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Abstract: Rapid and sensitive detection of cancer biomarkers is crucial for cancer screening, early
detection, and improving patient survival rate. The present study proposes an electrochemical
gene-sensor capable of detecting tumor related TP53 gene mutation hotspots by self-assembly of
sulfhydryl ended hairpin DNA probes tagged with methylene blue (MB) onto a gold electrode. By
performing a hybridization reaction with the target DNA sequence, the gene-sensor can rearrange
the probe’s structure, resulting in significant electrochemical signal differences by differential pulse
voltammetry. When the DNA biosensor is hybridized with 1 µM target DNA, the peak current
response signal can decrease more than 60%, displaying high sensitivity and specificity for the TP53
gene. The biosensor achieved rapid and sensitive detection of the TP53 gene with a detection limit
of 10 nmol L−1, and showed good specific recognition ability for single nucleotide polymorphism
(SNP) and base sequence mismatches in the TP53 gene affecting residue 248 of the P53 protein.
Moreover, the biosensor demonstrated good reproducibility, repeatability, operational stability, and
anti-interference ability for target DNA molecule in the complex system of 50% fetal bovine serum.
The proposed biosensor provides a powerful tool for the sensitive and specific detection of TP53 gene
mutation hotspot sequences and could be used in clinical samples for early diagnosis and detection
of cancer.

Keywords: biosensor; cancer biomarker; electrochemical; tumor suppressor gene; hairpin deoxyribonucleic
acid; single nucleotide polymorphism

1. Introduction

Despite advancements in medical care, cancer continues to be the most common cause
of death. The key to cancer treatment lies in early detection, diagnosis, and treatment [1].
Currently, early detection of cancer is accomplished by the use of blood chip detection [2],
gene detection [3], nano detection [4], positron emission tomography (PET) [5], computed
tomography (CT) [6], and other approaches [7]. However, these approaches are highly
limited in terms of early cancer detection due to their low sensitivity, high cost, and poten-
tial for physical or chemical harm [8]. Additionally, while enzyme-linked immunosorbent
assay (ELISA) and polymerase chain reaction (PCR)-based technologies have high sensi-
tivity and are less invasive, they require long detection times and involve high costs for
operation [9–11]. As a result, creating analytical tools for the early detection of cancer is
critical for medical diagnosis.

TP53 is a gene that acts as a tumor suppressor. This gene is mutated in more than 50%
of all cancers [12,13] such as liver cancer [14], breast cancer [15], esophageal cancer [16],
and lung cancer [17]. The majority of TP53 mutations in human tumors occur in the highly
conserved region, with the highest mutation rates occurring at R175, R248, R249, R273,
and R282 [18]. Due to its altered spatial conformation, TP53 loses its ability to regulate cell
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growth, apoptosis, and DNA repair, and ultimately transitions from a tumor suppressor to
an oncogene [19]. As a result of the close association between the TP53 gene and cancer,
conditions for early detection of cancer are created.

Over the last two decades, the importance of precise early illness detection and the de-
velopment of personalized therapy have grown. In order to further improve the sensitivity
and specificity of cancer marker detection, several novel analytical strategies such as elec-
trochemical methods and electrochemiluminescence methods have been developed [20,21].
Thanks to its short detection time, distinctive hybridization specificity, and miniaturization
potential, DNA-based electrochemical biosensors have attracted broad scientific and clinical
interest recently [22]. Using electrochemical DNA biosensors based on the hybridization of
DNA, specific target sequences can be subsequently measured, wherein a complementary
capture probe recognizes the target DNA sequence [23]. The mass of the single-stranded
DNA probe monolayer represents a major concern for building sensitive electrochemical
biosensors, since the accessibility of target molecules is determined by the homogene-
ity, density, and upright conformation of ssDNA probes on the electrode surface [24,25].
The signal amplifier, the second component, converts minor changes in the interface into
a detectable electrochemical signal [26]. Electrochemical DNA sensors have improved
their detection performance when the single-stranded capture probe undergoes structural
change from coiled to double-stranded DNA [23,27]. Concurrently, electrochemical DNA
sensors provide improved selectivity for identifying tumor-related key genetic indicators
such as single nucleotide polymorphism (SNP). The relatively poor selectivity of linear
DNA probes for SNP is a typical problem in mutation analysis since the difference in
melting temperatures between totally matched and SNP-containing hybrids can be as tiny
as 1–2 ◦C [28]. If the mutation occurs within the loop area, the molecular beacon technique
enhances this difference, resulting in greater discrimination between intact and mutant
sequences [29]. Therefore, early diagnosis of patients with sensitive and accurate electro-
chemical gene-sensors may significantly improve patient survival rates [30,31]. Although
TP53 gene mutation detection plays an important role in the early diagnosis of cancer,
related electrochemical sensors have rarely been reported.

In this study, we constructed a simple and reliable gene-sensor based on an electronic
DNA hairpin molecular beacon. Using the high-frequency mutation site R248 of the TP53
gene and its association with cancer, a hairpin probe was functionalized by modification of
sulfhydryl and methylene blue (MB). The DNA biosensor with high sensitivity for SNP
was designed to be able to effectively distinguish between intact, SNP-containing cancer
biomarkers and three-base mismatch sequences, which is of great importance in early
cancer screening.

2. Experimental Section
2.1. Chemicals and Reagents

6-Mercapto-1-hexanol (MCH) was obtained from J&K Chemical Ltd. (Beijing, China).
Sodium chloride (NaCl), sulfuric acid (H2SO4), potassium dihydrogen phosphate (KH2PO4),
dibasic sodium phosphate (Na2HPO4), potassium hexacyanoferrate (III) (K3Fe(CN)6), and
potassium hexacyanoferrate (II) trihydrate (K4Fe(CN)6·3H2O) were obtained from Sigma
(St. Louis, MO, USA). A Milli-Q purification system (Millipore, Burlington, MA, USA)
with a resistivity of 18 MΩ·cm was used to obtain ultrapure water. Tris (2-carboxyethyl)
phosphine hydrochloride (TCEP), tris-EDTA buffer solution (TE buffer) and the oligonu-
cleotide sequences (Table S1 in supporting information) were synthesized by Sangon
Biotech (Shanghai, China) Co., Ltd.

2.2. Preparation and Immobilization of DNA Sensors

Polycrystalline gold electrodes (2 mm diameter) were used to immobilize the SL-DNA
probe. Polycrystalline gold electrodes were washed in a piranha solution (H2O2:H2SO4 = 1:3,
v/v) for 15 min before being polished with 1.0, 0.3, and 0.05 m alumina slurry. Following
rinsing, the electrodes were cleaned ultrasonically three times with ethanol followed
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by Milli-Q water. They were then electrochemically activated in 0.5 mol L−1 H2SO4 by
potential scanning between 0 and 1.7 V until a repeatable CV was achieved, after which they
were thoroughly washed with Milli-Q water and dried under a nitrogen stream [32,33].

A gold-thiol bond was used to secure the ssDNA probe to the electrode surface. The
disulfide bonds of the ssDNA probe were reduced with 10 mM TCEP by vibrating the
solution at room temperature for 1 h. Following this, the solution was further diluted to
obtain 0.01 µM, 0.1 µM, 1 µM, and 10 µM of the DNA probe in pH 7.4 phosphate-buffered
saline (PBS). A total of 5 µL of this solution was drop cast onto the electrode and incubated
at 4 ◦C for 16 h. The electrodes were submerged in PBS for 15 min and then dried with
nitrogen stream. To avoid unintended adsorption on the electrode surface, the electrodes
were dipped in 15 mL of 2 mM MCH in PBS and incubated for 1 h. Subsequently, the
electrodes were immersed in PBS for 15 min and dried with nitrogen to obtain ssDNA-Au
electrode (i.e., the geno-sensor). At the beginning of the hybridization reaction, 5 µL PBS
solution containing cDNA were placed onto the ssDNA-Au electrodes and allowed to react
at room temperature for 30 min. Subsequently, the electrodes were immersed in PBS for
15 min and dried with nitrogen to yield dsDNA-Au. The fabrication procedures for the
biosensor are schematically depicted in Figure 1.
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Figure 1. Schematic diagram of the fabrication and electrochemical response of the ssDNA modified
gold electrode.

2.3. Electrochemical Measurements and Procedure

Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical
impedance spectroscopy (EIS) experiments were performed in a three-electrode cell made
of glass using a portable potentiostat, PalmSens4 (PalmSens4, Houten, The Netherlands)
equipped with PS Trace 5.8 software (5.8.1704.0, PlamSens BV, Houten, The Netherlands).
The prepared DNA sensor as the working electrode, an Ag/AgCl (3 M KCl) as the reference
electrode, and a platinum wire as the auxiliary electrode. The assembly and hybridization
reactions of the produced ssDNA-Au or dsDNA-Au were monitored using electrochemical
scanning in PBS or [Fe(CN)6]3−/4− solution. CV and DPV were performed on ssDNA-
Au or dsDNA-Au from −0.5 to 0 V at a scan rate of 50 mV s−1 in PBS. In DPV, a pulse
amplitude of 50 mV, a potential increment of 1 mV and a pulse width of 16.7 ms were
employed. EIS spectra of the DNA sensors were recorded in a solution consisting of
K3Fe(CN)6/K4Fe(CN)6 (0.005 M) and 0.1 M KCl at a frequency range from 105 Hz to 0.1 Hz.

The electrochemical method was used to determine the effective surface area (Aeff) of
working electrodes using K3[Fe(CN)6] as a probe [34]. CV of 5 mM K3[Fe(CN)6] in 0.1 M
KCl at bare electrode was obtained at 50 mVs−1 scan rate. The effective surface areas of
gold electrodes were calculated according to the previously reported method [35].

The DNA surface coverage (Γ, pmol/cm2) was calculated using Equation (1).

Γ =
Q

nFAe f f
(1)

where Q (C), n, F, and Aeff represent the reduced charge of an electrochemical indicator
(MB) in cyclic voltammetry obtained for the ssDNA-Au electrodes, the quantity of electrons
involved in the reaction (2e−), the Faraday constant (96,485 × 10−12 C/pmol), and the
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effective area of the Au disk electrode, respectively [36,37]. The DNA surface coverage was
determined by integrating the second scan’s reduction peak of cyclic voltammograms.

3. Results and Discussion
3.1. Design of the DNA Beacon Sequences

The hairpin beacons were designed using the DNA sequence of one of the most
investigated genes in cancer research, the TP53 gene. A 28 nt hairpin DNA strand with a
stem and a loop was designed to complement the TP53 biomarker. The complementation
sequence detection of the arginine-tryptophan mutation sequence was designed using
a single nucleotide polymorphism and the triple base mismatch (TBM) sequence. The
detection of single base mismatch (SBM) with a mutation (G to A) at residue R248 enables
sensitive recognition to frequently occurring cancer-causing mutations.

3.2. Characterization of the Self-Assembled DNA Sensor

The DNA beacons were mounted on gold electrodes and electrochemically charac-
terized in their folded and open states (i.e., prior to and following hybridization with the
target DNA). Biosensor fabrication and EIS measurements were characterized using 0.1 M
KCl containing 5 mM K3Fe(CN)6 and K4Fe(CN)6. As shown in Figure 2, the semicircle at a
high frequency in EIS, represents the charge transfer process, and its diameter represents
the charge transfer impedance (Rct) value. The low-frequency linear part represents the
electron transfer process of mass diffusion control [38,39]. In comparison to the bare Au
electrode (curve a), the ssDNA-Au electrode demonstrated a significantly higher electron-
transfer resistance Rct (curve b), owing to the negatively charged phosphate backbone of
the ssDNA bound on the electrode’s surface. It will repel [Fe(CN)6]3−/4−, which also have
negative charges. Electron transfer is limited by increased steric hindrance and charge
accumulation on the electrode surface [40], resulting in a considerable increase in Rct. Sub-
sequent surface blocking with MCH led to a further increase of Rct (curve c), indicating the
successful preparation of an electrochemical biosensor. After hybridization of the biosensor
with the target cDNA, dsDNA can be formed. On the electrode surface, a huge amount of
negatively charged DNA can be accumulated to block electron transmission, resulting in a
significantly increased Rct (curve d).
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Figure 2. EIS of bare Au electrode (a), ssDNA modified Au electrode (b), MCH modified ssDNA-Au
electrode (c), and the biosensor after incubated with cDNA (d).

3.3. Electron Transfer Dynamics Study in MB-Labeled Electrodes

CV was used to determine the dynamics of the response in ssDNA-Au and dsDNA-Au
with a scan rate range of 5 to 600 mV s−1. In Figure 3A, the peak currents of the anodic
and cathodic gradually increase as the scan rates increase. The peak currents are clearly
proportional to the square root of the scanning rates (Figure 3A). Upon hybridization,
despite the fact that MB is far from the electrode surface due to the rigid structure of the
double-stranded DNA, resulting in a low electron transfer (ET) rate and reduced current,
the peak currents still have a clear linear relationship with the square root of the scan rates
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(Figure 3B). They are indicative of a surface-controlled electron transfer process on the
electrode’s surface [39,41,42]. Compared to the dsDNA-Au electrode, a more rapid electron
transfer rate and larger response current are demonstrated on the ssDNA-Au electrode.
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3.4. The Feasibility of the DNA Sensor

We used DPV to examine the feasibility of the DNA sensor (Figure 4). A well-defined
peak of MB was found at −0.25 V when the electrode was coated with ssDNA tagged
MB. The oxidation peak of MB rose noticeably when the end-sealing agent MCH was
immobilized on the electrode surface. The reason for this is that under the action of
MCH, ssDNA that was previously distributed irregularly on the electrode surface can
be fixed on the electrode with an upright structure, decreasing the distance between MB
and the electrode (Figure 1). The distance between MB and the gold electrode increased
after hybridization with target cDNA for 30 min, resulting in a significant decrease in
peak current.
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3.5. Analysis of Impact Factors

By comparing the changes in peak currents measured by CV and DPV, the effect of
probe and cDNA concentration on sensor measurement can be determined. The probe
concentration, as shown in Figure S1A, is a significant factor that influences sensor perfor-
mance. 5 µL aliquots of ssDNA solutions at concentrations of 0.01, 0.1, 1, and 10 µM were
fixed on the treated gold electrode’s for 16 h at 4 ◦C and then immersed in MCH for 1 h.
Coverages of 0, 2.9, 11.55, and 9.57 pmol/cm2 were calculated, respectively (Equation (1)).
The maximum theoretical surface coverage (30–45 pmol/cm2) is noticeably higher than the
reported values for the DNA monolayer [43,44]. Figure S1B shows the probe coverage on
the electrode rose first and then decreased, which is in agreement with the change of CV
peak current. We applied 1 µM ssDNA for the next studies to maximize the coverage of
ssDNA considering the cost of labelled DNA.

The signal changes were studied by hybridization with different concentrations of
21 nt cDNA sequences at the constant probe concentration of 1 µM for 30 min (Figure 5a).
The concentrations of 21 nt cDNA were 10 nM, 50 nM, 100 nM, 500 nM, and 1 µM, respec-
tively, and the percentage of peak current decrease in DPV demonstrated a good linear
relationship with the logarithm of cDNA concentration (Figure 5b). The detection limit
of the electrochemical DNA sensor was up to 10 nM due to the hairpin structure and
signal amplification of MB. The obtained detection limit for TP53 is significantly better
than that of the field-effect transistor sensor (100 nM) [45], and is comparable to that of
the electrochemical biosensor developed by Otero et al. [37]. With an increase in cDNA
concentration, the binding efficiency of the double-stranded was improved, and a larger
amount of MB was far away from the electrode surface, resulting in a significant decrease
in peak current. When the concentration was increased to 1 µM, the percentage of peak
current reduction for 21nt-cDNA reached 60%, providing an ideal signal difference for
cDNA detection. As can be seen, the DNA sensor showed high specificity and sensitivity
for complementary TP53 gene detection. In order to further explore the effect of cDNA
sequence length on response signal, the gene sensor was hybridized with 28nt-cDNA under
the same conditions. As shown in Figure S2, the percentage of geno-sensor peak current
reduction for 21nt-cDNA was much higher than for 28nt-cDNA, which demonstrates that
the designed geno-sensor is more sensitive for 21nt-cDNA. So, 21nt-cDNA is preferable for
further study.

3.6. The Specificity of the DNA Sensor

To further investigate the specificity of the DNA sensor, the SBM and TBM sequences
were hybridized with DNA sensors, respectively, as shown in Figure 5c. Compared with
the peak current value before hybridization, the change rate of the peak current value
∆et = (IBiosensor − IdsDNA) / IBiosensor after hybridization with different hybridization se-
quences is shown in Figure 5d. When the ssDNA sensor hybridizing with 1 µM cDNA, the
∆et value is 60.29 ± 1.48%. When the ssDNA sensor hybridizing with 1 µM TBM or SBM,
the ∆et values are 45.55 ± 1.60%, 32.14 ± 1.23%, respectively. As can be seen, the DNA
sensor displayed an ideal signal difference for detecting single base mismatches (SNP)
and three-base mismatches base sequences. The mutation site of the single-base mismatch
sequence is the R248 mutation hotspot of the TP53 gene, and the peak current change
percentage of the biosensor for cDNA and SBM is quite different. This demonstrates that
the DNA sensor can be used for the early diagnosis or early warning of cancer related to
the R248 mutation hotspot of TP53.

3.7. The Reproducibility, Repeatability and Stability of the DNA Sensor

The reproducibility, repeatability, and stability of the DNA sensor were studied by
using the DPV technique. The results of 10 consecutive potential scans of the prepared
five different biosensors are shown in Figure 6. The relative standard deviation (R.S.D.) of
the same biosensor response to 1 µM cDNA for 10 successive measurements was within
1.3%, indicating good repeatability and operational stability. To evaluate the reproducibility
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between DNA sensors, five biosensors were prepared under the same conditions inde-
pendently. The R.S.D. of the obtained five gene-sensors was within 2%, indicating good
reproducibility for electrode batches.
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3.8. Detection of Target Molecules in Complex Systems

Early diagnosis of cancer is usually achieved by detecting tumor markers present in
tumor tissue, serum, and peripheral blood [46]. However, the serum is a complex mixture,
including plasma proteins, peptides, fats, carbohydrates, hormones, and so on. These
substances are likely to have a certain impact on the detection signal of biosensor. Due to
the fact that 50% fetal bovine serum (FBS) contains similar components to human serum,
we used it to verify the anti-interference ability of the developed electrochemical biosensor
in the complex detection environment. 50% FBS was used to simulate a complex biological
sample for the detection of target DNA molecules, and the detection result was shown in
Figure S3. The co-existing FBS did not interfere with the detection of target DNA, and the
gene-sensor can still effectively distinguish target molecules with single base mismatch,
indicating that the sensor can selectively identify target molecules in complex systems, and
could be applied to clinical sample detection.
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4. Conclusions

In summary, an electrochemical geno-sensor based on hairpin-DNA was developed
to detect the mutation hotspot sequence of the TP53 tumor suppressor gene. A highly
ordered hairpin DNA monolayer was formed on the surface of the gold electrode by self-
assembly method. With the hybridization reaction with the target sequence, the hairpin
probe structure was induced to rearrange into linear DNA double chains, and TP53 gene
detection at nanomolar concentration was realized. The results demonstrate that the peak
current decrease percentage of the sensor has a good linear relationship with the logarithm
of the target DNA concentration (R2 = 0.998) with a low detection limit of 10 nmol L−1.
More importantly, the biosensor showed sensitive specific recognition ability for a single
nucleotide polymorphism in the TP53 gene affecting residue 248 of the P53 protein. There
are about 15% and 28% difference in the change rates of peak currents for SBM and TBM
compared to cDNA. At the same time, the gene-sensor demonstrated good reproducibility
and stability and excellent anti-interference ability for the target DNA molecule in the
complex system of 50% fetal bovine serum. It is expected to be applied to the detection of
clinical samples and provides a promising rapid method for the early diagnosis and early
detection of cancer.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12080658/s1, Table S1: The used oligonucleotides in this
study; Figure S1: CV of a gold electrode after 16 h exposure to ssDNA at concentrations of 10 nM,
100 nM, 1 µM and 10 µM in pH 7.4 PBS (A), and electrode surface coverage of ssDNA probes with
different concentrations (B); Figure S2: DPV curves of the electrochemical geno-sensor after 30 min
hybridization to 1 µM 21 nt cDNA and 28 nt cDNA, respectively; Figure S3: Detection capabilities of
the DNA sensors for target DNA in complex systems of 50% fetal bovine serum.
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