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Abstract: The regulation of nervous and cardiovascular systems and some brain-related behav-
iors, such as stress, panic, anxiety, and depression, are strictly dependent on the levels of the main
catecholamines of clinical interest, dopamine (DA), epinephrine (EP), and norepinephrine (NEP).
Therefore, there is an urgent need for a reliable sensing device able to accurately monitor them in
biological fluids for early diagnosis of the diseases related to their abnormal levels. In this paper,
we present the first tyrosinase (Tyr)-based biosensor based on chitosan nanoparticles (ChitNPs) for
total catecholamine (CA) detection in human urine samples. ChitNPs were synthetized accord-
ing to an ionic gelation process and successively characterized by SEM and EDX techniques. The
screen-printed graphene electrode was prepared by a two-step drop-casting method of: (i) ChitNPS;
and (ii) Tyr enzyme. Optimization of the electrochemical platform was performed in terms of the
loading method of Tyr on ChitNPs (nanoprecipitation and layer-by-layer), enzyme concentration, and
enzyme immobilization with and without 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)
and N-hydroxysuccinimide (NHS) as cross-linking agents. The Tyr/EDC-NHS/ChitNPs nanocom-
posite showed good conductivity and biocompatibility with Tyr enzyme, as evidenced by its high
biocatalytic activity toward the oxidation of DA, EP, and NEP to the relative o-quinone derivatives
electrochemically reduced at the modified electrode. The resulting Tyr/EDC-NHS/ChitNPs-based
biosensor performs interference-free total catecholamine detection, expressed as a DA concentration,
with a very low LOD of 0.17 µM, an excellent sensitivity of 0.583 µA µM−1 cm−2, good stability, and
a fast response time (3 s). The performance of the biosensor was successively assessed in human
urine samples, showing satisfactory results and, thus, demonstrating the feasibility of the proposed
biosensor for analyzing total CA in physiological samples.

Keywords: total catecholamine; tyrosinase; chitosan nanoparticles; amperometric biosensor; graphene
screen-printed electrode

1. Introduction

Catecholamines (Cas) are both neurotransmitters and hormones that play fundamental
roles in central nervous and cardiovascular systems [1–3]. High CA levels, in particular
dopamine (DA), epinephrine (EP), and norepinephrine (NEP), indicate cardiotoxicity
leading to tachycardia and heart failure [4]. In contrast, low levels of CA are responsible for
several neurological diseases, such as Parkinson’s disease, Alzheimer’s disease, epilepsy,
stress, and depression [5,6]. Therefore, accurate monitoring of these important biomarkers
in serum, blood, and urine is very important in early diagnostics [7].
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To address this issue, several analytical methods have been developed for in vitro CA
monitoring, such as high-performance liquid chromatography (HPLC) [8], HPLC with tan-
dem mass spectrometric detection [9–11], fluorescence [12], and field-effect transistor [13]
methods. These methods show high sensitivity and selectivity but require sophisticated and
expensive equipment, time-consuming procedures, and skilled operators. Electrochemical
methods represent an interesting alternative thanks to their unique advantages, such as
their low cost, rapid response, simple operation, and capability for in situ detection [14–17].

Unlike glucose, CAs are redox-active compounds that are easily oxidized in a potential
window between 0 and 0.4 V vs. Ag/AgCl [18], depending on the electrode modification.
Therefore, total CA concentration can effectively be measured without the use of redox
mediators and/or enzymes. The direct oxidation of DA, EP, and NEP on different electrode
platforms allowed for the development of several sensors for CA detection [19–25]. How-
ever, these sensors suffer from relatively high oxidation potential and electrode surface
passivation values due to the electrogenerated phenoxy radicals [26,27]. To this end, at-
tempts at the bio-catalytic oxidation of CA, in particular DA and NEP, have been realized
by integrating the Tyr enzyme with conductive nanomaterials and/or polymers on the
electrode surface [28,29], leading to significant increases in DA and NEP oxidation peaks
with concomitant cathodic shifts in their peak potential. Nevertheless, signal interference
from other biological molecules, such as ascorbic acid (AA) and uric acid (UA), which
show similar oxidation potentials with overlapping voltametric signals, represents another
critical issue for CA detection based on oxidation signals that may limit its applicability. To
address this issue, Tyr-based biosensors for CA detection are mainly used by monitoring
the reduction signal of the bio-catalytically produced quinone compounds at a relatively
moderate potential (about 0.1 V vs. Ag/AgCl on a carbon electrode) [30–32], where no
electrochemical interference signal is present. Nanoparticles and/or nanostructures have
been integrated into different sensing platforms to enhance both biosensor sensitivity and
biosensor selectivity toward CA detection [32–40].

Tyrosinase (Tyr, polyphenol oxidase, EC 1.14.18.1) is a binuclear blue copper protein
that acts as a polyphenol oxidase [41]. It catalyzes two consecutive oxidation reactions in
presence of molecular oxygen, showing both monophenolase and diphenolase activity:
(i) the o-hydroxylation of phenols to guaiacol; and (ii) the oxidation of guaiacol to o-
quinones. The biosensor principle is the measurement of the increase in the cathodic
signal due to the electrochemical reduction of the o-catecholamine quinone involving two
electrons and two protons (Reaction 2), enzymatically generated on the electrode surface
by Tyr (Reaction 1), according to the following reactions:

Tyr catecholamine + 1/2 O2 → o-catecholamine-quinone + H2O (1)

o-catecholamine-quinone + 2H+ + 2e− → catecholamine + H2O (2)

The signal amplification is assured by the recycling of the o-catecholamine quinone by
Tyr enzyme, leading to an enhancement of the selectivity and sensitivity of the biosensor.
Therefore, the key factor in biosensor construction is adequate and effective Tyr immobi-
lization in order to enhance the catalytic activity. Common approaches utilized for Tyr
immobilization include carbon paste immobilization [42], sol–gel immobilization [43],
entrapment within electropolymerized conducting polymers [37], and physical adsorp-
tion [44]. A considerable amount of attention has been paid to the use of chitosan (Chit),
a polysaccharidic biopolymer composed of glucosamine with proper surface functional
groups for biological/chemical binding and/or rapid adsorption [45,46]. It has found a
great deal of applicability in sensing applications because of its non-toxicity, biocompat-
ibility, biodegradability, and low cost [45]. Thanks to its polycationic character, chitosan
can lock negatively charged proteins by charge attractions and hydrogen-bond interactions.
Moreover, the presence of reactive amino and hydroxyl groups in its linear structure allows
for covalent protein immobilization through the coupling chemistry via glutaraldehyde
or EDC/NHS cross-linking agents [47,48]. However, its poor electrical conductivity may
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limit its applicability. To overcome this issue, chitosan has generally been combined with
nanomaterials, such as graphene [49], multi-walled carbon nanotubes [50], and metallic
nanoparticles [20,34,36], as well as conducting polymers, such as polyaniline and polypyr-
role [51,52]. Chitosan nanoparticles (ChitNPs) with a size smaller than 100 nm showed
superior chemical and biological performances than pristine chitosan, making them an
excellent source for biomedical and biotechnological applications [53,54]. Thanks to their
high surface–volume ratio, they can be utilized in biosensing applications as enzyme immo-
bilization supports to achieve ultrasensitive detection of biomolecules. To date, only a few
reports have been published with this aim. Anusha et al. [55] immobilized glucose oxidase
(GOx) over ChitNPs on a gold electrode and, subsequently, Kim et al. [56] developed a
platform based on a poly-γ-glutamic acid/ChitNPs hydrogel, which embedded GOx and
magnetic nanoparticles.

In this paper, we report a new biosensing platform for the effective detection of total
catecholamine based on the immobilization of Tyr in ChitNPs by using the zero-length EDC-
NHS cross-linker on a graphene screen-printed electrode. To the best of our knowledge,
no reports are present in the literature on electrode platforms based on a ChitNPs/EDC-
NHS/Tyr nanocomposite for CA detection.

2. Experimental
2.1. Chemicals and Reagents

Tyrosinase (EC 1.14.18.1, 8503 U mg−1 from mushroom, Tyr), dopamine hydrochloride
(DA), epinephrine (EP), norepinephrine (NEP), chitosan (low molecular weight) (Chit),
sodium tripolyphosphate (TPP), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),
N-hydroxysuccinimide (NHS), ascorbic acid (AA), and uric acid (UA) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Phosphate buffer was prepared with Na2HPO4
and NaH2PO4. NaOH and HCl were used to adjust pH values. Graphene screen-printed
carbon electrodes (GPH/SPEs), used for biosensor construction, were purchased from
Dropsens (Metrohm Dropsense, Asturias, Spain, model DRP-110GPH, screen-printed
carbon electrodes modified with graphene).

2.2. Apparatus

Electrochemical measurements were performed in a 10 mL conventional three-electrode
thermostated glass cell (model 6.1415.150, Metrohm, Herisau, Switzerland) using a graphene
screen-printed carbon electrode (GPH/SPE) as a working electrode, an external Ag/AgCl/
KClsat electrode (198 mV vs. NHE) as a reference electrode (cat. 6.0726.100, Metrohm,
Herisau, Switzerland), and a glassy carbon rod as a counter electrode (cat. 6.1248.040,
Metrohm, Herisau, Switzerland). An Autolab Potentiostat/Galvanostat (Eco Chemie,
The Netherlands) was utilized in the electrochemical measurements. Scanning electron
microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) measurements were
performed with a High-Resolution Field Emission Scanning Electron Microscope (HR
FESEM, Zeiss Auriga Microscopy, Jena, Germany). The chronoamperometry experiments
were carried out using a Sensit/SMART portable potentiostat (PalmSens, Houten, The
Netherlands), a smartphone-based sensing device directly connected to a smartphone for
POC signal reading.

2.3. Synthesis of Chitosan Nanoparticles

Chitosan nanoparticles (ChitNPs) were synthesized according to an ionic gelation
process by adding 9 mL of chitosan dispersion (1 mg mL−1) to 3 mL of TPP solution
(1 mg mL−1) and stirring the solution for 2 h at 25 ◦C with gentle magnetic stirring until
an opalescent solution formed. The solution was successively centrifuged for 15 min at
6000 rpm, and the precipitated pellets were rinsed with DI water, dried, and used for
further characterization [57].
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2.4. Fabrication of TYR/ChitNPs-Modified Electrodes

Two different approaches were employed to immobilize Tyr and ChitNPs on a graphene
SPE (the layer-by-layer (LbL) method and the nanoprecipitation (Np) method).

2.4.1. Layer-by-Layer Method

The layer-by-layer method (LbL) consists of the direct deposition “layer-by-layer”
of each component of the electrochemical platform (ChitNPs and Tyr) onto the electrode.
LbL-Tyr/ChitNPs/GPH/SPE was prepared as follows:

(1) A total of 6 µL of ChitNPs solution (1 mg mL−1 in a water solution) was drop-cast
onto GPH/SPE and left to dry at room temperature in air for approximately 1 h;

(2) A total of 6 µL of Tyr solution (0.5 mg mL−1 in PBS 0.1 M, pH 7.2, KCl 0.1 M) was
drop-cast onto the GPH/SPE previously modified with ChitNPs and left to dry at
room temperature in air for approximately 1 h.

In the case of LbL-Tyr/EDC-NHS/ChitNPs/GPH/SPE, an additional electrode modi-
fication step was introduced between Step 1 and Step 2 by drop-casting onto the electrode
surface a mixture of 3 µL of EDC solution (0.5 mM in PBS 0.1 M, pH 7.2, KCl 0.1 M) and
3 µL of NHS solution (0.1 mM in PBS 0.1 M, pH 7.2, KCl 0.1 M).

Three electrodes of each type were prepared in order to evaluate the reproducibility of
the biosensor.

2.4.2. Nanoprecipitation Method

In the nanoprecipitation method (Np), Tyr and ChitNPs are co-precipitated in the
same solution. Briefly, a solution of ChitNPs (1 mg mL−1) was added to a solution of Tyr
(0.5 mg mL−1) under gentle magnetic stirring for 2 h at room temperature and subsequently
deposited onto the electrode surface. The Np-Tyr/ChitNPs/GPH/SPE was prepared by
drop-casting 12 µL of the Tyr–ChitNPs solution onto the GPH/SPE, which was then dried
at room temperature in air for approximately 1 h.

Three Np-Tyr/ChitNPs/GPH/SPEs were prepared in order to evaluate the repro-
ducibility of the biosensor.

2.5. Electrochemical Measurements

Cyclic voltammetry (CV) experiments were performed in PBS at a scan rate of 10 mV s−1.
Magnetically stirred PBS (0.1 M, pH 7.2, KCl 0.1 M) was used to perform amperometric
measurements. Electrochemical impedance spectroscopy (EIS) was performed at the open
circuit potential (OCP) without bias voltage in the 0.1–104 Hz frequency range using an
ac signal with an amplitude of 10 mV. Differential pulse voltammetry (DPV) experiments
were recorded from −0.6 to 0.6 V with an amplitude 20 mV and a step potential of −5 mV.
Baseline corrections were done for all DPV data using the NOVA software.

2.6. Preparation of Human Urine Samples

Human urine samples were diluted 100-fold with PBS (0.1 M, pH 7.2; KCl 0.1 M)
before all measurements.

3. Results and Discussion
3.1. Characterization of ChitNPs

The morphological analysis of ChitNPs was realized by field emission scanning elec-
tron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX). Figure 1
shows the FE-SEM images of a bare GPH/SPE before (Panel A) and after (Panel C) the
modification with ChitNPs. The bare GPH/SPE showed a densely packed rough surface,
consistent with previous literature [58]. The EDX spectrum confirmed the presence of
only carbon and oxygen, with an atomic percentage, calculated from the quantification of
the peaks, of about 98% and 2%, respectively (Figure 1, Panel B). The FE-SEM image of
ChitNPs/GPH/SPE shows aggregates of spherical nanoparticles with different diameters
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ranging from 70 to 300 nm (Figure 1, Panel C). The presence of the ChitNP aggregates may
be ascribed to the inter- and intra-molecular cross-linkages mediated by the interaction
of the positively charged amino groups of Chit and the negatively charged TPP ions [59].
The EDX spectrum of ChitNPs/GPH/SPE (Figure 1, Panel D) confirmed the presence of
C (96%), O (3%), and a lower amount of Na (0.5%), probably due to the use of the TPP
cross-linker in the procedure for the synthesis of ChitNPs.
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Figure 1. FE-SEM images and EDX spectra for GPH/SPE (Panel (A,B)) and ChitNPs/GPH/SPE
(Panel (C,D)). Experimental conditions: magnification, 20,000×; voltage, 1.50 kV.

All GPH/SPEs and ChitNPs/GPH/SPEs were subsequently characterized by cyclic
voltammetry (CV) experiments in a solution of Fe(CN)6

4− (data not shown) in order to
calculate the electroactive area (AEA), the heterogeneous electron transfer rate constant
(K0, cm s−1), and the roughness factor (electroactive–geometrical area ratio, ρ), which
are reported in Table S1. The AEA was evaluated using the Randles–Sevick equation
by the slope of the peak current vs. the square root of the scan rate (v1/2) [60]. The
K0 was calculated using the extended method, which merges the Klingler–Kochi and
Nicholson–Shain methods for totally irreversible and reversible systems, respectively [61,62].

3.2. Electrochemical Characterization of the Tyr/ChitNPs Biosensor Platform

The electrochemical characterization of the Tyr/ChitNPs platform was performed
using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
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3.2.1. Optimization of Methods for Loading Tyr on ChitNPs

Two different methods for loading Tyr on the ChitNPs/GHP/SPE platform were
investigated by CV experiments: (i) the nanoprecipitation method (Np); and (ii) the
layer-by-layer (LbL) method. Figure 2 shows the cyclic voltammograms of DA in the
absence (ChitNPs/GPH/SPE, black line) and the presence of Tyr enzyme immobilized
by the Np method (Np-Tyr/ChitNPs/GPH/SPE, red line), and the LbL method (LbL-
Tyr/ChitNPs/GPH/SPE, blue line) in comparison with Tyr enzyme immobilized on a
simple layer of unstructured chitosan (Tyr/Chit/GPH/SPE, green line) deposited by a
drop-casting method. Two well-defined redox peaks, due to the oxidation/reduction of
DA, are clearly visible on the bare electrode (black curve) without Tyr, while no redox peaks
are present with the Tyr/Chit/GPH/SPE electrode (green curve), attesting to the lower con-
ductivity of the unstructured chitosan layer [45] compared with nanostructured chitosan.
A similar result was obtained by recording the CVs of DA on a chitosan-modified elec-
trode in the absence of Tyr enzyme (Chit/GPH/SPE). The cyclic voltammogram of DA on
ChitNPs/GPH/SPE shows two clear redox peaks (Figure S1, black curve), while smaller ox-
idation and reduction peaks in the reverse scan can be observed with unstructured chitosan
(Figure S1, red curve), thus confirming that the nanostructuration strongly improves the chi-
tosan’s conductivity. Similar behavior was described by Marroquin et al. [63], who reported
that chitosan nanocomposite films realized with Fe3O4 and MWCNTs could simultaneously
have enhanced the mechanical properties, thermal stability, and electrical conductivity.
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Figure 2. CVs of 50 µM dopamine in PBS (0.1 M, pH 7.2, KCl 0.1 M) on a GPH/SPE (pink line), a
ChitNPs/GPH/SPE (black line), a Tyr/Chit/GPH/SPE (green line), a Np-Tyr/ChitNPs/GPH/SPE
(red line), and a LbL-Tyr/ChitNPs/GPH/SPE (blue line). Scan rate: 10 mV s−1.

An increase in the reduction peaks was observed for both Np-Tyr/ChitNPs/GPH/
SPE (Figure 2, red curve) and LbL-Tyr/ChitNPs/GPH/SPE (Figure 2, blue curve) due to
the reduction in the dopamine-o-quinone produced by the enzymatic reaction on the
electrode surface to DA [39], demonstrating that the immobilization of Tyr within the
nano-biopolymer greatly enhanced the catalytic activity of the enzyme. The reduction
peak current of DA on LbL-Tyr/ChitNPs/GPH/SPE was about three times higher than
that on Np-Tyr/ChitNPs/GPH/SPE, indicating the superior electrochemical perfor-
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mances of the LbL loading method in terms of the better electron transfer between the
dopamine-o-quinone and the electrode surface [64]. The results reveal that the LbL
immobilization method promotes the Tyr’s catalytic property better than the Np method
and probably plays a significant role in: (i) the improvement of enzyme immobilization
by favoring physical adsorption and the formation of electrostatic interactions between
positively charged ChitNPs [57] and negatively charged Tyr enzyme [41]; and (ii) facil-
itating the direct electron transfer between the substrate molecules and the modified
electrode surface.

3.2.2. Optimization of Tyr Concentration

The amount of immobilized enzyme is one of the most relevant parameters in electrode
modification. Figure 3 shows the effect of the concentration of Tyr, immobilized by the
LbL method on the Tyr/ChitNPs/GPH/SPE, on the cathodic peak current registered in
the presence of 50 µM DA. The intensity current differences (∆I), calculated as the current
differences obtained in the presence and the absence of Tyr, increase with decreasing
concentrations of Tyr immobilized on the electrode surface. The optimal Tyr concentration
was found to be 0.5 mg mL−1, attesting to the fact that electron transfer might be hindered
at higher enzyme concentrations. Lower concentrations were also tested, showing no
significant increase in the ∆I values.
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3.2.3. Tyrosinase Covalent Functionalization via EDC-NHS Coupling Chemistry

In order to enhance the efficacy of the Tyr-based biosensor, the Tyr covalent im-
mobilization strategy using EDC-NHS as a cross-linking agent was investigated. The
EDC-NHS coupling chemistry takes advantage of the properties of the EDC-NHS cross-
linker, which is able to form amide bonds between carboxyl and amine groups, as shown
in Scheme 1 [48]. In particular, the carboxyl groups of ChitNPs immobilized on the
electrode surface are activated by the EDC/NHS, forming a typical NHS-ester, and,
subsequently, the amino group from the Tyr enzyme acts on this NHS-ester, forming a
very strong covalent amidic linkage.
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Scheme 1. Schematic representation of the Tyr/EDC-NHS/ChitNPs/GPH-SPE electrochemical
platform and the CA biosensor mechanism.

Figure 4 shows the cyclic voltammograms of DA in pH 7.2 PBS on ChitNPs/GPH/SPE
(black line) and LbL-Tyr/ChitNPs/GPH/SPE without (blue line) and with (red line) the
EDC-NHS cross-linking agent. The reduction peak current of DA observed on LbL-
Tyr/EDC-NHS/ChitNPs/GPH/SPE was 1.5 times higher than that on LbL-Tyr/ChitNPs/
GPH/SPE, attesting to the enhanced electrochemical performances of the method based on
covalent functionalization compared with the LbL method utilizing simple electrostatic
interactions, probably thanks to the higher stability of the covalently immobilized Tyr for
enhanced biocatalysis.
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Figure 4. CVs of 50 µM DA in PBS (0.1 M, pH 7.2, KCl 0.1 M) on a ChitNPs/GPH/SPE (black
line), a LbL-Tyr (0.5 mg/mL)/ChitNPs/GPH/SPE (blue line), and a LbL-Tyr (0.5 mg/mL)/EDC-
NHS/ChitNPs/GPH/SPE (red line). Scan rate: 10 mV s−1.
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3.2.4. Electrochemical Impedance Spectroscopy Behavior of the Modified Electrodes

The EIS technique was used to investigate the electrochemical properties of the modi-
fied electrodes after each surface modification step. Figure 5 shows the Nyquist plots of
the ChitNPs/GPH/SPE (black), the Tyr/ChitNPs/GPH/SPE (blue), and the Tyr/EDC-
NHS/ChitNPs/GPH/SPE (red) in 5 mM [Fe(CN)6]3−/4− solution. The semicircle diameter
of the Nyquist plot represents the charge transfer resistance (Rct), which is related to small
changes at the electrode–electrolyte interface in the solution. The immobilization of a pro-
tein biomolecule over the electrode surface causes an increase in the Rct value that is related
to the hindering of the electron transfer between the redox probe and the electrode surface.
The impedance spectra were fitted by using the simple Randles circuit (R(Q(RW))) re-
ported in Figure 5. Experimental Rct values are in the following order: ChitNPs/GPH/SPE
(357 Ω) < Tyr/ChitNPs/GPH/SPE (403 Ω) < Tyr/EDC-NHS/ChitNPs/GPH/SPE (436 Ω)
due to the hampering effect of Tyr on the charge transfer. The Rct values confirm the
successful immobilization of Tyr enzyme on the electrode surface, resulting in strong
optimization with the use of the EDC-NHS cross-linker (red curve).
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Figure 5. Nyquist plots of GPH/SPE (green), ChitNPs/GPH/SPE (black), Tyr/ChitNPs/GPH/SPE
(blue), and Tyr/EDC-NHS/ChitNPs/GPH/SPE (red) measured in the presence of 5 mM
[Fe(CN)6]3−/4− containing 0.1 M KCl solution. The inset shows the equivalent circuit used for
fitting the experimental data.

3.3. Amperometric Response of Dopamine

Figure 6 (Panel A and B) illustrates a typical steady-state current–time response
upon successive additions of DA on Tyr/ChitNPs/GPH/SPE (Panel A) and Tyr/EDC-
NHS/ChitNPs/GPH/SPE (Panel B), showing a fast response time (3 s). The measurements
were carried out by immersing the modified electrode in blank PBS (0.1 M). Once a steady
baseline was achieved, DA was added to the solution, causing an increase in the ca-
thodic current due to the reduction in o-quinone generated by the enzymatic oxidation of
DA [64]. Thus, the target DA molecule was regenerated during the reduction reaction at
the electrode, allowing for the amplification of the electrochemical signal, which leads to
enhanced sensitivity [65]. Figure 6 (Panel C) exhibits the typical calibration curves of the
DA biosensors corresponding to the electrode platforms with (black curve) and without
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(red curve) EDC-NHS, both following Michelis–Menten kinetics. As can be seen in the inset
of Panel C, the linear range spanned from 4 µM to 12 µM with a regression equation of
y = 0.03325x + 0.0404 (R2 = 0.994) and from 0.5 µM to 5 µM with a regression equation of
y = 0.80066x + 0.0039121 (R2 = 0.997) in the case of the Tyr/ChitNPs/GPH/SPE biosensor
and the Tyr/EDC-NHS/ChitNPs/GPH/SPE biosensor, respectively. The biosensor based
on the EDC-NHS cross-linker showed a lower LOD of 0.17 µM and a two-fold higher sensi-
tivity of 0.583 µA mM−1 cm−2 compared with the corresponding biosensor without EDC-
NHS. According to the Lineweaver–Burk equation [66], the apparent Michaelis–Menten
constants (Kapp

M ) were 25.59 and 9.51 µM for the Tyr/ChitNPs/GPH/SPE biosensor and
the Tyr/EDC-NHS/ChitNPs/GPH/SPE biosensor, respectively. It is interesting to note
that the experimental Kapp

M value is lower than the KM value of the free enzyme towards
dopamine (KM = 2.2 mM) [67], attesting to the optimal accessibility of the target molecules
to the active sites of the enzyme. The electrochemical characteristics of the two biosensors
in terms of the Kapp

M , maximum current density, linearity range, LOD, and sensitivity are
summarized in Table 1.
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Figure 6. Typical chronoamperometric curves of Tyr/ChitNPs/GPH/SPE (Panel A) and Tyr/EDC-
NHS/ChitNPs/GPH/SPE (Panel B) upon successive additions of different concentrations of
DA to the stirred PBS (0.1 M, pH 7.2, KCl 0.1 M) (applied potential: 0 V vs. Ag/AgCl) and
the relative calibration curves of Tyr/ChitNPs/GPH/SPE (Panel C, red curve) and Tyr/EDC-
NHS/ChitNPs/GPH/SPE (Panel C, black curve) as a function of DA concentration. Inset: the
magnification of the linear range.
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Table 1. Comparison of the kinetic and analytical characteristics of DA biosensors with different
electrochemical platforms.

Modified
SPE

Kapp
M

(µM)
Jmax

(µA cm−2)
Linear Range

(µM)
LOD
(µM)

Sensitivity
(µA µM−1 cm−2) R2

Tyr/ChitNPs/GPH 25.59 ± 3.013 11.1 ± 0.84 4–12 1.36 0.275 0.994
Tyr/EDC-NHS/ChitNPs/GPH 9.51 ± 0.544 9.16 ± 0.009 0.5–5 0.17 0.583 0.996

3.4. Amperometric Response of Epinephrine and Norepinephrine

The Tyr/EDC-NHS/ChitNPs/GPH/SPE-based biosensor, which showed the best
performance, was utilized for EP and NEP detection. Chronoamperometric experiments
were performed at an applied potential of 0 V vs. Ag/AgCl as EP and NEP gave cathodic
peaks at the same redox potential of DA (curves not shown). The corresponding calibration
plots are reported in Figure 7, together with the calibration plot of DA (black curve) as a
comparison. Table 2 summarizes the analytical and kinetic performances of the proposed
biosensor for the three catecholamines studied, including the linear range, LOD, sensitivity,
maximum current density, and Kapp

M . The sensitivity of the DA biosensor was 5 times higher
than that of EP and NEP. The Kapp

M values were in the following order: DA < NEP < EP,
attesting to the stronger affinity and binding of the Tyr enzyme to DA, leading to a higher
catalytic activity [27].
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Table 2. Comparison of the kinetic and analytical characteristics of Tyr/EDC-NHS/ChitNPs/GPH/
SPE biosensors with different catecholamines.

Catecholamine Kapp
M

(µM)
Jmax

(µA cm−2)
Linear Range

(µM)
LOD
(µM)

Sensitivity
(µA µM−1 cm−2) R2

DA 9.51 ± 0.544 9.16 ± 0.009 0.5–5 0.17 0.583 0.996
EP 25.46 ± 1.095 4.95 ± 0.099 2–11 0.71 0.125 0.998

NEP 20.83 ± 2.2807 4.74 ± 0.323 1–11 0.40 0.132 0.995

The total catecholamine concentration is therefore expressed as a DA concentration,
thanks to the best analytical and kinetic performance of this biosensor.

Table 3 shows a comparison between the results obtained with our biosensor and other
Tyr-based biosensors for catechol and catecholamine recently reported in the literature.
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It is possible to observe that the proposed ChitNPs/graphene platform shows superior
analytical performances compared with the other platforms for CA detection, whereas
inferior performances can be observed when compared with Tyr-based catechol biosensors.
These results can be ascribed to the stronger affinity of the Tyr enzyme to catechol.

Table 3. Comparison of Tyr-based biosensors reported in the literature.

Catecholamine/Catechol Biosensor Platform Linear Range (µM) LOD (µM) Ref.

catechol Tyr/BOND/film electrode 5–120 2.35 [68]
DA Tyr/MWNT/GCE 50–1000 50 [69]

catechol PPy-NTs/PPO 0.1–35 0.0012 [70]
catechol PEDOT-rGO-Fe2O3-PPO 0.04–62 0.007 [71]
catechol Tyr-AuNPs-DHP/GCE 2.5–95 0.17 [72]
catechol Tyr-PAMAM-Sil-rGO/GCE 0.01–22 0.006 [73]
catechol Tyr/PAMAM/GO-CMC/GCE 0.002–0.4 0.0009 [74]
catechol Tyr/GO/GA/GCE 0.05–50 0.03 [31]

NEP Tyr-CDs-CA/Au-E 1–200 0.196 [29]
DA Tyr-CoP-Au 2–30 0.43 [27]
DA IDE/PEDOT-CNT-Tyr-GAD-HFR 100–500 11 [75]
DA Tyr-SWNTs-Ppy 5–50 5 [76]
EP
DA

Tyr/TBT-film/Au
Tyr/EDC-NHS/ChitNPs/GPH

0.1–50
0.5–5

0.06
0.17

[77]
this work

3.5. Selectivity

The selectivity of the Tyr/EDC-NHS/ChitNPs/GPH/SPE-based biosensor for DA was
investigated by recording the current response in the presence of potential interferents, which
can coexist in biological matrices. In particular, differential pulse voltammograms were
recorded in a solution containing a 100-fold concentration of ascorbic acid (AA) and uric
acid (UA) in the presence of DA. AA and UA usually show overlapping voltametric curves
on both unmodified and chemically modified electrodes [23]. As shown in Figure 8, three
well-resolved cathodic peaks were recorded at about −450, +100, and +400 mV for AA, DA,
and UA, respectively. The results clearly demonstrate that AA and UA did not significantly
interfere with DA detection, showing the high selectivity of the proposed biosensor.
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NHS/ChitNPs/GPH/SPE biosensor.
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3.6. Stability

The stability and lifetime of the biosensor for DA, EP, and NEP detection were investi-
gated by measuring the DPV responses of the biosensor every 5 days (10 measurements)
over a period of 30 days using a 10 µM solution of each CA (Figure S2). The biosensor
was stored in a dry refrigerator at 4 ◦C in between the measurements. The stability was
good as the biosensor retained about 90% of its initial current response after 30 days. These
results may be ascribed to the synergistic effect of the bio-nanocomposite including Chit-
NPs and graphene, which reduces the enzyme denaturation and the subsequent loss of
catalytic properties.

3.7. Real Sample Detection

Finally, the Tyr/EDC-NHS/ChitNPs/GPH/SPE-based biosensor was tested in human
urine samples spiked with known concentrations of DA in order to evaluate the effective-
ness of the biosensor in physiological samples. A fixed amount of DA (5 µM) was added
to three urine samples without any sample pretreatment. All measurements were done in
triplicate using chronoamperometry and the results are reported in Table 4. The recovery
rates ranged from 94% to 98% and the relative standard deviation (RSD) values did not
exceed 6.3%, demonstrating the efficacy of the proposed biosensor in real samples.

Table 4. Determination of DA in urine samples (n = 3) using the calibration curve from Figure 6.

Sample Added (µM) Found (µM) Recovery
(%)

RSD
(n = 3) (%)

Spectrophotometric
Method (µM)

Sample 1 5 4.8 96 4.2 5.10
Sample 2 5 4.9 98 2.1 5.25

The results were subsequently compared to those obtained with a standard spectropho-
tometric method used as reference (Table 3). An unpaired t-test was performed, and the
results show that there was no statistically significant difference in the DA quantification
between the proposed biosensor and the standard spectrophotometric method (t = −2429;
degrees of freedom = 4; p = 0.072). This result indicates the biosensor’s excellent capacity
to provide mean values close to those obtained when the same samples are measured by
using the standard spectrophotometric method.

4. Conclusions

In this work, we demonstrated the feasibility of developing an amperometric biosensor
for total catecholamine detection by using a novel electrochemical nano-platform based on
the immobilization of Tyr/ChitNPs on a graphene SPE. The ChitNPs were synthesized by
the ionic gelation process and subsequently immobilized with Tyr enzyme on the graphene
electrode through a layer-by-layer approach with and without EDC-NHS as a cross-linking
agent. The ChitNPs provided a friendly environment for Tyr immobilization, thus en-
hancing the catalytic activity of the enzyme and, at the same time, showing an improved
platform conduction pathway thanks to the higher conductivity compared with pristine
chitosan. The ChitNPs/EDC-NHS/graphene nanocomposite matrix showed superior elec-
trochemical performances, which can be attributed to the synergistic effect of graphene and
ChitNPs. The excellent conductivity and large surface area of the graphene electrode in
combination with the properties of the ChitNPs produced the good analytical performances
of the developed catecholamine biosensor in terms of a short response time (3 s), high sensi-
tivity, a low detection limit, good stability, and satisfactory recovery when tested in spiked
human urine samples. At the current state of research, the proposed ChitNPs/graphene
platform does not provide superior performance compared with other nanostructured
platforms for CA detection reported in the literature, but the ease of preparation and low
cost of the proposed ChitNPs make them a promising component and/or additive for
electrochemical biosensor platforms thanks to the described beneficial properties.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12070519/s1, Table S1: Electrochemical parameters related
to GPH/SPE and ChitNPs/GPH/SPE modiefied electrode: electroactive area (AEA), roughness
factor (ρ) and heterogenous electron transfer rate costant (K0). Experimental condition: 1.1 mM
Fe(CN)6

4− in 0.1 M KCl; Figure S1: CVs of 50 µM Dopamine in PBS 0.1 M (pH 7.2; KCl 0.1 M), on a
ChitNPs/GPH/SPE (black line) and Chit/GPH/SPE (red line); Figure S2: Stability measurements
over a period of 30 days in presence of 10 µM of DA (Panel A), EP (Panel B) and NEP (Panel C)
in PBS 0.1 M (pH 7.2; KCl 0.1 M); Figure S3: Optimization of applied potential with Tyr/EDC-
NHS/ChitNPs/GPH/SPE in 50 mM dopamine in 0.1 M PBS (pH 7.2; KCl 0.1 M).
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