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Abstract: Early diagnosis and treatment have always been highly desired in the fight against cancer,
and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising
for early cancer-screening. Consequently, the detection of ctDNA in liquid biopsy is gaining much
attention in the field of tumor diagnosis and treatment, which has also attracted research interest from
industry. However, it is difficult to achieve low-cost, real-time, and portable measurement of ctDNA
in traditional gene-detection technology. Electrochemical biosensors have become a highly promising
solution to ctDNA detection due to their unique advantages such as high sensitivity, high specificity,
low cost, and good portability. Therefore, this review aims to discuss the latest developments in
biosensors for minimally invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are
reviewed with respect to their choices of receptor probes, designs of electrodes, detection strategies,
preparation of samples, and figures of merit, sorted by type of electrode surface recognition elements.
The development of biosensors for the Internet of Things, point-of-care testing, big data, and big
health is analyzed, with a focus on their portable, real-time, and non-destructive characteristics.

Keywords: non-destructive; biosensors; real-time detection; circulating tumor DNA (ctDNA); high
sensitivity; Internet of Things

1. Introduction

From the development of the first biosensor—a glucose sensor—to the present, biosen-
sor technology has become an interdisciplinary field that combines biology, chemistry,
physics, medicine, electronic technology, and other disciplines [1]. In recent years, biosen-
sors have become increasingly important candidates for early cancer-screening and tumor-
marker detection because of their small size, lower sample volume, short detection time,
high sensitivity and accuracy, and lesser damage to organisms [2]. In the detection of
tumors, traditional biopsy requires a fragment of the tumor, cannot be performed fre-
quently, and can be rather invasive to the patient. Therefore, to make early detection of
cancer possible during a routine checkup, there is an urgent need for a minimally invasive,
low-cost, and near-real-time detection technology [3].

In recent years, circulating tumor DNA (ctDNA) detection technology has been widely
studied; it was rated as one of the top ten breakthrough technologies in 2015 by MIT
Magazine [4]. The family of ctDNA molecules is a mixture of single- and double-stranded
DNAs of around 166 nucleotides that are released as free DNA by circulating tumor
cells after necrosis and apoptosis. They exist in the peripheral blood and can potentially
act as a diagnostic biomarker with high specificity and sensitivity [5]. General ctDNA
detection techniques can be divided into digital PCR [6], droplet digital PCR [7], magnetic
bead emulsion amplification [8], label amplification depth sequencing [9], etc. However,
these technologies generally suffer from the disadvantages of high cost, poor portability,
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frequent occurrence of false positives, and long assay time, which are not suitable for on-site
detection and mobile medical treatment. In contrast, ctDNA electrochemical biosensor
technology has high potential to be implemented for field-deployable detection, because of
its specificity, portability, high sensitivity, and fast response [10].

As shown in Figure 1, a ctDNA electrochemical biosensor is a device that converts
the biological signal generated by specific binding between the recognition probe with
the target ctDNA into an electrical signal for detection. Electrochemical biosensors can
analyze biological information from the impedance of multiple frequencies or one frequency
band [11,12]. In addition, their unique advantages of low cost, portability, and near-real-
time detection make them suitable for on-site screening [13] and mobile health monitoring
and could become an enabling tool for personalized medicine in the context of big data, the
Internet of Things, and big health [14,15].
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Figure 1. Schematic diagram of ctDNA electrochemical biosensor detection system.

This paper reviews the research progress of ctDNA electrochemical biosensors in
recent years, focusing on the types of recognition elements on the electrode surface of
ctDNA electrochemical biosensors. The organization is as follows: Section 2 describes
the categories of recognition elements for ctDNA electrochemical biosensors; Sections 3
and 4 summarize the research progress of ctDNA electrochemical biosensors in recent
years; Section 5 discusses other types of ctDNA biosensors; and Section 6 analyzes the
prospects and challenges in the development of ctDNA electrochemical biosensors. Finally,
the characteristics of ctDNA biosensors are summarized.

2. Structure of Surface-Based Biosensors

Electrochemical biosensors generally consist of three main parts: the first part com-
prises the biomolecular recognition elements, as shown in Table 1, which have the ability
to recognize the target analyte with high specificity [16]. The biomolecular recognition
elements of ctDNA electrochemical biosensors can be categorized into enzymes, nucleic
acids, organelles, immune substances, etc. [11]. Biomolecular receptors can be fixed on
the surface of a biosensor by physical adsorption [17], covalent bonding [18–20], embed-
ding [21–23], self-assembled membrane [24–26], affinity [27,28], and other methods, as
shown in Figure 2. The second part consists of conductive electrodes, which are widely
used as signal conversion elements [29]. DNA, antibodies, and other recognition elements
can be fixed stably on the electrode, while maintaining their activity, to realize the func-
tion of a biosensor. Common electrode types include gold electrodes, carbon electrodes,
and graphene electrodes. They can convert biochemical reactions into electrical signals,
which may be further amplified and processed to yield the concentrations of the target
analytes. Therefore, a variety of surface modification techniques and different transduc-
ers can be used to construct ctDNA detection techniques. The third part is the signal
transduction mechanism, which uses the basic principles and experimental techniques
of electrochemistry to determine the composition and content of substances according to
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their electrochemical properties. The commonly used methods of electrical analysis include
cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry
(DPV), and electrochemical impedance spectroscopy (EIS).

Table 1. Biomolecular recognition devices.

Biosensitive Element Bioactive Unit

Enzymes Variety of enzymes
Nucleic acids PNA, DNA, RNA, etc.

Organelles Mitochondria, chloroplasts
Immune substances Antigens, antibodies, etc.

Microorganisms Bacteria, viruses, fungi, etc.
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At present, clinical detection of ctDNA is mainly based on polymerase chain reaction
(PCR) technology and gene sequencing, while there are few reports on ctDNA biosensors,
partly due to the small sizes of ctDNA. Compared with PCR and gene sequencing, ctDNA
biosensors are of lower cost and higher sensitivity, and are easier to integrate and carry,
making them more suitable for on-site detection and mobile medical development.

In the following, different biosensing approaches applied to ctDNA detection are
discussed based on the existing ctDNA biosensor reports.

3. Nucleic Acid Probe-Based Detection

Nucleic acid identification biosensors are widely used in clinical diagnosis [30,31],
microbial detection [32], and environmental monitoring [33] because of their high sensitivity,
fast response, simple operation, low price, and miniaturization. The probe can recognize
the target DNA molecule by specific hybridization and convert the reaction into an electrical
signal for analysis.
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3.1. PNA Probe

At present, DNA sensors mainly use peptide nucleic acid (PNA) as a probe to specif-
ically bind ctDNA to capture the target DNA. Since there is no electrostatic repulsion
between PNA and DNA, the ability of PNA to hybridize with DNA molecules is superior
to DNA/DNA. The PNA probe is fixed on the surface of the sensor using covalent bond
modification technology, that is, the sulfhydryl group of PNA forms a Au–S bond with
the gold electrode, so that the PNA is immobilized on the electrode surface. Cai et al. [34]
proposed a dual biomarker detection platform based on a PNA probe fixed with gold
nanoparticles and lead phosphate apoferritin for the detection of PIK3CA gene tumor
characteristic mutation and methylation in order to quantify ctDNA. DNA methylation
refers to the DNA methylation transfer enzyme under the action of the genome CpG dinu-
cleotide cytosine 5 carbon covalent bond combined with a methyl group. The results were
quantified using SWV detection by an electrochemical workstation.

First, a large amount of PNA was fixed on the surface of a screen-printed electrode
(SPE) with gold nanoparticles as the carrier through covalent bonds. The SPE electrode
consists of a carbon working electrode, a carbon auxiliary electrode, and an Ag/AgCl refer-
ence electrode. PNA probes can form stable complexes with DNA through complementary
base-pairing or Hoogsteen base-pairing principle [35,36]. Serum samples were collected
from ten cancer patients, and four of them were randomly selected for the experiment.
When a solution of ctDNA with mutant sites was dropped onto the SPE’s working electrode,
the mutant sites bound to the PNA probe in a complementary and specific way. Afterwards,
monoclonal antibody carrier lead phosphate apoferritin (LPA) solution was added, which
could amplify the selectivity of ctDNA, thus enhancing the electrochemical detection signal.
In contrast, when normal ctDNA (ncDNA) solution was dropped to the electrode, ncDNA
could neither bind complementary to the PNA probe nor bind to mAb-LPA, resulting
in almost no potential change. Compared to normal cells, the genetic changes after cell
carcinoma were increase of the methylation level of the anti-cancer gene and decrease of
the methylation level of the primary cancer gene. Therefore, abnormal levels of ctDNA
methylation also can be used to verify whether a tumor is present in the body. This new
method based on DNA probe complementation had excellent selectivity and ultra-high
sensitivity, and the detection limit was 1.0 × 10−14 mol/L.

To further improve the selectivity of a PNA-probe-based ctDNA sensor, Das et al. [37]
designed a DNA clutch probe to prohibit the recombination of ssDNA stands. The DNA
double-helix structure denatured at 90 ◦C to form ssDNA, and then DNA clutch probes
were added to prevent ssDNA chains from rebinding. Clamp for wild-type was added
to bind to the wild-type target ssDNA and keep the mutant target ctDNA still single-
stranded. PNA probes on nanostructured microelectrodes bound to mutant target DNA.
Finally, the signal generated from individual sensors was measured in the presence of an
electrocatalytic reporter system using differential pulse voltammetry. The PNA probe was
fixed on the gold electrode by covalent bonding method, which specifically bound the
mutated target gene ssDNA, resulting in the change of electrode potential. The sensor
successfully detected mutated ctDNA in samples from lung cancer and melanoma patients.
Nguyen et al. [38] captured and enriched 69 bp PIK3CA ctDNA using peptide nucleic
acid (PNA) as a probe. The ultra-sensitive detection of tumor-specific mutations (E542K
and E545K) and ctDNA methylation of PIK3CA gene were performed using a coupled
plasma model based on local surface plasmon resonance (LSPR) and gold nanoparticles
(AuNPs). The integrated biosensor system included a dark field microscope, spectrometer,
and CCD camera for illumination, acquisition, and Rayleigh scattering spectrum signal
conversion. Immunogold colloid was used as an enhanced secondary reaction based on the
methylation detector and plasma coupling to detect and amplify methylation by specifically
binding immunogold colloid to CpG sites of methylation on ctDNA sequence. To mimic
clinical samples, 50 fM ctDNA of E542K and E545K was added to commercial human
serum (H4522, Sigma-Aldrich, USA), and the mixture was injected into a biosensor, which
was controlled at 62 ◦C. When ctDNA molecules bound to the PNA probe, the refractive
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index (RI) of the biosensor surface changed, resulting in an obvious LSPR peak shift. The
concentration of ctDNA was determined according to the peak shift distance. The limit
of detection (LOD) of ctDNA was 50 fM in the range of 50–3200 fM, corresponding to the
LSPR peak offset of 4.3 nm.

3.2. DNA Probe

For the detection of ctDNA, Mahbubur et al. [39] modified graphene-oxide-coated
gold nanoparticles onto the glassy carbon electrode and fixed the target probe through
the π–π interaction between DNA bases to detect the ctDNA of the PIK3CA gene in the
peripheral blood of gastric cancer. The hybridization of the probe DNA with ctDNA caused
the resulting dsDNA to detach from the electrode’s surface, leading to an increase of
electrical current. The detection limit was as low as 1.0 × 10−20 mol/L. This method can be
used to analyze ctDNA in serum samples of cancer patients, which has great potential for
the application of ctDNA detection in real-time detection research.

Zhang et al. [40] established a MoS2 nanosheet polymer biosensor based on poly-
xanthurenic acid film functionalization. As described in Figure 3, these polymer biosensors
were electropolymerized by poly-xanthurenic acid (PXA) on the surface of a MoS2 electrode
that was prepared in advance, thus forming an ideal interface for the PIK3CA gene ex-
pressed in the peripheral blood of patients with gastric cancer. Then, the probe ssDNA was
directly fixed on the PXA/MoS2 nanocomposite, and the change of self-signal after ssDNA
hybridization with target DNA was induced by cyclic voltammetry and electrochemical
impedance spectroscopy. The limit of detection of the polymer biosensor was reported to
be 1.8 × 10−17 mol/L for the PIK3CA gene [40].
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Figure 3. Schematic display of high-performance polymer biosensor based on poly-xanthurenic-acid-
functionalized MoS2 nanosheets.

Zhao et al. [41] prepared nanocomposite MWCNT–PDA–Au–Pt by uniformly dispersing
Au–Pt alloy nanoparticles on MWCNT–PDA. The nanocomposite MWCNT–PDA–Au–Pt
had a good reduction effect on H2O2 and could amplify the current response. It could be
mixed with signal probe (SPs) and 6-mercapto-1-hexanol (MCH) to form SPs-label, which
was used to construct the electrochemical biosensor. The capture probe (CPs) was fixed on
the surface of the screen-printed gold electrode (SPGE) by Au–S bond. Both SPs and CPs are
DNA. CPs recognized and captured the target ctDNA. Then, SPs-label was added in order
to form a sandwich structure by base-pairing (See Figure 4). The ctDNA samples have been
linked to triple-gene-negative breast cancer. When the target ctDNA was detected, the current
characteristics changed significantly, and the corresponding current was lower than that
when ctDNA was not detected. The linear detection range of the ctDNA biosensor was from
1 × 10−15 mol/L to 1 × 10−8 mol/L, and the detection limit was as low as 5 × 10−16 mol/L.
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In 2018, Wang et al. [42] designed a multifunctional label-free circulating tumor DNA
KRAS G12DM enzyme electrode biosensor based on the terminal deoxynucleotide trans-
ferase (TdT) and ribonucleic acid HII (RNase HII) dual-enzyme co-group amplification
strategy. As shown in Figure 5, the biosensor consisted of a triple-helix molecular switch
(THMS) as molecular recognition and signal transduction probe and ribonuclease HII
(RNase HII) and terminal deoxynucleotidyl transferase (TdT) as dual enzyme assisted
multiple amplification accelerator. Signal transduction probe (STP) was released under
the action of RNase HII, and the capture probe fixed on the gold electrode was hybridized
with STP, and then, TdT was used to achieve TdT-mediated cascade expansion to generate
a stable DNA dendritic structure. Finally, the electrically active molecule methylene blue
(MB) was obtained. Ten clinical plasma samples were tested, including five from colorectal
cancer patients and five healthy donors. The labeled electroactive tree achieved highly
sensitive and accurate detection of ctDNA. The limit of detection was down to aM.
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In order to improve the detection accuracy of ctDNA by sensor, Peng et al. [43]
generated sea-urchin-shaped gold nanocrystals (U–Au) by the synergies of CTAC, KBr,



Biosensors 2022, 12, 649 7 of 16

KI, and L-glutathione. U–Au-modified multigraphene aerogel was prepared on a glass
carbon electrode (GCE). The aim was to achieve cyclic amplification induced by target
DNA. DNA probe 1 (P1) with methylene blue (MB) was hybridized with DNA probe 2 (P2)
with ferrocene (Fc) to form double-stranded DNA, which was linked to U–Au by Au–S
bond. Catalytic REDOX of Fc and MB enhanced the detection signal. This biosensor was
used to detect the ctDNA of KRAS gene associated with colorectal cancer in diluted serum
samples. In the presence of target DNA, ctDNA complementary paired with Hairpin DNA
1 (H1) on the electrode surface through base-pairing, forming an open hairpin structure of
H1, triggering the target DNA-induced cycle, making more MB probes move closer to the
electrode surface and more Fc probes move away from the electrode surface, resulting in
an increase in the peak current of MB. The peak current of Fc was reduced, thus realizing
the detection of ctDNA. The electrochemical response increased with ctDNA concentration
from 0.1 fM to 1 × 106 fM, and the detection limit was reported to be 0.033 fM.

Li et al. [44] made silicon nanowire (SiNW) array sensors on silicon-on-insulator (SOI).
The preparation process of the sensor is shown in Figure 6. First, the entire surface of the
sensor was treated with oxygen (O2) plasma and then immersed overnight in APTES and
99.5% ethanol at room temperature. The carboxyl groups at the end of the probe DNA
were activated by a mixture of NHS and EDC (1:1) prior to immobilizing probe DNA.
Subsequently, the specific single-stranded DNA (ssDNA) probe of PBS was assembled
on the surface of SiNW, and the recognition functional layer (ssDNA/SINW-array FET)
was formed on the surface of the sensor. For the biosensing experiments, blood samples
were collected from ten healthy volunteers and five of them were randomly selected.
Serum samples were separated by centrifugation of the supernatant at 3000 rpm for 15 min.
Finally, PIK3CA E542K ctDNA solution was pipetted into the PDMS well for specific
recognition and detection of ctDNA. The experimental results showed that the biosensor
has obvious advantages in ctDNA detection. The detection range of ctDNA concentration
was 0.1 Fm–100 pM, and the ultra-low detection limit was reported to be 10 aM, with
good linearity.
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In 2022, Miao et al. [45] proposed the concept of DNA nanostructure transformation
and used the principle of DNA bipedal walker and base complementary pairing based on
DNA nanostructure transformation to specifically recognize ctDNA. First, a DNA walking
track was constructed on the surface of the gold electrode. Cytosine-rich probe A was
fixed on the electrode through Au–S chemical bond, and probe B was connected through
Hoogsteen reaction. Alkaline conditions could destroy the reaction, release probe B, and
allow the electrode to regenerate and realize recycling. The target opened probe E to expose
the template sequence, which was polymerized under the action of polymerase to form the
double chain containing the cutting site, and then generated the fragment with the same
sequence as the target under the action of the incision enzyme. A large number of single
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chains were obtained under multiple cycles. Dumbbell-shaped probe D released two rings
under the action of the single-chain product, and the 5′ and 3′ ends of probe D combined to
form a wheel shape. DNA enzymes on the wheel-shaped DNA encouraged the walker to
walk, the track on the electrode surface was cut, and the electrochemically active substance
disengaged from the electrode, causing the signal to weaken. Continuous SDA and walking
nanomachines could achieve double amplification, ensuring the ultra-high sensitivity of
ctDNA detection. Clinical samples were collected from both healthy individuals and
breast cancer patients. After peripheral blood samples were collected and centrifuged, the
serum was diluted 10-fold with 10 mM Tris-HCl. For the detection experiments, the DNA
assembly on the electrode surface was characterized by chronocoulometry (CC), EIS, CV,
and SWV. The concentration of ctDNA was calculated using the measured peak current of
SWV and relevant formulas. The detection limit of this method was reported to be as low
as 2.2 aM, and the specificity was strong.

Liu et al. [46] developed a rapid, accurate, and cost-effective assay for the detection of
ctDNA EGFR L858R based on the CRISPR/Cas12a system and MB/Fe3O4@COF/PdAu
nanocomposites. The schematic of this approach is shown in Figure 7. The CRISPR/Cas12a
system has played an increasingly important role in the precise identification of ctDNA
targets and cuts of single-stranded DNA. MB/Fe3O4@COF/PdAu nanocomposites had
good catalytic activity and signal amplification performance. In the absence of target DNA,
the trans-cleavage activity of Cas12a was silenced and the single-stranded DNA remains
intact. Thus, the immobilized CP1 and MB/Fe3O4@COF/PdAu/CP2 nanocomplexes
could bind with single-stranded DNA by complementing 5′ and 3′ single-stranded DNA,
respectively, resulting in relatively high MB signals. When the target was present, CP1 and
CP2 could not be linked by single-stranded DNA, because Cas12a trans-cleavage activity
was activated to cleave nonspecific single-stranded DNA. Therefore, the MB signal was
reduced relative to the background. Therefore, ctDNA EGFR L858R could be quantitatively
detected according to the change of current. The linear range of the electrochemical
biosensor was 10 aM–100 pM, and the detection limit was 3.3 aM. This sensor provides a
high-precision, reliable, and convenient ctDNA detection method, which has good potential
in the diagnosis and prognosis of cancer.
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Using a 3D graphene-like homogeneous carbon structure (3D-GHC600) loaded with
gold platinum (AuPt), Chen et al. [47] developed a ctDNA electrochemical biosensor
with a low detection limit and high selectivity. The synthesis process of AuPt/3D-GHC600
composite catalyst and the preparation steps of ctDNA electrochemical biosensor are shown
in Figure 8. The advantages of 3D-GHC600 include large area, abundant mesoporous
nature, uniform size and morphology, and 3D structure. AuPt was formed on the 3D-
GHC600 surface by in situ reduction reaction. In addition, the catalyst was used as a
tag for signal probes (SPs). The hybridization reaction is accomplished by layer-by-layer
recognition of captured probe (CPs), target DNA (ctDNA), and SPs markers on the electrode,
resulting in sandwich-like structures. In ctDNA detection analysis, the current signal
from the electrocatalytic reduction of H2O2 by SPs labeling was recorded. The ctDNA
biosensor showed good performance, including a linear range of 10−8 M–10−17 M and a
detection limit of 2.25 × 10−18 M. The sensor also showed excellent selectivity, satisfactory
reproducibility, good stability, and excellent recovery.
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3.3. RNA Probe

Uygun et al. [48], for the first time, modified the inactivated Cas9 (dCas9) protein and
synthetic guide RNA (sgRNA) on a graphene oxide screen-printed electrode (GPHOXE)
as a biometric receptor for labeling free detection of circulating tumor DNA (ctDNA).
This was achieved by sequence-specific recognition and EIS analysis to detect tumor-
associated mutations (PIK3CA exon 9 mutations); the biosensor modified by dCas9–sgRNA
is shown in Figure 9. Covalently modifying the activated electrode with dCas9 reduced
the impedance curve due to the reduced number of freely available carboxyl groups,
which kept the REDOX probe away from the surface, while the positively charged dCas9
protein attracted the REDOX probe, which reduced the electron transfer resistance. On
the contrary, when sgRNA modification and ctDNA were successfully combined, electron
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transfer resistance increased significantly. The dCas9–sgRNA modified biosensor had a
linear detection range of 2–20 nM for 120 bp ctDNA within 40 s. The calibration curve
showed good linearity, with the lowest detection limit (LOD) calculated at 0.65 nM and the
lowest quantification limit (LOQ) calculated at 1.92 nM.
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4. Antibody Probe-Based Detection

Antibodies have been widely used in disease diagnosis and treatment, food safety
control, and environmental monitoring [49]. Specific binding by an antibody is the founda-
tion for the detection of pathogens, micro-molecules, cells, bacteria, and other molecules
with biological characteristics. Detection based on antibody probe has the advantages of
reducing non-specific interference and lowering the lower limit of detection. Antibody
specific to target ctDNA is immobilized on the electrodes. Captured ctDNA was detected
by electrochemical method or enzyme-linked immunosorbent assay.

At present, DNA site-specific methylation has been increasingly used as a biomar-
ker [50–52]. In addition, ctDNA methylation is an important epigenetic modification to
control tumors, and detection of ctDNA methylation level can effectively determine the
degree of malignancy of tumors [53]. The methods for analyzing ctDNA methylation
mainly include PCR, sequencing, microarray, etc., but all these methods require ctDNA
pretreatment [54,55]. In contrast, 5-methylcytosinine (5-mC) monoantibodies can be di-
rectly immobilized on the electrode by covalently coupling method, which can be used
to capture methylated ctDNA without sample pretreatment. In 2018, Povedano et al. [56]
proposed to use a 5-mC single antibody as a ctDNA receptor and used a hydrogen perox-
ide/hydroquinone (H2O2/HQ) system to process screen-printed carbon electrodes (SPCE)
for ampere testing. Two biosensors were proposed, one with anti-5-mC as the bioreceptor to
perform sandwich immunoassay, and the other with specific DNA probe and anti-5-mC as
bioreceptors to detect methylated DNA. Among them, DNA probes and anti-5-mC sensors
are sensitive for detection of bioreceptors and can detect gene-specific methylation. In 2019,
Povedano et al. [57] reported that their ctDNA biosensor was able to detect methylation in
RNA with a lower limit of 1.25 × 10−15 mol/L without changing the modified antibody of
the sensor. Compared with traditional methods, the sensor electrode physically adsorbs
the antigen, which is simple to operate and low in cost, and can specifically identify ctDNA
methylation. Therefore, the sensor strategy is more suitable for applications in the field
of real-time detection and mobile health care. As shown in Figure 10, this immunosensor
used two different antibodies. The first of them was a 5-mC antibody immobilized on
the surface of carboxylic-acid-modified magnetic beads, capable of capturing any ssDNA
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with ctDNA methylation sequence. The second was an antibody labeled with peroxidase
(HRP-anti-ssDNA) as a signaling antibody, recognizing any ssDNA.
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5. Other ctDNA Biosensing Methods

For the completeness of the discussion on ctDNA biosensors, the optical sensing
methods of ctDNA are briefly presented as follows. Chang et al. [58] proposed a fluores-
cence polarization method to detect ctDNA based on DNA dissociation probe and chain
exchange mechanism and used toehold-mediated strand displacement reaction (TSDR) to
identify the specific binding of probes to target mutated DNA to generate fluorescence
for qualitative analysis. Jin et al. [59] designed and synthesized a water-soluble cationic
fluorescent probe and found that fluorescence intensity was linearly proportional to ctDNA
concentration at a certain concentration. Chen et al. [60] combined the binding function of
peptide nucleic acid (PNA) with the terminal protection function of small molecule linked
DNA (TPSMLD) and developed a dual-recognition fluorescent biosensor for the detection
of circulating tumor DNA (ctDNA); ctDNA with a low detection limit of 0.3161 pM and
good selectivity was obtained by targeting ctDNA with tumor-specific E542K mutation and
methylation of PIK3CA gene. Zhai et al. [61] proposed a new ctDNA sensing strategy based
on flow cytometry combining enzyme-free amplification and magnetic separation; ctDNA
can trigger a hybridization chain reaction to generate a fluorescent long line assembly of
DNA and can be further captured by magnetic beads to present fluorescence signals by
flow cytometry.

In addition, Pyrak et al. [62] reviewed the most important types of nanosensors based
on surface-enhanced Raman spectroscopy (SERS) for DNA detection. This method can also
be used to detect ctDNA. SERS takes advantage of the significant increase in the efficiency
of Raman signal generation caused by local electric field enhancement near plasmonic
(usually gold and silver) nanostructures. Because of its ultra-low detection limit, it is
particularly useful in practical analytical applications. According to this method, Zhou
et al. [63] proposed a new design idea: construction of SWNT-based SERS assay coupling
with RNase HII-assisted amplification for highly sensitive detection of ctDNA in human
blood. The limit of detection of the new method was reported to be 3.0 × 10−16 mol/L for
the KRAS G12DM gene. Conteduca et al. [64] explored the limits of multipath near-field
optical trapping and proposed optical trapping of tiny particles, such as DNA fragments,
viruses, and vesicles, based on nanostructures. Optical trapping manipulates cells and
single molecules by using the force of light. This possibility of capturing large numbers of
objects in parallel optics with limited energy and without the need for complex setups will
open up new research in many areas of biology and medicine.

Especially important, Li R et al. [65] proposed an amplified colorimetric biosensor
for ctDNA. The colorimetric biosensor utilized the amplification property of HCR and
high peroxidase with asymmetric catalytic activity to split G-quadruplex DNA zymes,
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which produces color signals in the presence of ctDNA; this has been successfully applied
in complex biological environments such as human blood plasma for ctDNA detection,
with the detection limit corresponding to 0.1 pM. Wang et al. [66] developed a rapid cen-
trifugally assisted colorimetric assay using gold nanoparticles (AuNPs) combined with
isothermal amplification to detect single nucleotide polymorphisms (SNPs) (G to C muta-
tions) in KRAS and p.G13D in ctDNA. The combination of the two amplification strategies,
isothermal amplification and centrifugally assisted assembly, was able to quantitatively
and qualitatively distinguish clinically relevant concentrations of approximately 150 nt
with a detection limit of 67 pM.

The realization of ctDNA detection based on fluorescent and colorimetric provides
valuable theoretical knowledge for ctDNA biosensors in the field of real-time detection and
mobile health. Although the detection method based on ctDNA optical reaction can be
better used in mobile medicine, its detection limit can only reach pM level; ctDNA detection
methods based on electrochemistry have higher sensitivity and detection limits can almost
reach the level of fM, as shown in Table 2.

Table 2. Comparison of different methods.

Receptor Target Species Electrode Electrochemical
Method

Linear Response
Range LOD Assay Time Reference

PNA probe
PIK3CA SPE SWV 50–10,000 fM 10 fM 30 min [34]

KRASBRAF Au DPV 1 fg/µL–100
pg/µL 1 fg/µL 30 min [37]

PIK3CA AuNPs CV/EIS 50–3200 fM 50 fM - [38]

DNA probe

PIK3CA GCE/rGO-
AuNS CV/EIS/DPV 0.01 aM–1 pM 0.01 aM - [39]

PIK3CA PXA/MoS2/CPE CV/EIS 0.1 fM–0.1 nM 18 aM - [40]
TNBC SPGE CV/EIS 1 fM–10 nM 0.5 aM - [41]
KRAS Au DPV 0.01 fM–1 pM 2.4 aM 30 min [42]

KRAS
MCH/MB-P1-Fc-

P2/U-Au-
MGA/GCE

DPV 0.1 fM–1 nM 0.033 fM 60 min [43]

PIK3CA SiNW I–V characteristics 0.1 fM–100 pM 10 aM - [44]
KRAS Au EIS/CV/SWV 10 aM–100 fM 2.2 aM 155 min [45]
EGFR Au/GCE Chronoamperometry 10 aM–100 pM 3.3 aM - [46]

ctDNA SPGE Chronoamperometry 10−8 M–10 −17 M 2.25 × 10−8 M - [47]

RNA probe PIK3CA GPHOXE/dCas9-
sgRNA EIS 2–20 nM 0.65 nM 40 s [48]

Antigen/
antibody- based

RASSF1A SPCE Amperometric detection 23 pM–24 nM 6.8 pM 45 min [56]RASSF1A SPCE 139 pM–5 nM 42 pM 60 min
5-mC MGMT SPdCEs Amperometric detection 4.0–250 pM 1.25 fM <90 min [57]5-hmC MGMT SPdCEs 1.44–100 pM 0.43 pM <90 min

6. Future Perspectives

Along with the rise of the family physician industry, the demand for portable, versatile,
and reliable medical diagnostic tools have increased, so electrochemical biosensors for
ctDNA detection have great potential in point-of-care testing applications. While ctDNA
provides new markers for cancer detection, many limitations exist for ctDNA detection by
electrochemical biosensors. Current electrochemical biosensors can only detect a known
specific biomarker, and clinical diagnosis requires detecting one or more targets in the case
of unknown mutations, so ctDNA detection sensors are far from clinical applications and
further research is needed. In addition, most sensors have only one detection channel and
cannot detect multiple samples at the same time, so the detection throughput is low, and
array-based, high-throughput sensors based on microfluidic systems will become the trend.
Due to the low abundance of ctDNA in precancerous lesions and early-stage cancer, the
sensor is required to have lower detection limits and high specificity. Based on the above
research, it can be found that the application of nanomaterials to increase the electrode
surface area and conductivity can improve the sensitivity of the electrode sensor signifi-
cantly. Currently, although the detection of ctDNA by electrochemical sensors has achieved
remarkable results, it cannot completely replace traditional tumor imaging technology yet.
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It is also necessary to combine biosensors with other methods for comprehensive analysis
to minimize the damage to the human body during the sampling and diagnostic process.

7. Conclusions

This paper reviews the new advances in electrochemical biosensors for the detection
of ctDNA. Among the traditional and common clinical technologies for ctDNA detection,
PCR and DNA sequencing are mainly used, but these technologies require expensive
instruments and complex operations and have low sensitivity and frequent false positives,
which are not suitable for point-of-care testing and the Internet of Things. Sensitive and
specific biosensors with simpler operation and real-time monitoring will become a powerful
tool for the detection of ctDNA. As biosensors can be easily made into portable and low-cost
devices, the biosensors will become a trend of the new technological revolution in ctDNA
detection and point-of-care testing. This review mainly analyzed the detection of ctDNA by
electrochemical biosensors with details on the strategies of sensor modification and signal
amplification. This paper followed with an introduction of other biosensing methods for
ctDNA detection. At present, the implementation of these methods in the field of precision
medicine and mobile health is full of opportunities and challenges, with many challenges
to be overcome.
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