and storage. Eating spoiled food can cause a series
of potential health hazards for consumers [40]. The regular chemical and microbiological
analysis for checking food quality is a complex process including sample preparation,
pretreatment and an expensive testing process [41]. Therefore, the development of simple,
portable, and rapid biosensors will improve the food testing process and protect people
from low-quality food.

Aspartame is a low-calorie artificial sweetener composed of aspartic acid, phenylala-
nine, and methanol. Aspartame is widely used in packaged foods and soft drinks due to
its high sweetness. However, there is evidence that the phenylalanine in aspartame can
be neurotoxic and conceivably mediate neurologic effects [42,43]. Therefore, the testing of
aspartame is necessary. Odaci et al. established an efficient bi-enzyme biosensor system
composed of carboxyl esterase and alcohol oxidase for aspartame determination [16]. The
enzymes were immobilized in a gelatin membrane via crosslinking with glutaraldehyde
and combined with the dissolved oxygen electrode. The biosensor could determine as-
partame with a good accuracy in the range of 5.0 × 10−8 M and 4.0 × 10−7 M under the
optimum operational conditions of pH 8.0 and 37 ◦C.

A catalase-based biosensor for alcohol determination in beer was reported by Akyil-
maz and Dinckaya [41]. The catalase was immobilized by using gelatin and glutaraldehyde
on a Clark-type dissolved oxygen (DO) probe covered with a Teflon membrane. The work-
ing principle of this biosensor depends on two related reactions by catalase is as follows:

H2O2 + H2O2 → 2H2O + O2 (1)

CH3CH2OH + H2O2 
 CH3CHO + 2H2O (2)

In this reaction, hydrogen peroxide (H2O2) and ethanol (CH3CH2OH) are substrates
of catalase. When ethanol is added into the reaction medium, the catalase will catalyze both
reactions. The sharing of H2O2 causes a decrease in the first steady-state DO concentration
and creates a new steady-state DO concentration. The biosensor can detect the differences
in DO concentrations between two steady states. As a result, the biosensor presented a
linear relationship in the range of an ethanol concentration between 0.05 and 1.0 mM, with
a detection limit of 0.05 mM and a response time of 3 min.

Triglycerides are natural fats that can break down into glycerol and free fatty acids, and
they are the main components of coconut milk. The amount of triglyceride content is valu-
able for determining the quality of coconut milk. Manoj et al. developed a screen-printed
electrode biosensor by adding lipase, glycerol-3-phosphate (GPO) and glycerol kinase (GK),
which were immobilized into a gelatin membrane by crosslinking with glutaraldehyde
(Figure 2a) [44]. The developed biosensor showed the best response in a solution of pH 7.0
with 45 mg of gelatin and 2.5% glutaraldehyde.

In addition, many other enzyme-based biosensors have been developed using the
method of crosslinked gelatin immobilization. These biosensors present the potential for
the detection of citric acid (Figure 2b) [45], sulfite [46,47] and diglyceride (Figure 2c) [48].
Considering its good biosafety and edibility, gelatin is a good matrix for immobilizing
biosensing materials for developing biosensors.
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In recent years, research on nonenzymatic biosensors has witnessed significant
growth [49]. Guan et al. reported a modified glassy carbon paste electrode based on
Gel/AgNPs-carbon to determine the concentration of H2O2. In this work, gelatin was
used as a strong dispersion agent to control the size and distribution of silver nanoparti-
cles (AgNPs) during the preparation process as well as a matric material for modifying
electrodes. As shown in Figure 2d, Deng et al. developed an electrode modified by mi-
crobelts composed of hemoglobin/gelatin-multiwalled carbon nanotube for the detection
of H2O2 [50]. In this work, the great biocompatibility of gelatin provided a favorable
environment for hemoglobin to maintain its bioactivity. The result shows that the biosensor
had high selectivity, stability, and reproducibility with a low detection limit of H2O2.
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Figure 2. Biosensors for food testing with gelatin matrix. (a) Schematic representation of the screen-
printed electrode biosensor [44] (copyright (2020) D. Manoj et al.); (b) red markings point the steps that
pose potential challenge towards ensuring the sensory and nutritional quality of the fruit juice [45]
(copyright (2022) Elsevier Ltd.); (c) amperometric enzyme-based biosensor to evaluate adulteration in
virgin coconut oil [48] (copyright (2022) Wiley Periodicals LLC.); (d) scheme of fabrication procedure
for electrospun Hb/gelatin-MWCNTs/GC electrode [50] (copyright (2020) Elsevier B.V.).

2.3. Environmental Monitoring

Pesticides are widely used in agriculture to control pests and increase grain yields to
fulfil the increasing demand for food. However, in most cases, these pesticides are also toxic
to nontarget organisms, including humans. Therefore, the monitoring of pesticide residue
levels is critical for human health and environmental security [51]. Borah et al. fabricated
an amperometric biosensor for pesticides by immobilizing glutathione-S-transferase on
a platinum electrode coated with a graphene oxide–gelatin matrix and crosslinked with
glutaraldehyde [52]. This biosensor can be used to analyze at least six different common
pesticides, including benzamidazole, organochlorine, organothiophosphate, organocarba-
mate, polyphenol, and pyrethroid. Compared with a free enzyme biosensor, immobilization
technology using crosslinked gelatin can significantly improve use life and lower cost.

Heavy metals are some of the most serious environmental pollutants, and they can
lead to severe health hazards even in very small concentrations [53]. Of common metal
contaminants, mercury (Hg) is known to be the most serious hazard to the environment
as well as to human health. Consequently, developing efficient biosensors for monitoring
heavy metal pollution in wastewater is necessary [54]. Tagad et al. fabricated a simple, low-
cost, and portable optical biosensor for the detection of Hg2+ based on acid phosphatase
inhibition [55]. Acid phosphatase was immobilized by covalent linkage and entrapment
in glutaraldehyde-crosslinked gelatin. The response by the biosensor presented a linear
relationship in the range of 0.01–10 mM. In particular, the biosensor did not show any
appreciable loss in activity, even when stored at 4 °C for 20 days. In addition, it has been
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reported that microbial biosensors are also a valuable tool for the detection of heavy metals
including Cd2+, Cu2+, Pb2+, Zn2+, Cr3+, Ni2+, and Hg2+.

Li et al. reported a novel integrated biosensor for monitoring and evaluating the
biotoxicity of polluted water with heavy metals [56]. E. coli was immobilized within the
gelatin/silica hybrid hydrogel (BGSH) on a glassy carbon (GC) electrode to fabricate the
biosensor. In this biosensor, E. coli was used as a living biorecognition element for the
determination of heavy metal toxicity in water. As a result, the IC50 values were determined
to be 21.2 for Hg2+, 44 for Cu2+, and 79 mg mL−1 for Cd2+.

Biosensors with gelatin as matrix for immobilized biorecognition materials including
several additional works [57–79] are summarized in Table 1.

Table 1. Biosensors with gelatin as a matrix for immobilized biorecognition materials.

Biorecognition Materials Targeted Analyte Applications References

Glucose oxidase glucose Medical diagnosis [12]
Urease urea Medical diagnosis [14]

ITO urea Medical diagnosis [15]
Glucose oxidase glucose Medical diagnosis [25]
Glucose oxidase glucose Medical diagnosis [26]

Invertase, mutarotase, and Glucose oxidase glucose and sucrose Medical diagnosis [27]
Arginase-Urease arginine Medical diagnosis [28]
Pigeonpea urease urea Medical diagnosis [31]

Urease urea Medical diagnosis [32]
Glucose oxidase glucose Medical diagnosis [33]

Lipase amlodipine Medical diagnosis [35]
Glucose oxidase glucose Medical diagnosis [36]

Ascorbate oxidase ascorbic Acid Medical diagnosis [37]
Ni-RGO glucose Medical diagnosis [39]

SOD enzyme superoxide radical Medical diagnosis [57]
Spinach tissue homogenate oxalate Medical diagnosis [58]

superoxidase dismutase superoxide radical Medical diagnosis [59]
Glucose oxidase glucose Medical diagnosis [60]

Fe3O4 glucose Medical diagnosis [61]
Tyrosinase Tyrosine Medical diagnosis [62]

Uricase enzyme Uric acid Medical diagnosis [63]
Glucose oxidase glucose Medical diagnosis [64]

Catalase hydrogen peroxide Medical diagnosis [65]
Carboxyl esterase-alcohol oxidase aspartame Food testing [16]

Catalase hydrogen peroxide and ethanol Food testing [41]
lipase, glycerol-3-phosphate, and glycerol kinase Triglyceride Food testing [44]

Sulfite oxidase Sulfite Food testing [46]
Plant tissue homogenate sulfites Food testing [47]

lipase diglyceride Food testing [48]
Hemoglobin hydrogen peroxide Food testing [50]

Catalase hydrogen peroxide Food testing [66]
ITO, diamine oxidase cadaverine and histamine Food testing [67]

Horseradish Peroxidase hydrogen peroxide Food testing [68]
Hemoglobin hydrogen peroxide Food testing [69]
Peroxidase hydrogen peroxide Food testing [70]

Anti-Bacillus cereus Polyclonal antibodies Bacillus cereus Food testing [71]
Catalase hydrogen peroxide Food testing [72]

Glutathione S-transferase benzamidazole, organochlorine,
organothiophosphate,

organo-carbamate, polyphenol, and
pyrethroid

Environmental monitoring [52]

Acid phosphatase Hg2+ Environmental monitoring [55]
E. coli Hg2+, Cu2+, and Cd2+ Environmental monitoring [56]

Acetylcholinesterase carbaryl and monocrotophos Environmental monitoring [73]
Acetylcholinesterase organophosphate paraoxon Environmental monitoring [74]

laccase phenolic compounds Environmental monitoring [75]
Acetylcholinesterase organophosphates Environmental monitoring [76]

Silver Chromium (III) Environmental monitoring [77]
Horseradish peroxidase hydrogen peroxide Environmental monitoring [78]

Transglutaminase - - [79]
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3. Gelatin as a Biorecognition Material for Detecting Target Analytes

The biorecognition material is the most important part of a biosensor system. In
addition to being a matrix that immobilizes biorecognition materials, gelatin itself can be
used as a biorecognition material or as part of a biorecognition system to detect many target
molecules that react with gelatin, such as protease.

3.1. Medical Diagnosis

The development of gelatin-based biosensor systems achieves the highly efficient
diagnosis of many diseases, such as cancer [80] and pancreatitis [81]. Bladder cancer
is one of the most common cancers of the genitourinary system. It has been reported
that gelatinases are urinary markers of many cancers, such as bladder [82], prostate [83],
endometrial [84], and colorectal cancer [85]. Nossier et al. developed a biosensor for
detecting gelatinase activity based on the characteristic surface plasmon resonance (SPR)
effect of colloidal Au nanoparticles (AuNPs) [86]. As shown in Figure 3a, gelatin was
grafted onto the surface of citrate-capped AuNPs based on the electrostatic interaction
between gelatin and citrate. In a colloidal solution, when the interparticle distance was
larger than the average particle diameter, the AuNPs appeared red. On the contrary,
the AuNPs appeared blue when the interparticle distance was smaller than the average
particle diameter. Based on this distinctive phenomenon, the gelatin-modified AuNPs
were stably suspended in solution and displayed a red color, even when an aggregation
inducer (6-MCH) was added into the solution. After the gelatinases digested the gelatin,
the aggregation of AuNPs led to a color change from red to blue. Using this method, the
rapid detection of gelatinase by the naked eye becomes possible. As a part of the biosensing
materials, gelatin not only detected gelatinase but also inhibited the aggregation of AuNPs
due to the steric repulsion effect.

Pseudomonas aeruginosa (P. aeruginosa) is one of the leading pathogenic bacteria of
nosocomial infections, which are hard to treat [87]. Gao et al. reported a gelatin-based
photonic hydrogel biosensor for the visual detection of P. aeruginosa through the self-
assembly of Fe3O4@C NPs and in situ photopolymerization [88]. As shown in Figure 3b,
the Fe3O4@C NPs were fixed within the GelMA. The GelMA could respond to the gelatinase
secreted from P. aeruginosa, which can hydrolyze GelMA to decrease the crosslinking density
of the GelMA to the expanded lattice space of NPs, leading to the color variation of the
photonic hydrogels. The color variation of the photonic hydrogel can easily be observed by
the naked eye. This method also provides a reference for a colorimetric biosensor for the
detection of P. aeruginosa.

The activity of trypsin could be an indicator for the diagnosis of pancreatitis, pancreatic
cancer and cystic fibrosis [89]. To achieve the rapid and label-free detection of trypsin and
its inhibitor in human serum, Ping et al. designed a GelMA-assisted paper-based lateral
flow biosensor (Figure 3c) [90]. In the presence of trypsin, the GelMA would enter the
solution state and release the trapped water. The released water would flow along the pH
indicator strip to identify the presence of trypsin. This simple and low-cost method is very
promising in the development of sensing, diagnostic, and pharmaceutical applications.

Proteases are often used as promising biomarkers for many diseases, such as cancer,
cardiovascular diseases, Alzheimer’s disease, human immunodeficiency virus, thrombosis,
and diabetes [91]. A wireless biosensor for protease activity based on a crosslinked gelatin
with incorporated caprylic acid composite film was reported by Kalimuthu et al. [92]. As
shown in Figure 3d, when the composite was exposed to proteases, its digestion led to
a change in its resistivity, which can be wirelessly monitored by coupling the composite
to an inductor capacitor resonator. This method provides possibilities for monitoring the
concentration of proteases in aqueous media.
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of gelatin-modified AuNP-based colorimetric assay for direct detection of total gelatinase activ-
ity [86] (copyright (2016) Elsevier B.V.); (b) schematic illustration showing the structural design and
responsive mechanism of the photonic hydrogels for visual detection of P. aeruginosa [88] (copyright
(2020) Elsevier B.V.); (c) schematic diagram of the developed sensor for the detection of trypsin [90]
(copyright (2021) Elsevier B.V.); (d) illustration and photograph of the setup used for wireless protease
detection [92] (copyright (2020) American Chemical Society).

3.2. Food Testing

Bacillus cereus is a ubiquitous soil bacterium that can cause gastrointestinal diseases
with symptoms such as nausea, emesis, diarrhea, and abdominal pain [93]. Kaur et al.
designed a gelatin-based colorimetric assay biosensor system for the rapid detection of
Bacillus cereus in food [94]. As shown in Figure 4, the biosensor system included an
absorption layer, colored layer, separation layer, and gelatin layer on the top of the insolating
layer. The gelatinase secreted from Bacillus cereus liquefies the gelatin. Then, with the
liquefied sample flowing through the colored membrane layer, the dye (i.e., colored ink) in
the colored layer will migrate to the absorption layer, coloring the absorbent pad placed at
the bottom of the assay and presenting a colorimetric signal.
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3.3. Environmental Monitoring

By using gelatin-modified porous silicon Bloch surface wave (BSW) devices, Saum
et al. developed a biosensor for detecting airborne protease droplets [95]. This method is
based on the change in impedance change while the protease digests the gelatin coating. In
standard air, the impedance change is proportional to the collagenase concentration. This
biosensor may be used for near-real-time airborne protease detection. Based on a similar
mechanism, Qiao et al. presented an optical biosensor functionalized with porous silicon
optical structures for label-free detection of protease at trace levels [96]. The proteases
catalyzed the hydrolysis of peptide bonds in the molecular chain of gelatin, resulting in a
spectral blueshift due to the reduction in the refractive index of the porous films. In this
work, subtilisin was used as a model protease, and the lowest concentration of subtilisin
detected was 370 pM.

Biosensors with gelatin as biorecognition material for detecting target analytes are
summarized in Table 2.

Table 2. Biosensors with gelatin as biorecognition material for detecting target analytes.

Biorecogination Materials Targeted Analyte Applications References

Glucose oxidase/gelatin Protease/glucose Medical diagnosis [13]
pigeonpea urease urea Medical diagnosis [31]

Gelatin/CTAB Trypsin Medical diagnosis [81]
Gelatin/AuNPs Gelatinase Medical diagnosis [86]

Gelatin-based photonic hydrogel P. aeruginosa Medical diagnosis [88]
Gelatin trypsin Medical diagnosis [90]

Fatty-Acid-Coupled Gelatin
Composite Films

Protease Medical diagnosis [92]

Gelatin Bacillus cereus/gelatinase Food testing [94]
Gelatin protease Environmental monitoring [95]

Gelatin/porous silicon protease Environmental monitoring [96]
Gelatin/AuNPs iodide ions (I−)/hydrogen peroxide Medical diagnosis [97]

MBP Anti-MBP autoantibody Medical diagnosis [98]
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4. Conclusions and Future Outlook

In this review, we summarized the applications of gelatin in biosensors for medical
diagnosis, food testing, and environmental monitoring. These biosensors were discussed in
two categories based on the functions of gelatin: as a matrix for immobilized biorecognition
materials and as a biorecognition material for detecting target analytes. The gelatin-based
biosensors benefited from the good biocompatibility, unique sol–gel property, and good
film-forming property of gelatin, exhibiting excellent sensitivity, accuracy, speed, and
stability in the detection of various analytes.

Currently, although gelatin has been widely used for developing biosensors, there
are also many challenges in the formation of a gelatin-based matrix, such as crosslinking
gelatin over a short period and enhancing its stability, including its thermal and mechanical
properties. Further improvements in these performances are critical for achieving the long
life, high sensitivity, and in-field application of biosensors.

It is worth noting that the sol–gel property of gelatin will provide flexibility for the
biorecognition system, which shows the potential for preparing wearable biosensors [99].
Compared to traditional biosensors, flexible biosensors have a better adaptability deforma-
tion to meet the requirements of the human body [100]. Therefore, wearable biosensors
can achieve many meaningful applications, such as on-skin analysis of sweat, transder-
mal monitoring of interstitial fluid, and analysis of subcutaneous fluids via an implanted
device [101]. Considering the rapid development of “massive health industry” and the
physicochemical properties of gelatin, the development of gelatin-based wearable biosen-
sors has a promising future.

In addition, in recent years, DNA biosensors have shown significant potential to
become a valuable tool for the prevention and monitoring of diseases [102]. The key to
DNA biosensors is the fusion of materials with specific probe DNA or single-stranded DNA
(ssDNA) [103]. Gelatin can be a promising material for DNA biosensors due to its good
biocompatibility, biodegradability, biological activity, exceptional cell/tissue attraction, and
extraordinary physiochemical characteristics [104]. It has been reported that GelMA and
DNA can be used as a biosensor for DNA hybridization [105]. Therefore, DNA biosensors
with gelatin could be one of the most significant developments in the future.
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