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Abstract: Two interesting benzothizolium-based D-π-A type hemicyanine dyes (3a–3b) with a
diphenylamine (-NPh2) donor group were evaluated for fluorescence confocal microscopy imaging
ability in live cells (MO3.13, NHLF). In sharp contrast to previously reported D-π-A dyes with alkyl
amine donor (-NR2) groups (1), 3a and 3b exhibited significantly different photophysical properties
and organelle selectivity. Probes 3a and 3b were nearly non-fluorescent in many polar and non-
polar solvents but exhibited a bright red fluorescence (λem ≈ 630–640 nm) in stained MO3.13 and
NHLF with very low probe concentrations (i.e., 200 nM). Fluorescence confocal microscopy-based
co-localization studies revealed excellent lysosome selectivity from the probes 3a–3b, which is in
sharp contrast to previously reported D-π-A type benzothiazolium dyes (1) with an alkyl amine donor
group (-NR2) (exhibiting selectivity towards cellular mitochondria). The photostability of probe 3 was
found to be dependent on the substituent (R’) attached to the quaternary nitrogen atom in the cyanine
dye structure. The observed donor-dependent selectivity switching phenomenon can be highly useful
in designing novel organelle-targeted fluorescent probes for live-cell imaging applications.

Keywords: donor-π-acceptor molecules; cyanine dyes; fluorescence confocal microscopy; lysosome
selectivity; photostability

1. Introduction

Cyanine dyes have been widely used as fluorescent probes for numerous bioimaging
applications due to their structural tunability, high biocompatibility, and excellent photo-
physical proprieties [1–9]. The development of fluorescent dyes with enhanced Stokes’ shift
(i.e., ∆λ ≈ 50 nm or higher) is one of the greatest advancements in developing fluorescent
imaging probes, as their use can significantly reduce the background interferences from
excitation photons while improving signal to noise ratio [10–15]. Excited-state intramolecu-
lar charge transfer (ESIPT) and Intra-molecular charge transfer (ICT) are two of the most
widely used photophysical pathways that have been utilized for designing fluorescent dyes
with large Stokes’ shifts [16–23]. Intra-molecular charge transfer (ICT) based fluorescent
probes have gained significant attention in recent years due to their high sensitivity toward
the changes in the environment (i.e., viscosity, polarity, temperature, pH, etc.) [11,24–30]. In
responding to such environmental changes, ICT-based probes often exhibit distinguishable
changes in their optical properties (i.e., shifts in emission or absorption maxima, changes
in fluorescence intensity, fluorescence turn ON/OFF, etc.), which is a great advantage in
various detection applications.

During our previous studies, we have reported the donor-π-accepter (D-π-A) based
fluorescent probe 1 by attaching alkyl amine donor groups (i.e., R2N; where R = Me, Et) to
the π-conjugated system of the dye (Scheme 1) [5,22]. When 1 was used in live-cell imaging
experiments, they exhibited excellent selectivity towards intracellular mitochondria. How-
ever, when the donor group -NR2 was replaced by a morpholine group, probe 2 exhibited
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the ability to visualize both cellular mitochondria and lysosomes simultaneously in live-cell
imaging experiments (Scheme 1) [31].
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One intriguing question from our previous findings is why probes such as 1 or 2 with
an organic amine group (-NR2 = -NMe2, pKa ≈ 5.15; and -NR2 = -NEt2, pKa ≈ 6.61) are
not selective towards acidic cellular organelles such as lysosomes. This is in sharp contrast
to many well-known fluorescent probes with basic functional groups (e.g., commercial
LysoTrackerTM dyes) that have been used for visualizing acidic cellular organelles such
as lysosomes (pH ≈ 4.6) [32–34]. In order to further investigate the effect of the donor
(R2N-) group on the intra-cellular organelle selectivity, we decided to introduce a non-basic
diphenyl amine (-NPh2) moiety as the donor group, which led to synthesis of probe 3. On
the basis of the previous study from 1, one would expect a similar mitochondria selectivity
in probe 3. Surprisingly, probe 3 exhibited excellent selectivity towards cellular lysosomes
(not mitochondria) during fluorescence confocal microscopy-based imaging studies. In
this article, we discuss this unexpected selectivity switching in the cyanine-based D-π-A
fluorescent dye system.

2. Materials and Methods

All chemicals for synthesis were purchased from Acros Organics and Sigma-Aldrich
and used as received. Molecular biology-grade reagents for cell culture and fluorescent
confocal microscopy experiments were purchased from Thermo Fisher. NMR character-
ization data were acquired on a Bruker 400 MHz NMR spectrometer. High-resolution
mass spectrometric data were acquired using an ESI-TOF MS system (Waters, Milford,
MA, USA). UV-vis studies were carried out in a Hewlett Packard-8453 diode array spec-
trophotometer at 25 ◦C. Fluorescence studies were conducted in a HORIBA Fluoromax-4
spectrofluorometer. Fluorescence confocal microscopy imaging was performed by a Nikon
A1 confocal system with 100x oil objectives, a numerical aperture of 1.45, and a refractive
index of 1.5. Throughout imaging, the temperature was maintained at 37 ◦C. Probes 3a–3b
were synthesized according to the previously reported procedure [35].
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2.1. General Procedure for Synthesis

In a 25 mL round-bottom flask, 1.0 mmol. of 4-(4-Diphenylamino)benzaldehyde (4)
was dissolved in 10 mL of methanol. Then, the appropriate 2-methylbenzothiazolium salt
(5) (0.9 mmol) was added to the solution and stirred at room temperature for 5 min to result
in a yellow-orange solution. Following the addition of pyridine (0.25 mL), the resulting
solution was heated up to 70 ◦C for 12 h with stirring. Upon completion of the reaction (by
TLC), the mixture was cooled down to room temperature, and ethyl acetate (20 mL) was
added to the resulting dark brown solution. A red color solid product was precipitated in
the bottom of the flask upon the addition of ethyl acetate. Then the solution was stirred for
10 min and allowed to settle down for another 10 min. The resulting solid products (3a or
3b) were collected by vacuum filtration and further washed with ethyl acetate (3 × 20 mL)
portions. Then, 3a and 3b were collected on the Buchner funnel as red color powders.

(E)-2-(4-(diphenylamino)styryl)-3-ethylbenzo[d]thiazol-3-ium Iodide (3a): Obtained as a dark
brown solid with 77% isolated yield. 1H NMR (400 MHz, DMSO-d6) δ 8.39 (dd, J = 8.1,
1.2 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 8.16 (d, J = 15.5 Hz, 1H), 7.99–7.91 (m, 2H), 7.85 (ddd,
J = 8.5, 7.3, 1.3 Hz, 1H), 7.83–7.71 (m, 2H), 7.49–7.40 (m, 4H), 7.30–7.21 (m, 2H), 7.25–7.17 (m,
4H), 6.96–6.88 (m, 2H), 4.91 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz,
DMSO) δ 171.28, 151.40, 149.17, 145.47, 140.87, 131.97, 130.00, 129.31, 128.01, 127.81, 126.17,
126.12, 125.44, 124.26, 119.01, 116.24, 109.49, 44.07, 14.03. HRMS (TOF MS ES+) found (m/z)
for [M+] 433.1722. HRMS (calculated) found (m/z) for [M+] 433.1739.

(E)-3-benzyl-2-(4-(diphenylamino)styryl)benzo[d]thiazol-3-ium Bromide (3b): Obtained as a
bright red solid with 75% isolated yield. 1H NMR (400 MHz, DMSO-d6) δ 8.42 (dd,
J = 8.0, 1.4 Hz, 1H), 8.24 (d, J = 15.4 Hz, 1H), 8.17–8.10 (m, 1H), 7.95 (d, J = 15.4 Hz, 1H),
7.94–7.87 (m, 2H), 7.83–7.69 (m, 2H), 7.49–7.30 (m, 9H), 7.34–7.21 (m, 2H), 7.26–7.17 (m,
4H), 6.93–6.85 (m, 2H), 6.22 (s, 2H). 13C NMR (101 MHz, DMSO) δ 172.56, 151.64, 149.90,
145.34, 141.23, 133.98, 132.11, 130.02, 129.38, 129.11, 128.41, 128.08, 127.70, 126.85, 126.23,
125.99, 125.58, 124.38, 118.80, 116.57, 109.49, 51.04. HRMS (TOF MS ES+) found (m/z) for
[M+] 495.1880. HRMS (calculated) found (m/z) for [M+] 495.1895.

2.2. Cell Culture, Staining, and Fluorescence Confocal Microscopy Imaging

Progenitor oligodendrocytes cells (MO3.13) were grown in DMEM (10% FBS and 1%
penicillin/streptomycin added) were plated on MatTek 35 mm dish with a glass bottom
at a density of 2 × 105 cells/well. Plated cells were incubated overnight at 37 ◦C in a
5% CO2 environment. Following incubation, cells were washed with 1X PBS and stained
with 200 nM (final concentration) probes (3a and 3b) and appropriate commercial marker
dyes in Gibco Live Cell Imaging Solution for 30 min. The initial cell staining experiments
(probes 3a and 3b only) and co-localization experiments with commercial MitoTrackerTM

Green FM (200 nM) or LysoTrackerTM Green DND-26 (70 nM) probes were conducted
with a post-staining washing step with 1X PBS solution. Fluorescence confocal microscopy
imaging was performed in Live Cell Imaging solution. All stock solutions of the fluorescent
dyes for imaging experiments were prepared in 10 mM concentration in DMSO, and the %
DMSO (v/v) in the imaging experiments was maintained below 0.5%.

Live-cell imaging studies were performed by a Nikon A1 confocal system with 100× oil
objectives, a numerical aperture of 1.45, and a refractive index of 1.5. Imaging experiments
were conducted at 37 ◦C temperature. Probe 3 was excited at 561 nm, and the emission
was collected from 570 nm to 700 nm. MitoTrackerTM Green FM and LysoTrackerTM Green
DND-26 dyes were excited at 488 laser, and the emission was collected from 495 nm to
550 nm range. The fluorescence confocal microscopy images were analyzed and processed
by ImageJ (NIH) software. The Mander’s overlap coefficients (averaged) for co-localization
analysis (with LysoTrackerTM Green DND-26 and MitoTrackerTM Green-FM dyes) were
calculated by analyzing cell populations (n > 30) co-stained with probes 3a and 3b with
standard co-localization analysis package equipped in the ImageJ (NIH) software.

For photostability comparison of the probe 3 with LysoTrackerTM Red DND-99, fluo-
rescence confocal microscope was operated with following parameters: excitation laser—
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561 nm Laser line; power percentage 3.0 (2.1 mW); Digital zoom = 1; Pinhole = 1AU; Master
Gain = 150; Digital offset = 0. MO3.13 cells were incubated with 100 nM dye concentration
(all dyes) for 30 min and then continuously irradiated with 561 nm laser pulse. Fluorescence
confocal microscopy images of the irradiated cells were acquired at 20 s intervals over a
period of 4 min. ImageJ (NIH) software was used for analyzing images, and the average
recovered fluorescence intensities (%) were plotted as a function of irradiation time.

3. Results and Discussion

Probe 3 was synthesized in good yields and characterized by NMR spectroscopy and
high-resolution mass spectrometry as described in the materials and method section.

Although probes were nearly non-fluorescent in many organic and aqueous solvents,
our recent work showed that probe 3 exhibits an intense red fluorescence turn ON upon
binding to protein (i.e., albumin) [35]. By considering this interesting fluorescence turn ON
phenomenon upon binding to protein (λem ≈ 630–640 nm; φfl ≈ 0.4), we hypothesized
that such internalization of probe 3 in the intra-cellular environment (i.e., intra-cellular
proteins or membranes) would also lead to a noticeable fluorescence turn ON. In order to
test our hypothesis, Progenitor Oligodendrocytes (MO3.13) cells were pre-incubated with
probes 3a and 3b (200 nM) for 30 min and analyzed by fluorescence confocal microscopy
with 561 nm laser excitation. Surprisingly, MO3.13 cells stained with probes 3a and 3b
produced a bright red non-uniform emission pattern, suggesting that probe 3 was likely
localizing into a distinct organelle environment (Figure 1). Based on the observed pattern
in Figure 1, probe 3 was not likely localizing in cellular mitochondria, as the imaging lacks
the characteristic tubular-shaped staining pattern we observed for mitochondrial staining
during our previous work [5,22]. This assumption was further verified by staining MO3.13
cells with 3a and 3b (200 nM) in the presence of MitoTrackerTM Green FM (200 nM). The
fluorescence confocal microscope images (Figure 2) showed that probe 3 did not exhibit
any noticeable mitochondria selectivity (calculated Mander’s overlap coefficients found
to be 0.24–0.27), in sharp contrast to our previously reported probe 1 (Figure 2 and ESI
Figure S2). The study was further repeated on Normal Human Lung Fibroblast (NHLF)
cells for reproducibility and revealed a consistent pattern similar to MO3.13 cells (Figure 1
and ESI Figure S1).

Interestingly, when MO3.13 cells were incubated with probes 3a and 3b (200 nM)
in the presence of commercial LysoTrackerTM DND-26 (70 nM) and analyzed via fluo-
rescence confocal microscopy, an excellent co-localization pattern was observed between
probes 3a–3b and LysoTrackerTM DND-26 (Figure 3). The calculated Mander’s overlap
coefficients were found to be 0.89 for 3a and 0.91 for 3b in MO3.13 cells (Figure 3 and ESI
Figures S3–S5). The results clearly pointed out that probe 3 is selective towards intracellular
lysosomes. In order to further verify this finding, the imaging experiments were repeated
by staining NHLF cells with probes 3a–3b in the presence of LysoTrackerTM DND-26 (ESI
Figures S3 and S4). As expected, the co-localization imaging patterns in NHLF cells also
exhibited an excellent selectivity towards cellular lysosomes, with a calculated Mander’s
overlap coefficient of 0.93 for (3a) and 0.94 (3b), respectively. Based on these studies, it
was clear that the attachment of diphenylamine group (-NPh2) as the donor triggered a
significant selectivity switching in the D-π-A dye system from mitochondria to lysosome.
In other words, the donor group (-NPh2) in the D-π-A system had a large impact on the
probe’s selectivity toward the subcellular organelles. Based on these experimental data,
switching from an alkyl amine donor group (NR2: NMe2 or NEt2) to an aromatic amine
donor group (-NPh2) was the key parameter for observed organelle selectivity switching in
the probe.
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field (d). Probe 3b was excited with 561 nm laser line and the MitoTrackerTM Green was excited with 
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Figure 2. Fluorescence confocal microscopy images of the MO3.13 cells incubated with probe 3b
(200 nM) for 30 min in the presence of MitoTrackerTM Green FM (200 nM). Figures represent the staining
of the MitoTrackerTM Green (a), the staining of 3b (b), composite image (c), and the bright field (d).
Probe 3b was excited with 561 nm laser line and the MitoTrackerTM Green was excited with 488 nm
laser line. The emission filter settings were set up to collect from 495 to 530 nm (MitoTrackerTM Green)
and 575 to 750 nm (3b), respectively.
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emission (λem ≈ 700–730 nm) over a wide pH range (Figure 4 and ESI Figure S10). Interest-
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acteristics. (1) Their bright emission in organic solvents and (2) significant fluorescence 
quantum yield difference in organic vs. aqueous solvents, which enables us to perform 
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either of these characteristics, which triggered us to think that the internalization location 
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Figure 3. Fluorescence confocal microscope images of the MO3.13 cells incubated with probe 3b
(200 nM) for 30 min in the presence of LysoTrackerTM Green DND-26 (70 nM). Figures represent the
staining of the LysoTrackerTM Green DND-26 (a), staining of probe 3b (b), composite image (c), and
the bright field (d). Probe 3b was excited with 561 nm laser line and the LysoTrackerTM Green was
excited with 488 nm laser line. The emission filter settings were set up to collect from 495 to 530 nm
(LysoTrackerTM Green) and 575 to 750 nm (3b), respectively.

Probe 3 gave extremely weak near-infrared (NIR) emission (λem > 700 nm andϕfl < 0.005)
in many different solvents (Table 1 and ESI Figure S7). However, probes exhibited a bright red
emission (λem ≈ 630–640 nm) during live-cell imaging with extremely lower concentrations
such as 200 nM (Figures 1 and 2 and ESI Figures S3–S5). The observed bright red emission
was consistent with our recently reported albumin-induced fluorescence turn ON in probes
3a and 3b [35]. In order to shed some light on understanding the behavior of probe 3 in
cellular lysosomes to turn on a bright red emission, we first decided to examine the optical
properties of probes 3a and 3b in different aqueous acidic environments (pH 1–12) (Figure 4
and ESI Figures S9–S13). Probes exhibited a very weak NIR emission (λem ≈ 700–730 nm)
over a wide pH range (Figure 4 and ESI Figure S10). Interestingly, probes exhibited a higher
molar absorptivity in the pH range 3–5, which mimicked typical lysosomal lumen acidity
(Figure 4a and ESI Figure S11). Therefore, one intriguing question to be raised is how these
probes exhibit a bright red fluorescence upon being internalized into cellular lysosomes. From
our previously reported work, probes internalized into hydrophobic lysosomal membrane
environments exhibited two consistent characteristics. (1) Their bright emission in organic
solvents and (2) significant fluorescence quantum yield difference in organic vs. aqueous
solvents, which enables us to perform “wash-free” staining with the probes [2,5,12]. In sharp
contrast, probe 3 did not exhibit either of these characteristics, which triggered us to think
that the internalization location of probe 3 was likely not to be the lysosomal membrane [12].
Based on spectroscopic studies and fluorescence microscopy imaging results, we hypothesized
that probes 3a–3b likely populated into the acidic lysosomal lumen and stabilized/shielded
by internalizing into hydrophobic environments such as lysosomal lumen proteins. In order
to test our hypothesis, we designed an aqueous solution-based model to study the probe’s
emission in an acidic environment with and without introducing a soluble protein (i.e.,
Albumin). Initially, the emissions of probes 3a and 3b were recorded in aqueous solutions
under different pH conditions (Figure 4 and ESI Figure S13). In summary, probes exhibited
a very weak NIR emission (λem ≈ 700–730 nm) in all pH conditions (Figure 4 and ESI
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Figure S13). Then, aqueous 10% Human Serum Albumin (HSA) was introduced into solutions
that mimic lysosomal pH ranges (pH 3–5) (Figure 4 and ESI Figure S13). Interestingly, a
bright red emission (λem ≈ 630–640 nm) was observed in the aqueous acidic solutions upon
the addition of HSA). In addition, the spectrometric titration of probes 3a–3b with HSA at
pH4 exhibited a significant fluorescence turn on at λem ≈ 620–640 with increasing protein
concentration (ESI Figure S14). The observed results indicated strong evidence of possible
internalization of probe 3 into the hydrophobic environments of the protein (i.e., binding
pockets) from the acidic aqueous environment to turn ON a bright red emission (λem ≈
620–640 nm; ϕfl ≈ 0.4) [35]. Also, unnoticeable changes in the absorption profile of probes
3a and 3b in the presence/absence of the HSA provided strong evidence to indicate the
distribution of probe 3 as a suspension in solution rather than a precipitate/aggregate (i.e.,
lower absorption). Also, an unchanged absorption spectra pattern (Figure 4a and Figure S13
further indicated that no structural alterations occurred upon the addition of the protein into
acidic environments. The resulting bright red emission (λem ≈ 620–640 nm; ϕfl ≈ 0.4) with a
noticeable hypsochromic shift (∆λ ≈ 75 nm) (Figure 4b) in acidic environments was similar to
our previously reported findings [35]. Based on these experimental findings, we proposed that
probe 3 may likely disperse in acidic lysosomal environments (i.e., lumen) while internalizing
into hydrophobic environments in the lysosomal lumen components (i.e., lumen proteins) to
turn on bright red fluorescence.

Table 1. Spectroscopic properties of 3a and 3b.

Solvent
3a 3b

λabs (nm) λem (nm) φfl λabs (nm) λem (nm) φfl

DCM 549 734 0.003 558 747 0.001
ACN 507 720 0.0005 520 750 0.0003

DMSO 506 728 0.002 519 745 0.002
EtOH 518 708 0.003 532 711 0.002
Water 501 720 0.0001 517 731 0.0001
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Figure 4. Absorption (a) and fluorescence (b) spectra were recorded for 3b (1 × 10−5 M) in different
aqueous acidic environments. At pH, 10 µL of 10% HSA solution was introduced into the acidic
solutions of probe 3b. The probe was excited at 510 nm and the emission was recorded from 550 nm
to 800 nm.

In order to further evaluate the reliability of probe 3 for live-cell imaging applica-
tions, we decided to investigate the photostability of 3 by exposing it to continuous laser
irradiation in the fluorescence microscope. MO3.13 cells stained with probes 3a and 3b
(100 nM concentration) were continuously irradiated with 561 nm laser line (Laser power
percentage 3.0; Digital zoom = 1; Pinhole = 1AU; Master Gain = 150; Digital offset = 0)
for a period of 4 min while obtaining image frames at 20 s intervals. The recovered per-
centage fluorescence intensity after irradiation was plotted as a function of the time for
each irradiation frame (Figure 5). As a reference for comparison, MO3.13 cells, stained
with commercial LysoTrackerTM Red DND-99 (100 nM), were irradiated under identical
microscope settings (Figure 5). Based on the recovered fluorescence intensity, both probe 3b
and LysoTrackerTM Red DND-99 exhibited exceptional photostability. However, in sharp
contrast, probe 3a was highly susceptible to photobleaching due to continuous irradiation.
These results indicated that the attachment of benzyl substituent into the nitrogen atom
of the benzothaiazolium moiety (i.e., 3b) plays a key role in increased photostability in
comparison to the ethyl substituent (i.e., 3a) [12]. Therefore, probe 3b sustains a highly
useful architectural design for developing novel non-alkalinizing D-π-A-based fluorescent
dyes for lysosome imaging in live cells.
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Figure 5. The plot of recovered fluorescence intensity versus irradiation time calculated for probes
3a, 3b and LysoTrackerTM Red DND-99 (100 nM) in MO3.13 cells upon continuous irradiation (Laser
power percentage 3.0; Digital zoom = 1; Pinhole = 1AU; Master Gain = 150; Digital offset = 0).

4. Conclusions

In conclusion, a new D-π-A cyanine dye 3 with a diphenylamine (-NPh2) donor group
has been successfully used in live-cell imaging applications by fluorescence confocal mi-
croscopy. As a result of incorporating a diphenylamine donor, the mitochondria selectivity
of this D-π-A cyanine dye was completely altered, where an exceptional lysosome selec-
tivity was observed for probes 3a and 3b. Based on our fundamental studies, probe 3 was
likely internalized into the proteins present in the lumen of the cellular lysosome rather
than to the lysosomal membrane. In addition, probe 3 skeleton can be further tailored for
improved photostability by incorporating benzyl substituent in the cyanine core. Probe
3b in the presence of benzyl substituent in the thiazolium moiety exhibited relatively high
photostability and improved lysosome specificity in comparison to 3a. Probe 3 will be an
interesting candidate for developing highly biocompatible lysosome selective fluorescent
probes for live-cell imaging applications.
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