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Abstract: A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast,
and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and
characterized. The transducer’s high selectivity is based on the specific interaction of a molecularly
imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential
refractometric measurements, including a correction system based on a non-imprinted polymer
(NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of
false positives in around 30%. The molecular imprinted binding sites were performed on the surface
of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU−1. The low-cost and easy
to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection
(LOD) and a sensitivity of 0.25 nmol/L (0.037 µg/mL) and 0.057 nm.L/nmol, respectively. The sensor
also successfully differentiates the target analyte from the other abundant elements that are present
in the human blood plasma.

Keywords: refractometric platform; optical sensing; long period fiber gratings; molecular imprinting;
IgG antibodies

1. Introduction

Optical sensors are a very interesting analytical platform for fast and real-time detec-
tion [1,2]. In the last years, they have been applied in different fields such as medicine [3],
general industrial [4,5], and environmental monitoring [6]. Taking different sizes and forms,
optical sensors can assume a preeminent role to transform chemical or physical interactions
between a sensing platform and an analyte into qualitative and/or quantitative informa-
tion. Advanced methods targeting chemical and biological contaminants in water [7] or
pathogens in health-care [8], are important to control the water quality or trace rapid and
reliable medical diagnosis.

In this context, silica single mode optical fibers are robust, low-cost, corrosion resistant,
have low attenuation at long distances, present immunity to electromagnetic interference,
are easy to install and easy to move, allowing in situ measurements [9]. Its biocompatibility
makes them suitable for chemical and biochemical functionalization, creating very interest-
ing sensing schemes for the detection of specific targets such as viruses, drugs, proteins,
antibodies, among others [10]. Additionally, some works using biofunctionalized optical
fibers with specific receptors such as aptamers [11,12], antibodies or anti-antibodies [13,14]
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have been recently reported. However, if the production of the firsts presents drawbacks
related with lack of simplicity and cost-effectiveness [15], the production of the others,
which relies on the use of animals and/or cell culture, are time consuming, expensive and
have limited shelf lifetime [16]. In this perspective, the efforts and progress achieved in
the research of molecular imprinting techniques helped in the development of synthetic
materials for specific recognition. Currently, molecularly imprinted polymers (MIPs) are
widely used to mimic natural receptors, assuming different formats, sizes and thicknesses,
ranging from nano- to micro-structures [17–19].

The most common technique to synthesize MIPs is the “Bulk Polymerization”. Briefly,
the imprinted material is polymerized around the template molecule (target analyte) which
is posteriorly removed. The resulted bulk polymers are crushed mechanically to a suitable
size, resulting in small particles with specific recognition sites [20]. However, this tech-
nique has some disadvantages due to the crushing process, leading to irregular shapes,
heterogeneous particle size, and partial or total destruction of the sites [21]. Despite those
drawbacks, some researchers have been reporting fluorescent sensors based on MIPs pro-
duced by this method, by doping the resulted beads with amine-reactive groups according
with the target analyte [22,23]. Besides, have been reported some progresses to overcome
the problem of the quality and reproducibility in the production of these synthetic materials,
by improving the polymerization techniques. Pluhar et al. used a two-phase technique,
applying a dispersed-phase to polymerize spherical particles and a mini-emulsion phase to
control the particle size avoiding agglomerations, producing pepsin selective MIPs. The
performance of the resulted sensing structures was evaluated by UV-Vis spectrometry [24].

Moreover, MIPs produced on a nanoscale are also of particular interest, displaying a
closer similarity to the natural antibodies: reduced number of binding sites per particle,
fast kinetics of interaction, and high affinities and selectivity [25,26]. The solid-phase
synthesis has been applied to produce artificial receptors for various diagnostic and life
science applications [27]. The process starts with the covalent immobilization of the
template onto a suitable solid support (e.g., spherical glass beads). The modified solid
support is placed into the monomeric solution and the polymerization initiates under
specific conditions, resulting in the formation of uniform spherical nanoparticles around
the templates. As main advantages, this technique allows the formation of just one binding
site per particle (mimicking monoclonal antibodies) and the process to extract the template
molecule allows the isolation of the high-affinity from the low-affinity nanoMIPs [28].
Canffarota et al. developed an ELISA-like format device for vancomycin detection, based on
molecularly imprinted nanoparticles using solid-phase polymerization [29]. Other works
involving pseudo-ELISAs using MIPs in substitution of natural antibodies can be found in
literature [30–32].

Other interesting technique relies on surface imprinting via grafting polymerization.
This method allows to create polymeric layers on planar or spherical (and cylindrical)
substrates by direct polymerization (covalently or non-covalently) on the surface of the
substrate (e.g., spherical particles, planar surfaces, optical fibers) in the presence of the
template molecule (with or without immobilization) [33]. The grafting process comprises
some advantages such as improved affinity interactions due to the fast mass transfer
induced by high analyte mobility, better control of the shape and morphology [20]. Riskin
et al. presented an enhanced sensitivity surface plasmon resonance (SPR) technology
by grafting gold nanoparticles to detect different chemical compounds, He and his co-
workers presented a MIP-coated optical fiber to evaluate dabrafenib, and Cennamo et al.
applied a similar approach to develop a system for SARS-CoV-2 detection [34–36]. Overall,
MIPs can be considered to be more versatile, cost-effective, and have extended shelf
lifetime compared with the common antibodies. However, the lack of toxicity studies
and their scarce use for practical applications leads to a demand for further investigations.
Nevertheless, these synthetic molecules have been showing many potential advantages to
developing a new family of biosensors, especially in optical sensing [37].
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Considering this, researchers in the field of optical sensing have directed their works
to combine MIPs together with optical transduction systems to develop new sensing plat-
forms such as optical fibers-based biosensors [38–40]. Additionally, fiber-optic evanescent
wave (FOEW) sensors, where the long-period fiber gratings (LPFGs) can be included,
are an interesting and promising technology to develop MIP-based optical sensors for
bio-applications [41,42]. However, despite the advantages linked to LPFGs for label-free
detection, these optical structures can work as true multi-parameter devices, being sen-
sitive to strain, torsion, and temperature changes [43,44]. Considering this, the optical
response of the LPFGs-based sensors needs to be carefully evaluated, namely in biosens-
ing. In this work, a new sensing platform is proposed to detect and evaluate the human
immunoglobulin G antibody (IgG).

The conventional methods for IgG identification are based on antigen-antibody speci-
ficity using methods such as enzyme-linked immunosorbent assays (ELISA) or cell/tissue
immunofluorescence [45]. Despite their high specificity and selectivity, those methods
involve laborious procedures, have limited multiplexing options and, require central-
ized laboratory equipment and specialized personnel, besides the respective drawbacks
associated with natural antibody production [46].

Several researchers, using different methods, have been reporting theirs works to the
scientific community in other to improve IgG quantitative and/or qualitative evaluation.
Yang et al. demonstrated a SPR gold-coated prism coupler sensor doped with a single
layer of graphene to detect IgG molecules by antigen-antibody specificity in a lower range
(0–250 ng/mL; unknown LOD); Shen et al. reported an electrochemical sensor based on
functionalized carbon nanotubes with ionic liquid, detecting IgG molecules in a range of
0.1–15 ng/L (LOD, 0.02 ng/L); and Choi et al. showed a nanoporous hydrogel photonic
crystal modified with protein A, displaying a range of operation from 0.5 to 10 mg/L
(LOD, unknown) [47–49]. Despite some promising results, there are still visible lacks
on information of cross-reactivity tests, and limit of detections. Further, probably MIPs’
greatest advantages are the expected enhancement of the reversibility and stability of the
sensing platforms when compared to those using natural antibodies.

The sensing scheme proposed in this work combines long-period fiber gratings and
molecularly imprinted polymers, produced by surface imprinting, carrying specific binding
sites targeting the analyte of interest. The platform includes a real-time correction system,
based on the non-imprinted polymer (NIP), allowing reliable detection of the target analyte.
Although it is possible to find works using optical fibers for IgG detection, from the best of
our knowledge there are no published works conjugating LPFGs and molecular imprinting
for the detection of this specific target and involving a correction system using the non-
imprinted polymer at the same time. The behavior of the sensor system was successfully
evaluated, assessing its sensitivity and selectivity.

2. Materials and Methods
2.1. Chemicals and Instrumentation

Sulfuric acid (p.a. 95–97%; Merck) and hydrogen peroxide solution (30 wt. % in
H2O; Sigma-Aldrich, St. Louis, MO, USA) were used to freshly prepared piranha so-
lution in 3:1 ratio, respectively. Allyltrimethoxysilane (ATMS, 97%, RI@20 ◦C = 1.4036;
Gelest) was used for SAM formation. Acrylamide (Aam, >99%; Sigma-Aldrich), N-terc-
Butylacrylamide (TBAam, 97%; Sigma-Aldrich), 2-Hydroxyethyl methacrylate (HEMA,
97%; Sigma-Aldrich), N,N′-Methylenebis(acrylamide) (BISAam, 99%; Sigma-Aldrich),
N-(3-Aminopropyl) methacrylamide hydrochloride (APMA, 96%; Sigma-Aldrich), ammo-
nium persulfate (APS, ≥98%; Sigma Aldrich) and N,N,N′,N′-tetramethylethylenediamine
(TEMED, 99%; Sigma-Aldrich) were used for the polymerization process. IgG from human
serum (≥95%; Sigma-Aldrich) was used as a template molecule and as target to build
and assess the sensor. Albumin from human serum (HSA; ≥97%, Sigma-Aldrich) and
transferrin from human blood plasma (HTR; ≥95%, Sigma-Aldrich) were used as com-
petitors. Phosphate buffered saline solution (PBS, 0.01 mol/L, pH 7.4; Sigma-Aldrich),
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deionized water (DIW; Wasserlab, type II Analytical Grade), ethanol (96%; LabChem),
sodium dodecyl sulfate (SDS; Sigma-Aldrich), sodium chloride (NaCl; Sigma-Aldrich), and
ethylene glycol (EG; >99%, Sigma-Aldrich) were also used. A standard single-mode optical
fiber (SMF28, Corning®) and a BraggMetter unit (HBK, Fibersensing) were used to develop
the sensor and to process the light signal, respectively.

2.2. Long-Period Fiber Grating

A set of LPFGs were fabricated by the induced arc-electric technique, as reported by
Rego (2016) [50], applying point-by-point electric arc discharges using a current of 9 mA
during 1 s, along 30 to 50 mm and a period of 415 µm, producing a modulation in the core
refractive index (RI). The created optical structure works as a wavelength filter, presenting
a spectrum with several attenuation bands which depends on the coupling conditions
from the core propagating mode to the co-propagating cladding modes. Each of these
attenuation bands corresponds to a different guided cladding mode and its wavelength
position strongly depends on the external refractive index. In general, as the external RI (n)
increases, the sensitivity of the LPFG enhances monotonically to a maximum value that is
established by the RI of the cladding mode (n2). When n = n2 the cladding mode becomes
unguided. If the RI of the core mode (n1) is not changed by n, the effect of the external RI
around the cladding can be expressed by:

(
dλ
dn

)
m
=

 dλ

dne f f
2,m

×
dne f f

2,m

dn

 (1)

where λ and ne f f
2,m are the transmitted spectra and the effective refractive index of the

radial cladding mode (Figure 1), respectively [51]. Further information about the spectral
characteristics of the LPFGs is presented in the Supplementary Material file.
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optical response (solid blue line) and blue shift (dashed blue line) due to refractive index change; 

and (c) picture of the LPFG microfabrication by electric arc setup, displaying the electric charge 

between two tungsten electrodes. 

  

Figure 1. Schematic presentation of: (a) optical fiber with a long-period grating; (b) LPFG typical
optical response (solid blue line) and blue shift (dashed blue line) due to refractive index change; and
(c) picture of the LPFG microfabrication by electric arc setup, displaying the electric charge between
two tungsten electrodes.

2.3. Experimental Setup

The LPFGs were placed under tension into a fluidic chamber (Figure 2) specially
designed for this purpose. The fibers were connected to a BraggMeter unit working in
transmission mode and the light signal was transformed in analytical data through a
dedicated LabView routine in a spectral range from 1500 nm to 1600 nm. Furthermore, a
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second chamber includes a bare LPFG to explore its behavior under the same experimental
conditions.
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2.4. Step-by-Step of Sensor (bio)Chemical Preparation
2.4.1. Fiber Surface Modification

Silanization processes are commonly used to chemically modify silica optical fibers [52,53].
In this work, both LPFGs were cleaned by immersing the silica sensing region in the piranha
solution for 30 min at room temperature. After washing several times with DIW, the optical
fibers were placed in the oven for 2 h at 60 ◦C to remove all the water from its surface and
generate hydroxyl groups (-OH). This step is extremely important to the success of the following
reaction between the silicon group of the ATMS with the -OH previously created, in order to
cover the fiber surface as much as possible. The LPFGs were placed into the fluidic chamber
where the sensing region was isolated from the external medium. The chamber was filled
with a 2% ATMS solution in an ethanol/water mixture (96% ethanol) and reacted for 16 h
at 4 ◦C, allowing a SAM formation in all the fiber sensing region. The sensing surface was
washed with fresh ethanol and DIW for several times and dried for 2 h at 60 ◦C enabling
covalent bonds formation (see Supplementary Material, Figure S1). This chemical modification
will help to hold the polymeric layer attached to the LPFG surface by C-C bonds. In order to
observe the progress of the fiber surface modification, the spectra after each introduced change
on the LPFG were acquired (in DIW): H2O (reference); H2O@Allylsilane (after silanization
process); H2O@Polymerization (after MIP layer formation); and H2O@TemplateExtracted (after
template extraction).

2.4.2. MIP/NIP Layer Formation and Template Extraction

The synthesis of the molecularly imprinted polymer layer was adapted from a recently
reported strategy for molecular imprinting [36]. A pre-polymeric mixture including Aam
(0.68% w/v), TBAm (0.24% w/v), HEMA (0.1% v/v), BIS (0.58 w/v), and APMA (0.12% w/v)
in 10 mmol/L PBS solution, was prepared. After mixing all components, the pre-polymeric
mixture was ultrasonicated for 15 min and bubbled with nitrogen (N2) for 1 h. After that,
the template was added to the solution in a final concentration of 5 × 10−7 M followed by
the addition of APS (0.2% w/v). Then, 1 mL of the mixed solution was dropped onto the
LPFG followed, immediately, by a suitable amount of TEMED over the sensing section,
performing a final concentration of a 0.12% (v/v), to catalyze the reaction. The reaction
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started immediately, and the polymerization took place for, approximately, 10 min being
stopped by washing the LPFG surface with copious amounts of DIW. For the template
extraction, the sensing region was immersed in DIW at 60 ◦C for 1 h (replacing the warm
water at each 5 min) and then washed with a 5% SDS solution (in PBS) for 10 times. Finally,
the LPFG was immersed in a 0.5 M NaCl solution (in 5% SDS) overnight, washed three
times with SDS and five times with DIW. After template extraction, the MIP layer built on
the LPFG surface was characterized and sensitivity and selectivity towards human IgG
antibodies was evaluated. Figure 3 exemplifies the polymerization process. The interaction
receptor/target analyte was evaluated on an LPFG covered with a non-imprinted polymer
layer (NIP). The NIP layer was built in the same conditions of the MIP without adding
the template.
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surface chemically modification from the allylation to the template extraction. NIP-coated LPFG has
the same procedure without the presence of the template and, consequently, template extraction step.

2.5. Binding Experiments and Selectivity Evaluation

For the binding experiments, standard solutions of IgG antibody (Mw = 150 KDa, [54])
in PBS (pH 7.4) were prepared at different concentrations, ranging from 1 to 100 nmol/L. The
LPFGs, MIP-coated and NIP-coated, were immersed in buffer solution and the respective
spectra were acquired (reference spectra). Each IgG concentration was placed over the sensing
region for 5 min followed by the washing process with buffer solution (5×). Then, the
respective spectra were acquired also in buffer solution to evaluate the wavelength shift (∆λ)
considering the initial position measured in the buffer solution. The spectra of the NIP-coated
LPFG were used to correct RI changes caused by “bulk effect” and/or temperature and/or
tension changes, subtracting its ∆λ to the ∆λ of the MIP-coated LPFG. The non-imprinted layer
∆λ was also tested in the same conditions versus the ∆λ of a bare LPFG fiber to understand
the impact of the nonspecific RI variations. The selectivity (MIP vs. NIP vs. (MIP-NIP)) of
the optical platform was also accessed using a single concentration for the competitors in
presence of half that concentration for the IgG antibody.

3. Results & Discussion
3.1. LPFG Sensitivity at Refractive Index Variations

The LPFG sensitivity was assessed by measuring different refractive index solutions
attained by mixing DIW and EG in different portions. The refractive index at 589.3 nm
(sodium D line) of each solution was evaluated by a digital refractometer (DR-A1, Atago
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CO., LTD, Bellevue, WA, USA) displaying, increasing the EG concentration, the refractive
indices from 1.3322 (DIW) to 1.3751. Each solution was placed over the sensing region
for 5 min before spectra acquisition. The mean of 10 spectra acquired for each solution
(after exposure time) as well as the calibration curve of the experimental values obtained
by fitting the respective spectra with a Gaussian curve versus the wavelength position
are shown in the supplementary information (Supplementary Material, Figure S2). The
sensitivity (S) of the LPFG is provided by the slope of the calibration curve that was about
|S| = 130 nm/RIU. The Figure of Merit (FOM) is also a comprehensive parameter to
evaluate the sensor performance. Thus, the FOM of the LPFG-based sensor was also
assessed, displaying a value around 16 RIU−1 in the RI range from 1.3322 to 1.3658 (see
Supplementary Material; Equation (S1) and Figure S2.

3.2. Step-by-Step of Sensor Preparation

In the allylation process, a self-assembled monolayer (SAM) was covalently formed at
the LPFG surface causing a variation of the RI (by increasing it) in the surrounding medium
of the optical fiber. This RI increment is proved by the resonance wavelength blue shift
(125 pm to lowest wavelengths) observed in Figure 4b which confirms the layer formation.
The same behavior was observed by Gupta after (3-aminopropyl)triethoxysilane (APTES)
immobilization on a LPFG surface for posterior soil fungi detection [55].
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Figure 4. Acquired spectra showing the wavelength resonance band position resulted from measure-
ments in pure water of (a) bare LPFG (solid black line); (b) allyl-silanized LPFG (dashed red line); (c)
MIP-coated LPFG (short dashed blue line); and (d) MIP-coated LPFG after template extraction.

Moreover, a shift was also observed resulting from the polymerization process. The
spectral evolution of the polymeric layer formation was controlled in real-time by monitoring
the LPFG wavelength shift during all the process (Figure 5). As a result of the polymerization
and further washing process, the resonance wavelength band stabilized, fixing its position
at 575 pm and 450 pm away from the H2O and the H2O@Allylsilane spectra, respectively
(Figure 4c). This result match the observation reported by Arcadio et al. for a surface plasmon
resonance (SPR) sensor for bovine serum albumin (BSA) detection [56]. Similarly, Verma and
Gupta used a similar approach to develop a MIP layer onto a silver-coated silica optical fiber
for antibiotic recognition using the SPR phenomenon [57].
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Figure 5. (a) Position of the spectrum changing over time and (b) tracking of the band position versus
the deposition time where: (i) is the time when the polymeric solution was dropped onto the LPFG
followed by the consequent shift due to RI change in the surrounding medium; (ii) is the time when
the catalyst was placed on the previous solution followed by the beginning of the polymerization
process; (iii) is the time when the polymerization process was interrupted (after about 10 min from
step (ii).

After template extraction, as described in Section 2.3, a decreasing of the RI around the
LPFG (shifting 300 pm to higher wavelengths) was observed which can be related to the
IgG molecules removal from the MIP layer (Figure 4d). In literature, similar procedures to
remove electrostatically immobilized templates using NaCl were reported by other authors,
e.g., by Schwark et al. to remove IgG molecules from imprinted macroporous membranes;
Matsumoto et al. to remove prostate-specific antigen (PSA) from a synthesized MIP layer
on an SPR chip; and by Yang et al. when developing a selective and sensitive impedance
sensor targeting the BSA protein, using a NaCl/SDS solution in the template extraction
stage [58–60]. The resulted MIP receptors were tested in the presence of IgG antibodies
and competitors. The NIP formation process was carried out in the same experimental
conditions and the resulted data is exhibited in Figure S3 (Supplementary Material).

3.3. Binding Experiments

The binding experiments were carried out placing the MIP-coated and the NIP-coated
LPFGs in different grooves but using the same standard IgG solution to assess its spectral
behavior. The exact position of the wavelength band is given by a gaussian fit. The bare
LPFG was also exposed to the same standard solutions and its ∆λ was also evaluated. In that
way, Figure 6 displays the MIP-coated LPFG transmitted spectra for different concentrations
of IgG antibodies and reveals a systematic blue shift of the resonance wavelength when the
analyte concentration increases.

To understand the impact, on the LPFGs, of the RI deviations of the external medium,
caused by “bulk effect” and/or temperature fluctuations, the responses (in the format of ∆λ)
of the NIP-coated LPFG (NIP@IgG) and the bare LPFG (Bare LPFG@IgG) were measured
and compared (Figure 7).

Figure 7 displays the results of ∆λ (after correcting for the offset values, according to
respective LPFGs sensitivities) for the NIP-coated LPFG and the bare LPFG. Evaluating the
results, obtained in the presence of the same analyte solutions, it is possible to conclude that
they display similar behaviors. However, it is also noticeable that, along with the similar
general trend, there are fluctuations on ∆λ that could be attributed to external effects (e.g.,
temperature variations, physical tension) as well as to “bulk effect” for the NIP-coated LPFG.
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Considering the results from Figure 7, this configuration allows a correction to external
parameters in real time making the interaction of the MIP-coated LPFG with different
concentrations of IgG antibodies (MIP@IgG) with increased reliability of the sensing scheme.
The proposed correction consists in subtracting the response of the NIP-coated LPFG to the
signal of the MIP-coated LPFG layer, according with:

∆λsensor = |∆λ|MIP − |∆λ|NIP (2)

where ∆λsensor is the differential mode between the modules of the MIP-coated and NIP-
coated LPFGs wavelength shifts, |∆λ|MIP. is the module of the wavelength shift of the
MIP-coated LPFG, and |∆λ|NIP is the module of the wavelength shift of the NIP-coated
LPFG. Raw experimental data and corrected signal are plotted on Figure 8.
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Figure 8. Wavelength variation (∆λ) of the MIP-coated LPFG (green diamonds), NIP-coated LPFG
(black squares), and the differential “MIP-NIP” (blue triangles) in the presence of different IgG
concentrations. The dashed blue line and the pointed green line are the respective fittings, using
the Hill model equation (Equation (S2), Supplementary Material), of the MIP-coated LPFG and
NIP-coated LPFG. Errors bars were obtained from standard deviations.

It is noticeable that the ∆λSensor mode reveals a better fitting to the Hill-Langmuir
model, improving the performance of the sensor targeting the analyte and providing
more reliable results and this is a clear demonstration of the importance of using the NIP-
coated LPFG for real time correction of disturbances caused by “bulk effect” and external
influences in the measured solution.

Table 1 shows the statistical data from both fittings, revealing a small Residual Sum
of Squares (RSS) proving that the differential “MIP-NIP” is the better model to use in this
kind of measurements (for residual plots see Supplementary Material, Figures S4 and S5).
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Table 1. Statistical data resulted from the respective Hill fittings of the curves presented in Figure 6.

Model Reduced
Chip-Sqr

Residual Sum
of Squares

R-Square
(COD) Adj. R-Square

|∆λ|MIP@IgG 0.9189 6.4322 0.9762 0.9728
∆λSensor@IgG 0.4067 2.8470 0.9923 0.9912

However, to assess the full sensitivity of the sensing platform we need to resort to
the Hill-Langmuir equation by plotting the experimental data in the lin-log form, i.e., the
wavelength variation (in nm) versus the logarithm of the IgG concentration (in nmol/L), to
achieve symmetrical confidence intervals for the experimental parameters [61–63]. There-
fore, the respective Hill fitting (Figure 9) was plotted through Equation (3), where ∆λc is
the wavelength variation at the concentration C; ∆λmax is the wavelength variation at the
saturation point (or response to the infinite); K is the ligand concentration at the 1/2∆λmax;
and n is the Hill coefficient, with: K = 8.61 L/nmol, n = 1.24, and a ∆λmax = 0.490 nm.

∆λc =
∆λmax

1 + 10n(log K−log C)
(3)

Biosensors 2022, 12, x FOR PEER REVIEW 11 of 18 
 

Table 1. Statistical data resulted from the respective Hill fittings of the curves presented in Figure 6. 

Model Reduced Chip-Sqr 
Residual Sum of 

Squares 
R-Square (COD) Adj. R-Square 

|Δλ|MIP@IgG 0.9189 6.4322 0.9762 0.9728 

ΔλSensor@IgG 0.4067 2.8470 0.9923 0.9912 

However, to assess the full sensitivity of the sensing platform we need to resort to the 

Hill-Langmuir equation by plotting the experimental data in the lin-log form, i.e., the 

wavelength variation (in nm) versus the logarithm of the IgG concentration (in nmol/L), to 

achieve symmetrical confidence intervals for the experimental parameters [61–63]. 

Therefore, the respective Hill fitting (Figure 9) was plotted through Equation (3), where ∆λc 

is the wavelength variation at the concentration C; ∆λmax is the wavelength variation at the 

saturation point (or response to the infinite); K is the ligand concentration at the 1 2⁄ ∆λmax; 

and n is the Hill coefficient, with: K = 8.61 L/nmol, n = 1.24, and a Δλmax = 0.490 nm. 

∆�� =  
∆����

1 + 10�(��� ����� �)
 (3)

 

Figure 9. Wavelength variation of the differential ΔλSensor@IgG, as a function of the logarithmic con-

centration of IgG (blue triangles); and the respective Hill fitting (R2 = 0.9912; dashed blue line). Errors 

bars were obtained from standard deviations. 

The calculated sensitivity was |S| = 0.057 nm.L/nmol (|S| = |∆λ|max/K), in the range 

from 1 to 36 nmol/L. The affinity constant (Kaff) was also assessed revealing a value of Kaff 

= 0.12 L/nmol (Kaff = 1/K). The limit of detection (LOD) was calculated based on a proposed 

method for non-linear sensors, using the signal-to-noise (S/N) approach [64]. This method 

was suggested for an ion-selective electrodes (ISEs) model through Equation S3 (see 

Supplementary Material). Adapting the LOD definition for non-linear sensors to Equation 

(2), considering that the n parameter is, geometrically, the factor that characterizes the 

slope of the curve at the midpoint and σ is the standard deviation of the blank, the LOD 

for this kind of curves can be defined as [63]: 

��� = ��� � (10
��
� − 1) (4)

Figure 9. Wavelength variation of the differential ∆λSensor@IgG, as a function of the logarithmic
concentration of IgG (blue triangles); and the respective Hill fitting (R2 = 0.9912; dashed blue line).
Errors bars were obtained from standard deviations.

The calculated sensitivity was |S| = 0.057 nm.L/nmol (|S| = |∆λ|max/K), in the
range from 1 to 36 nmol/L. The affinity constant (Kaff) was also assessed revealing a value
of Kaff = 0.12 L/nmol (Kaff = 1/K). The limit of detection (LOD) was calculated based on a
proposed method for non-linear sensors, using the signal-to-noise (S/N) approach [64]. This
method was suggested for an ion-selective electrodes (ISEs) model through Equation (S3)
(see Supplementary Material). Adapting the LOD definition for non-linear sensors to
Equation (2), considering that the n parameter is, geometrically, the factor that characterizes
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the slope of the curve at the midpoint and σ is the standard deviation of the blank, the LOD
for this kind of curves can be defined as [63]:

LOD = log K
(

10
3σ
n − 1

)
(4)

Therefore, the calculated LOD for the sensing platform proposed in this work was
0.25 nmol/L.

Additionally, the reversibility of the sensor was also evaluated, by applying the same
protocol used for template extraction. However, as is shown in Supplementary Material
(Figure S6), the sensor wasn’t totally regenerated (just about 82%) and further research
needs to be done to improve the regeneration step.

Table 2 shows a comparison between the presented sensor with others in the literature
for IgG (or anti-IgG; human or others) using different configurations, working ranges and
LODs based on different configurations using optical fibers.

Table 2. Comparative analysis of different platforms for human IgG detection based on optical fibers
sensors.

Sensor Configuration Transduction
Method

Analyte
(Receptor)

Detection
Range LOD Ref.

TFBG modified with graphene oxide
and staphylococcal protein A. SPR Human IgG

(protein A) 30–100 µg/mL 0.5 µg/mL [65]

Gold (Au) film coated photonic
crystal fiber dopped with Au

nanoparticles modified with protein
A and anti-human IgG.

SPR + LSPR Human IgG
(anti-IgG) 1–30 µg/mL 0.037µg/mL [66]

S-tapered fiber modified with
dopamine and Protein A.

Mach-Zehnder
interferometer

Human IgG
(protein A) 0.25–2 µg/mL 0.028 µg/mL [67]

Thin core single-mode fiber
sandwiched two single-mode optical

fibers modified by anti-IgG
immobilization.

Mach-Zehnder
interferometer

Human IgG
(anti-IgG)

100–1000
µg/mL not reported [68]

Sol−gel-based titania−silica thin film
coated LPFG modified by IgG

immobilization.
LPFG Anti-human IgG

(human IgG)
0.001–100
µg/mL 0.013 µg/mL [69]

Sol-gel-based titania-silica over
coupled LPFGs modified by mouse

IgG immobilization.
LPFG Anti-mouse IgG

(mouse IgG) 0.1–100 µg/mL 0.025 µg/mL [70]

GO-coated-U-bent LPFG inscribed in
a two-mode fiber modified by

anti-human IgG immobilization.
U-bent LPFG Human IgG

(anti-IgG) 3–20 µg/mL 0.023 µg/mL [71]

MIP-coated LPFG for Human IgG
detection LPFG Human IgG

(MIP layer)
0.15–15 µg/mL
(1–100 nmol/L)

0.037 µg/mL
(0.25 nmol/L)

this
work

TFBG-tilted fiber Bragg grating; SPR-surface plasmon resonance; LPFG-long period fiber grating; GO-graphene
oxide; LOD-limit of detection; Ref.-reference.

Additionally, the sensor proposed in this work is an easy device to build, requiring
fewer protocols for its development. Furthermore, despite using synthetic materials for
specific recognition, the proposed sensing platform offers a similar LOD and a significant
resolution (considering the lowest evaluable concentration) compared to the majority of
the sensors listed in Table 2. Moreover, the synthetic receptors are an advantage compared
with the natural receptors considering the production requirements. Finally, the included
correction system improves the sensor performance by offering a more accurate response.

Despite the difficulties in finding LPFG-based sensors coupled with MIPs for IgG
detection, other sensing platforms such as electrochemical-based sensors or SPR-based sen-
sors using planar gold chips, applying molecular imprinting for its selective detection have
been reported. Table 3 compares some of those researches based on MIPs for biorecognition
of the IgG molecule.



Biosensors 2022, 12, 515 13 of 18

Table 3. Comparative analysis of different platforms for human IgG detection based on molecular
imprinting.

Sensor Configuration Transduction
Method

Analyte
(Receptor)

Detection
Range LOD Ref.

SPR gold chip modified with a MIP
nanofilm

SPR (planar
gold chip)

Fab fragment
(MIP nanofilm) 2–15 µg/mL 0.056 µg/mL [72]

nanoMIPs-coated SPR gold chip SPR (planar
gold chip)

IgG, Fc domain,
peptide epitope

(nanoMIPs)
0.003–1 µg/mL not reported [73]

Electrochemical biosensor based on
graphene quantum dots covered with

a MIP layer

Cyclic
Voltammetry

IgG molecule
(MIP layer)

10−4–0.05
µg/mL

2 × 10−5

µg/mL
[74]

MIP layer interfaced with a SAW chip Surface
Acoustic Wave

IgG molecule
(MIP layer) 0.06–8 µg/mL Not reported [75]

MIP-coated LPFG for Human IgG
detection LPFG Human IgG

(MIP layer)
0.15–15 µg/mL
(1–100 nmol/L)

0.037 µg/mL
(0.25 nmol/L)

this
work

The parameters displayed in Table 3 show that molecular imprinting materials applied
to biosensing can compete directly with the sensors based on antigen-antibody specificity.
Moreover, the sensing device proposed in this work has similar performances, although
more investigations need to be conducted in order to improve specificity and sensitivity to
achieve similar performances that are presented by electrochemical sensors.

3.4. Selectivity Tests

The selectivity of the sensing platform was tested in the presence of IgG competitors
acting as interferents and selected due to their abundant presence in the human blood plasma
as well as the IgG antibody. Therefore, the negative controls were performed with HSA
protein [76] and the HTR glycoprotein [77]. Other authors such as Aylaz et al. or Ruiz et al.
used the same blood plasma components to attest the selectivity of their platforms [78,79].
Figure 10 show the information resulted from the sensing region incubation in 60 nmol/L
(in PBS) of each interferent and in 36 nmol/L of the IgG standard solution, for five minutes.
Between each step, the LPFG was washed several times with the buffer solution. The results
are presented as mean of 10 measurements acquired after the exposure time.
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In case of the control tests, slight shifts are visible for each competitor comparing
with the specific binding towards IgG. It is undeniable that the sensitivity and selectivity
of the imprinted cavities in the presence of the IgG antibody, revealing a wide variation
for about half of the concentration used for the interferents assays. The impact of the
proposed correction system is also noticeable, reducing the response to the interferents in
30%, allowing reliable measurements by improving the rejection of “false positives”.

4. Conclusions

An optical (bio)chemical sensor system coupling long-period fiber gratings and molec-
ular imprinted binding sites for specific detection of human IgG antibodies was developed
and experimentally investigated. The sensor comprises the advantages associated to the
optical fibers, combining them with the advantages linked to the molecular imprinting.
The experimental results suggests that this platform reveals good performances in terms of
selectivity. However, the sensitivity can be improved by reducing the polymerization time,
increasing the possibilities to obtain a larger number of binding sites at the LPFG surface
and avoid fast saturation, and by coating the LPFG surface by metal-oxide films to increase
its sensitivity. It was noticed that the sensor recovery after template extraction is somewhat
different from the shift observed after the calibration process. This situation could be
explained by RI deviations or by the existence of low- and high-affinity binding sites. In
the washing process, to remove non-reacted monomers, some IgG antibodies attached to
low-affinity binding sites could be removed from the polymer surface. However, during
calibration, those sites are still available for interaction with the analyte. Nevertheless, it is
evident that the proposed label-free sensor, is based on a robust and emerging technique
for MIP fabrication requiring a short incubation time for target detection. Moreover, the
correction system seems to improve the sensor performance and its reliability, being a
very attractive approach to be implemented in clinical diagnosis. Additionally, the sensing
platform used in this work is simple to realize and employs green strategies for biological
recognition. Furthermore, the implementation of the proposed system is not limited to
being applied in the medical field. Its combination with low-cost interrogation units, with
several reading channels, results in very attractive devices for multiplexing different ana-
lytes of interest in water quality control, namely water contaminants. Moreover, SPR-based
optical fibers can be used to perform MIP/NIP differential measurements using a single
optical fiber employing two distinct sensing regions (MIP-coated and NIP-coated). In this
way, is possible to obtain miniaturized devices with high sensitivity and selectivity for
reliable chemical and biological sensing.
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//www.mdpi.com/article/10.3390/bios12070515/s1, Figure S1: Schematic figure of the fiber surface
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Figure S3: NIP polymerization timeline and spectra evolution; Figure S4: Residual Plots resulted
from the Hill fitting of the MIP@IgG curve; Figure S5: Residual Plots resulted from the Hill fitting of
the (MIP-NIP)@IgG curve; Figure S6: Wavelength peak position of the differential (MIP-NIP) shifting
over time throughout reversibility trials. Equation S1: Figure of Merit (FOM); Equation S2: Hill model
equation; Equation S3: Ion-selective electrodes (ISEs) model.
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