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Abstract: A desirable lanthanide-based ratiometric fluorescence probe was designed as a multifunc-
tional nanoplatform for the determination of dipicolinic acid (DPA), a unique bacterial endospore
biomarker, with high selectivity and sensitivity. The carbon dots (CDs) with blue emission wave-
lengths at 470 nm are developed with europium ion (Eu3+) to form Eu3+/CDs fluorescent probes.
DPA can specifically combine with Eu3+ and then transfer energy from DPA to Eu3+ sequentially
through the antenna effect, resulting in a distinct increase in the red fluorescence emission peak at
615 nm. The fluorescence intensity ratio of Eu3+/CDs (fluorescence intensity at 615 nm/fluorescence
intensity at 470 nm) showed good linearity and low detection limit. The developed ratiometric
nanoplatform possesses great potential for application in complex matrices owing to its specificity for
DPA. In addition, the integration of a smartphone with the Color Picker APP installed enabled point-
of-care testing (POCT) with quantitative measurement capabilities, confirming the great potential of
the as-prepared measurement platform for on-site testing.

Keywords: ratiometric; fluorescence; determination of dipicolinic acid; smartphone-based detection

1. Introduction

Inhalation of 104 or more concentration of Bacillus anthracis (B. anthracis) spores can
lead to a mortality of as high as 75%, even within 24 to 48 h of drug treatment [1,2],
indicating that B. anthracis spores poses a serious threat to human health and public
safety [3,4]. Therefore, sensitive and selective determination of B. anthracis spores had
a critical role to play in early clinical diagnosis and preventing disease outbreaks [5,6].
Dipicolinic acid (DPA), making up approximately 5–15% of the dry weight of anthrax spores,
was an extremely important component and major biomarker of anthrax spores [7–10].
Consequently, the level of anthrax spores could be detected and evaluated through the
concentration of DPA. Recently, although considerable strategies for the determination of
DPA had been constructed, including electrochemical assays, Surface-enhanced Raman
spectroscopy (SERS), mass spectrometry (MS), colorimetric methods, etc. [11,12]. These
strategies are usually cumbersome, time-consuming and require large instruments, which
may not be suitable for on-site rapid detection of DPA. In general, fluorescence-based
sensing was a promising optical candidate for addressing the above-mentioned problems
in DPA determination [13–15]. However, the further application of fluorescent probes was
greatly restricted by the shortcomings of their used currently, such as complicated synthesis
processes, poor fluorescence stability and low sensitivity [16].

Lanthanide-based fluorescence nanoprobes had been constructed and employed to the
determination of targeting on account of that special optical properties such as large Stokes
shifts, long fluorescent lifetimes and high fluorescence stability [17–20]. In fluorescence
measurements, DPA acted as a single ligand coordinated with Eu3+ or terbium ions (Tb3+)
and then sensitized lanthanide ions emission by transferring excitation energy to the
lanthanide ions by an “antenna effect”, a strategy that can be employed to sensing of
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DPA levels [21,22]. Ratiometric fluorescence detection strategies, recording fluorescence
emission at two different wavelengths, had attracted increasing attention and interest from
researchers because of the increased accuracy and reproducibility of target assays as well
as the reduction of false positive or false negative signal results compared to strategies with
a single emission signal [23–27].

Herein, a desirable ratiometric fluorescence platform was fabricated for the highly
sensitive and selective detection of the B. anthracis biomarker DPA by integrating Eu3+ and
CDs (Eu3+/CDs) in Scheme 1. Taking into consideration fully the coordination binding of
DPA to Eu3+ in the complex of Eu3+/CDs, the formed complex of Eu3+/DPA then emitted
a red fluorescence while the blue fluorescence of CDs was not changed. Therefore, the
fluorescence ratio (F615/F470) of red fluorescence to blue fluorescence as a signal can be
augmented with increasing concentrations of DPA. Furthermore, the developed strategy
was further utilized for the sensitivity detection of DPA in real samples by integrating a
smartphone with Color Picker APP. The ratiometric fluorescence sensing platform based
on Eu3+/CDs fluorescent probes has the ability to rapidly detect DPA in the field and thus
assess the infection level of anthrax spores, which has great potential in food safety and
healthcare.
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2. Materials and Methods
2.1. Materials and Reagents

Chemicals including Eu(NO3)3·6H2O, dipicolinic acid (DPA) were purchased from
Aladdin Reagent Co., Ltd. (Shanghai, China). Polyethylenimine was purchased from Sigma-
Aldrich. Citric acid, glutamic acid (Glu), cysteine (Cys), glutathione (GSH), adenosine
triphosphate (ATP), sodium chloride (KCl), ferric chloride hexahydrate (FeCl3·6H2O),
zinc nitrate (ZnNO3) and nickel chloride hexahydrate (NiCl2·6H2O) were purchased from
Sinopharm Group Chemical Reagent Co., Ltd. Milk was purchased from the local supermarket.

2.2. Preparation of CDs

CDs were synthesized according to reported work [28]. First, the citric acid and
polyethylenimine was dissolved in 10 mL DI water under stirring. Then, the mixture solu-
tion was poured into a poly(p-phenol)-lined stainless-steel autoclave and heated at 200 ◦C
for 5 h. After that, the obtained solution was dialyzed to remove unreacted impurities.
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2.3. Determination of DPA with Eu3+/CDs Sensing System

To determine the optimal incubation time, the DPA (100 µM) was incubated and stirred
with Eu3+/CDs in Phosphate Buffer (PB) (10 mM, pH = 7.5) for different minutes (1–20 min)
at 25 ◦C. Then, the fluorescence intensity of the sensing system was recorded by fluorescence
spectrometry at 285 nm excitation. Similarly, only the incubation temperature (25–55 ◦C)
was changed in above sensing system to determine the optimal incubation temperature.
After adding Eu3+/CDs into PB, the DPA with different concentrations (0–200 µM) was
added above the solution and stirred for 10 min at 25 ◦C. Then, the fluorescence intensity
of the sensing system was recorded by fluorescence spectrometry at 285 nm excitation.
For interference experiments, the DPA, GSH, Cys, Glu, ATP, Cl−, Zn2+, Ni2+ and Fe3+

were added to Eu3+/CDs solution, respectively. The final concentration of DPA and other
interfering substances was 50 µM. Finally, the emission spectra at 285 nm excitation of these
reaction solutions were recorded.

2.4. DPA Sensing in Real Samples

As for DPA detection in real samples, milk was selected as samples. The purchased
milk was treated in the same way as previously reported [29]. In order to remove proteins,
the purchased milk was sonicated for 30 min with trichloroacetic acid and then the mixture
was centrifuged for 5 min. The filter paper was used to filter the supernatant to remove the
lipids. DPA with various concentrations (0, 10, 20 and 50 µM) was spiked into the treated
milk for further analysis, which then were added into the Eu3+/CDs sensing system. The
fluorescence responses were measured under the excitation at 285 nm after incubating for
10 min.

2.5. The Smartphone-Integrated Assay for DPA Detection

For the smartphone-based assay for DPA detection, the samples were incubated with
Eu3+/CDs and stirred for 10 min. Then, the fluorescent image was recorded and analyzed
using the Color Picker APP on the smartphone to access its RGB intensity for analysis. It is
worth noting that the samples were placed in a dark lamphouse to avoid environmental
interference.

3. Results
3.1. The Principle of Ratiometric Fluorescence Strategy for DPA Determination

The ligand-containing DPA coordinated with Eu3+ and the triplet excited state of the
ligand transferred energy to the emitting state of Eu3+ to enhance the fluorescence intensity
(Figure S1 in Supplementary), which then directly detect DPA [30,31]. Considering that
a single variation in signal was susceptible to environmental interference, a ratiometric
fluorescent sensor was constructed to overcome these problems and improve the sensitivity
and selectivity. As shown in Figure 1, the CDs emitted bright blue fluorescence at 470 nm
(curve a), and its fluorescence intensity was not compromised when adding Eu3+ (curve
b). The blue fluorescence can be obviously observed under the UV irradiation, seen in
the insert photos. In the presence of DPA, the combined with the complex of Eu3+/CDs
can obviously enhance the fluorescence at 615 nm due to the occurrence of antenna effect,
while the blue fluorescence kept stability (curve c). The red fluorescence was easily found,
seen in the insert photo. Therefore, the ratiometric strategy was established to sense the
target based on the ratio of F615/F470 against increasing concentrations of DPA, which also
provided the basis for intelligent detection using the smartphone with Color Picker APP.
Here, the F615 and F470 were the fluorescence emission intensity of Eu3+/DPA at 615 nm
and the CDs fluorescence emission intensity at 470 nm, respectively.
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3.2. Optimization of Detection Experimental Conditions

To guarantee the high sensitivity and stability of the Eu3+/CDs nanoplatform for
target monitoring, several important factors were investigated and optimized, including
the concentration of Eu3+, reaction temperature and incubation time. The concentration of
Eu3+ was a key factor in the sensitivity of the assays. It can be seen that the blue fluorescent
CDs maintains a stable fluorescence intensity with increasing the concentration of Eu3+ from
0 to 500 µM, which indicates that CDs can be used as an internal parameter (Figure 2A).
Due to the energy transfer from DPA to Eu3+, the red fluorescence intensity increased
significantly after adding different concentrations of Eu3+ (Figure 2B). The fluorescence
ratio of F615/F470 was augmented with concentration of Eu3+ and reached a plateau at
50 µM. Here, the F615 and F470 were the emitted fluorescence intensity of Eu3+/DPA
at 615 nm and the CDs at 470 nm, respectively. Thus, Eu3+ at 50 µM was selected for
the detection of DPA in the following experiments. In order to investigate whether the
experiment can be performed in the field for rapid detection, the temperature and reaction
time of testing were crucial. Learn from Figure 2C,D, the reaction of Eu3+ and DPA can be
carried out rapidly at room temperature and takes only 10 min, indicating that the system
had the capability of detecting DPA in a short time and with high stability, providing an
important guarantee for subsequent field testing.

3.3. The DPA Detection with Eu3+/CDs Probe

Under the optimal reaction conditions, the detection sensitivity of the as-prepared
Eu3+/CDs probe was examined by monitoring the ratio fluorescence response of the
detection system as a function of different concentrations of DPA in Figure 3A. As the
concentration of DPA increased from 0 to 200 µM, the coordination complex Eu3+/DPA
was formed, resulting in augmented red fluorescence, while the blue emission fluorescence
remained relatively constant. To evaluate the sensitivity of the ratiometric fluorescence
platform, the ratio of F615/F470 was plotted against different concentrations of DPA, and
the variation of ratio in Figure 3B,C was linear over the concentration range of 0–20 µM
with a correlation coefficient R2 of 0.9961 and 20–150 µM with a correlation coefficient R2

of 0.9971. The limit of detection (LOD) was calculated to be as low as 1.18 µM according to
the three times of signal-to-noise ratio, which confirmed the feasibility of the developed
platform. The selectivity was further examined by measuring the fluorescence ratio of
the system against other potential interfering analytes. As illustrated in Figure 3D, the
fluorescence ratio of the target analyte DPA (50 µM) can be obviously monitored, which
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was significantly higher than that of other analytes, which proves that only DPA target
can cause the change of sensor signal. Therefore, the developed strategy was specific and
selective for the detection of DPA and can greatly reduce the influence of other interferents.
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3.4. Sensitive Detection of DPA in Real Samples

To further explore the practicality of the proposed strategy, the milk samples with
spiking a certain concentration of DPA were selected for the experiment. As displayed in
Table 1, no DPA was detected in real samples. Then, the DPA with different concentrations
(0, 10, 20, 50 µM) was spiked into the samples and then the same procedure was followed
for quantification by the developed platform. The results showed satisfactory recoveries
(97–99%) and accuracy (RSD < 4.05%) for detection of DPA, suggesting that the proposed
platform can be used to determination the DPA in real food samples.

Table 1. Determination of spiked samples of DPA in real samples by the developed strategy.

Sample Spiked (µM) Found Recovery (%) RSD (%)

Milk

0 - - -
10 9.9 99 1.65
20 19.8 99 4.05
50 48.5 97 2.9

3.5. Smartphone-Integrated DPA Detection in Real Samples

The current fluorescence assays usually require fluorescence spectrometer and spe-
cialized researchers, which is not suitable in on-site analysis [32–37]. In this research, a
smartphone installed a Color Picker APP is used as a signal reader to detect the DPA by
integrating with the as-prepared ratiometric fluorescent sensing, Figure 4A. The color of
sample-triggered fluorescence photograph can be converted to digital values representing
the blue (B), green (G) and red (R) color channels. The blue fluorescence (Blue channel) can
gradually convert red fluorescence (Red channel) with increasing concentration of DPA
range from 5 to 150 µM under UV light irradiation. Meanwhile, CIE coordinates can also
prove the color changes from blue to red in Figure 4B. As shown in Figure 4A, the ration of
red (G) to blue (B) channel (R/B) was linearly related in the range of 5 to 150 µM.
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4. Conclusions

In summary, a ratiometric fluorescence strategy has been developed for sensitive
and selective determination of DPA based on lanthanides-based Eu3+/CDs fluorescent
sensor. In addition, the developed strategy can significantly reduce the interface from the
complex matrixes and environments and that also improve the practicality and reliability.
The determination of DPA is then qualified in real samples, showing the satisfactory
recoveries from 97 to 99%. The obtained results of solution fluorescence within increasing
concentration of DPA can be quantitatively analyzed by a smartphone loaded Color Picker
APP, which can be applied to the POCT with accuracy and stability, exhibiting potential
promising application in situ for DPA monitoring.
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