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Abstract: Current methods for the early diagnosis of cancer can be invasive and costly. In recent
years, exosomes have been recognized as potential biomarkers for cancer diagnostics. The common
methods for quantitative detection of exosomes, such as nanoparticle tracking analysis (NTA) and
flow cytometry, rely on large-scale instruments and complex operation, with results not specific
for cancer. Herein, we present a tri-channel electrochemical immunobiosensor for enzyme-free and
label-free detecting carcino-embryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin
19 fragments (Cyfra21-1) from exosomes for specific early diagnosis of lung cancer. The electrochemi-
cal immunobiosensor showed good selectivity and stability. Under optimum experimental conditions,
the linear ranges were from 10−3 to 10 ng/mL for CEA, 10−4 to 102 ng/mL for NSE, and 10−3 to
102 ng/mL for Cyfra21-1, and a detection limit down to 10−4 ng/mL was achieved. Furthermore, we
performed exosome analysis in three kinds of lung cancer. The results showed a distinct expression
level of exosomal markers in different types. These works provide insight into a promising alternative
for the quantification of exosomal markers in specific diseases in the following clinical bioassays.

Keywords: electrochemical immunobiosensor; exosome detection; multiple biomarkers; lung cancer

1. Introduction

Cancer has been the focus of scientific research over the past decades because of its
high incidence rate and high mortality rate. Early diagnosis and effective treatment are
two of the biggest challenges in the fight against cancer [1]. Statistically, lung cancer is the
leading cause of cancer-induced mortality, with the highest incidence among cancers, and
the highest mortality in males and the second in females [2]. With great achievements in
surgery, radiotherapy, and chemotherapy, the survival rate of cancer patients has improved,
but the five-year survival rate of lung cancer is still below 20%. Early diagnosis of lung
cancer has become extremely important [3].

Exosomes are small (30–150 nm) membranous vesicles containing proteins, phospho-
lipid bilayers, genetic material, and metabolites with abundant information from parental
cells [4]. Cancer cell-derived exosomes carry information such as DNA, RNA, and proteins
of the parent cancer cells. The basic information can be obtained directly by analyzing exo-
somes, because the expression profiles of exosomal nucleic acids and proteins are altered in
many diseases, including cancer, demonstrating their promise as a noninvasive biomarker
for early detection and diagnosis [5]. Yokoyama et al. [6] compared the detection results of
serum tumor marker CEA with exosome surface carcinoembryonic antigen (exo-CEA) in
48 patients with colorectal cancer. As a tumor marker, the surface protein on the exosome
has higher accuracy for clinical diagnosis. To date, most methods are based on exosome-
specific marker antigens or proteins, such as CD63 [7–11], CD9 [12–16], EpCAM [17–21],
etc. However, it is not specific to realize the early diagnosis of cancer by quantifying the
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classical markers of exosomes, because exosomes can be secreted by healthy cells and any
tumor cells [22]. In this work, three markers closely related to lung cancer were selected,
namely carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin
19 fragment (Cyfra21-1), which can significantly improve the detection specificity [23], and
even have guiding significance for pathological typing [24]. As a new potential biomarker
for tumor cells, exosome detection shows great promise for the diagnosis of cancer. How-
ever, reliable and effective approaches are still in demand to achieve the high sensitivity
detection of exosomes [25].

An electrochemical biosensor utilizing electrochemical immunodetection methods
has been widely reported in the literature. It has various advantages in the detection of
exosomes due to the high sensitivity, good specificity, rapid response, and ease of integra-
tion [26–28]. Su et al. [29] developed a sensitive and portable electrochemical biosensor in
combination with smartphones for quantitative analysis of exosomes. The biosensor could
detect as low as 7.23 ng of CD63-positive exosomes in 5 µL of serum within 2 h, which
promoted the application in point-of-care testing. The traditional immunoassay methods
are labeled immunoassay and depend on electroactive materials and enzymes such as
Hexaammineruthenium (III) chloride (Ru(NH3)6

3+) [30], Prussian blue [31], horseradish
peroxidase(HRP) [32], etc. However, these reported methods tent to have certain limitations,
such as the increase in operation steps making it difficult to obtain stable signals. Therefore,
label-free electrochemical immunoassays are considered to be one of the most promising
methods on account of their easy operation and their ability to reduce the interference
caused by the increase in operation steps [33]. Generally, electrochemical systems employ
a three-electrode setup, including reference, counter, and working electrodes, in which
the working electrode is the key part, highly interrelated with the detection results. The
electrode materials used in research include glassy carbon electrodes (GCEs) [34], precious
metal electrodes [35], screen-printed electrodes (SPEs) [36], and indium tin oxide electrodes
(ITO) [37]. Compared with the traditional three-electrode system, the integrated system on
a single chip has the advantages of small electrode size, easy storage, and convenience in
use. The ITO glass electrode has the advantages of easy integration, low cost, and mass
production compared to the gold electrode and the screen-printed electrode. Furthermore,
micro-chambers in series can be integrated on the three-electrode to realize multiple detec-
tions instead of the beaker or manual dropping of samples, which could reduce the sample
cost, control the flow rate, and decrease the background interference effects.

Herein, leveraging the advantages of a three-electrode system that was combined
with immunoassay method, we reported a tri-channel electrochemical immunosensor on
ITO glass for enzyme-free and label-free detection of the multiple exosome biomarkers
CEA, NSE, and Cyfra21-1, which are closely related to lung cancer. Scheme 1 shows the
fundamental basis of the immunosensor in the detection of exosome biomarker. Once the
cancer-specific exosomes were captured by the immunobiosensor, the immune complex
formed by the combination of exosomes and antibodies hinders electron mass transfer;
differential pulse voltammetry (DPV) was used to monitor the weak faradaic currents
caused by the change of concentration, as shown in Scheme 1d. Under optimum experi-
mental conditions, the multiple detections of exosome markers of three lung cancer cells
were realized. The tri-channel electrochemical immunosensor shows great potential in the
application for lung cancer early screening in the future.
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Scheme 1. Schematic representation of the designed immunosensor for exosome biomarkers detec-
tion. (a) Principle of silanization process by APTES and aldehyde-ammonia condensation by glutar-
aldehyde on the hydroxyled working electrode, (b) Schematic illustration of antibody, (c) Fabrica-
tion procedures of the electrochemical immunosensor, (d) Principle of differential pulse voltamme-
try for the detection of exosomes. 

2. Experimental 
2.1. Materials and Reagents 

Anti-CEA, Cy3 labeled anti-NSE, from Biosynthesis Biotechnology Co., Ltd. (Beijing, 
China) and anti-Cyfra21-1 from Anyan trade Co., Ltd. (Shanghai, China) were used in the 
experiments. Conductive indium tin oxide (ITO) glass substrate was purchased from 
Shenghua Technology Co., Ltd. (Guangzhou, China). Potassium ferricyanide (K3Fe(CN)6), 
(3-Aminopropyl) triethoxysilane (APTES), and Glutaraldehyde were obtained from 
Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Potassium ferrocy-
anide (K4Fe(CN)6) and potassium chloride (KCl) were purchased from Sinopharm Chem-
ical Reagent Co., Ltd. (Shanghai, China). Bovine Serum Albumin (BSA), fetal bovine se-
rum (FBS), RPMI-1640 medium, and Dulbecco’s modified eagle medium (DMEM) were 
supplied by Biological Industries Co., Ltd. (Kibbutz Beit Haemek, Israel). Lipophilic 

Scheme 1. Schematic representation of the designed immunosensor for exosome biomarkers
detection. (a) Principle of silanization process by APTES and aldehyde-ammonia condensation
by glutaraldehyde on the hydroxyled working electrode, (b) Schematic illustration of antibody,
(c) Fabrication procedures of the electrochemical immunosensor, (d) Principle of differential pulse
voltammetry for the detection of exosomes.

2. Experimental
2.1. Materials and Reagents

Anti-CEA, Cy3 labeled anti-NSE, from Biosynthesis Biotechnology Co., Ltd. (Beijing,
China) and anti-Cyfra21-1 from Anyan trade Co., Ltd. (Shanghai, China) were used in
the experiments. Conductive indium tin oxide (ITO) glass substrate was purchased from
Shenghua Technology Co., Ltd. (Guangzhou, China). Potassium ferricyanide (K3Fe(CN)6),
(3-Aminopropyl) triethoxysilane (APTES), and Glutaraldehyde were obtained from Shang-
hai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Potassium ferrocyanide
(K4Fe(CN)6) and potassium chloride (KCl) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Bovine Serum Albumin (BSA), fetal bovine serum
(FBS), RPMI-1640 medium, and Dulbecco’s modified eagle medium (DMEM) were supplied
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by Biological Industries Co., Ltd. (Kibbutz Beit Haemek, Israel). Lipophilic green, fluo-
rescent dye (Dio) was configured according to the manufacturer’s instructions (Biyuntian,
China). All reagents used in the experiment were of analytical grade, and all solutions were
prepared with Milli-Q ultrapure water (MilliQ, Millipore, MA, USA).

2.2. Fabrication of Tri-Channel Electrodes

Electrochemical detection techniques typically employ a classical three-electrode con-
figuration consisting of a working electrode, reference electrode, and counter electrode, as
shown in Figure 1a. An Indium tin oxides (ITO) thin film, a conductive transparent layer
that was used as a working electrode, was deposited on the glass substrates. Three identical
three-electrode sensor arrays were designed by AutoCAD and etched precisely by laser on
a 1.1-mm-thick ITO glass substrate. The shape of the reference electrode was marked on
the tape, and then the tape was pasted onto the surface of ITO glass. Ag/AgCl paste was
brushed onto the whole of the tape and placed on a hot plate at 100 ◦C for 60 min before the
tape is removed. A polydimethylsiloxane (PDMS) chip with micro-channel was prepared
by the soft photolithographic process. After that, the chip was plasma-bonded to the surface
of the glass side. Thus, a fully functional basic tri-channel three-electrode electrochemical
system was prepared. Cyclic voltammetry scanning from −0.2 V to 0.6 V at 50 mV/s
scan rate was applied to characterize the performance of the Ag/AgCl pseudo-reference
electrode in 5 mM [Fe(CN)6]3−/4− solution containing 0.1 M KCl.
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Figure 1. Schematic diagram of (a) the structure of electrochemical chip, (b) experimental setup.

2.3. Functionalization of Immunosensor

Antibodies are essentially proteins composed of amino acids, with amino and carboxyl
groups at both ends of the antibodies, as seen in Scheme 1b. The surfaces of the ITO working
electrodes were immobilized with antibodies by chemical crosslinking technology. The
(3-Aminopropyl) triethoxysilane (APTES) acts as an intermediate medium that couples the
hydroxyl group on the surface of the ITO to form a covalent bond, while exposing the amino
group at the other end. The amino groups of antibody and APTES were condensed with the
aldehyde group of glutaraldehydes, and antibody was immobilized by crosslinking with
glutaraldehyde onto the working electrode. The chemical reaction equations are shown in
Scheme 1a.

The fabrication procedure of the electrochemical immunosensor is schematically dis-
played in Scheme 1c. Firstly, the ITO glass was sequentially washed in the ultrasonic
cleaner with isopropanol, deionized (DI) water, anhydrous ethanol for 10 min, and fresh
mixed solution (NaOH: anhydrous ethanol = 1:1) for 5 min. After drying under nitrogen,
the ITO glass was ammoniated with 1% APTES in anhydrous ethanol at 37 ◦C for 12 h and
washed in the ultrasonic cleaner with anhydrous ethanol five times; it was then placed
in an oven at 120 ◦C for 3 h. Next, the ITO glass was placed in 5% glutaraldehyde in
PBS solution for 2 h at room temperature for effective immobilization of antibodies. After
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rinsing with phosphate buffer saline (PBS) and drying with nitrogen, anti-CEA, anti-NSE
and anti-Cyfra21-1 solutions were respectively dripped onto the surfaces of three working
electrodes and incubated at 37 ◦C for 1 h. Then, the electrode was washed three times with
10 mM PBS to remove any excess unbound antibodies. Finally, the electrode was incubated
with 1% BSA for 1h to block unoccupied sites and was then washed with PBS. Water contact
angle measurement (JC2000D, POWEREACH, Shanghai, China) was used to characterize
the surface hydrophilicity after each step. At room temperature, a 3 µL deionized water
drop was dropped onto the working electrode using a micro pipette. The water contact
angle should be measured immediately after the droplet stabilizes, with each sample mea-
sured at least three times. Furthermore, electrochemical impedance spectroscopy (EIS)
was applied to further indicate the binding of the ITO/Antibody/BSA/exosome onto the
working electrode. A selective immunosensor was prepared and stored at 4 ◦C prior to the
next step of capturing the exosomes to be measured and for the subsequent electrochemical
detection in the presence of the [Fe(CN)6]3−/4−-KCl redox system.

2.4. Cell Culture and Isolation of Exosomes
2.4.1. Cell Culture

Three lung cancer cell lines (NCI-H1395, NCI-H226, and NCI-H446, derived from
lung adenocarcinoma, lung squamous carcinoma, and small cell lung cancer, respectively)
were kindly provided by Cell Bank, the Chinese Acadamy of Science [38]. All cells passed
tests for mycoplasma contamination and were cultured in RPMI 1640 supplemented with
10–20% exosome depleted fetal bovine serum (VivaCell, Shanghai, China) in a CO2 in-
cubator (BPN-50CH, Yiheng Scientific Instrument, Shanghai, China) at 37 ◦C with 5%
CO2. Cell recovery, cell passage, and cell cryopreservation processes were performed on
a vertical superclean bench (SW-CJ-2D, Suzhou Purification Equipment, Suzhou, China),
except for centrifugation (TGL-16M, Xiangyi Laboratory Instrument Development, Chang-
sha, China) and the water-bath heating process (HH-2, Lichen Instrument Technology,
Shaoxing, China).

2.4.2. Extraction of Exosome

Cells were grown in T75 cm2 flasks to approximately 80% confluence, and then the
medium was replaced with exosome-free FBS-supplemented RPMI 1640. After 24 h of
starvation culture, cell culture supernatant was collected and centrifuged at 300× g for
10 min, 2000× g for 20 min, to discard cells and cellular debris, and 10,000× g for 30 min, to
remove extracellular vesicles. The supernatant was transferred to a 100-kD ultrafiltration
tube (Millipore, MA, USA), and centrifuged at 4000× g for 30 min, followed by extraction
with Total Exosome Isolation Reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA) from the above cell suspension. The exosome extraction procedure was carried out
strictly according to the manufacturer’s protocol.

2.4.3. Characterization of Exosomes

Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and
fluorescence microscope were applied to characterize the morphology, concentration, and
binding to antibodies of the exosomes, respectively.

The preparation processes of the exosome sample for TEM using the negative staining
technique are as follows. Freshly prepared 4% paraformaldehyde was mixed with an
equal volume of exosome sample and was then pipetted dropwise into a 200-mesh copper
grid for 20 min. Subsequently, two PBS washes were performed along with blotting with
filter paper, followed by 5 min incubation with 1% glutaraldehyde in PBS to fix exosomes,
washing five times with dH2O, and drying. The grid was then negatively stained with
2% phosphotungstic acid twice, protected from light for 3 min to enhance contrast. The
morphology of the exosome was observed via TEM (Talos F200X, Thermo Fisher Scientific,
Waltham, MA, USA) at an accelerating voltage of 80 kV after drying at room temperature.
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NTA was employed to determine the size distribution and concentration of exosome
extracted from the Invitrogen. Briefly, the exosome was diluted 50-fold to a concentration
suitable for detecting with ZetaView PMX 110 (Particle Metrix, Meerbusch, Germany). The
size distribution and concentration of samples were performed automatically, and the data
were exported for further analysis.

Immunobiosensor was prepared by immobilizing Cy3-anti-NSE on the working elec-
trode. Lipophilic green, fluorescent dye (Dio) was configured according to the manufac-
turer’s instructions. Exosomes were stained with the prepared Dio membrane dye in a ratio
of 2:1 for 5–20 min and incubated with cy3-anti-NSE for 30 min; all steps were protected
from light at 37 ◦C. The immobilization of the cy3-anti-NSE to the surface of the ITO and
the immune binding of exosomes and cy3-anti-NSE were visualized using a fluorescence
microscope (ECLIPSE Ti2-U, Nikon, Yuriage, Japan).

2.5. Electrochemical Detection

The sample to be tested was diluted in Tris-HCl buffer (10 mM, pH = 7.4). After
incubation with antibodies at 37 ◦C for 30 min, the unbound sample was thoroughly
washed away with the same buffer. Differential pulse voltammetry (DPV) is a label-free
technique for investigating electrochemical signal changes in quick bioanalysis. It can
reduce the interference caused by the charging current in the background current, and
significantly improves the sensitivity [39]. The immune binding of antibodies and exosomes
on the electrode will obstruct the electron transfer of the [Fe(CN)6]3−/4−, which causes a
decrease in the peak current of the electrochemical response curve, as shown in Scheme 1d.
Therefore, all electrochemical signals were measured by differential pulse voltammetry
(DPV, voltage range: −0.3 to 0.2 V, pulse amplitude: 50 mV, pulse width: 50 ms) in the
presence of the [Fe(CN)6]3−/4−-KCl redox system by using an electrochemical workstation
(CHI600E, Chenhua, Shanghai, China). Figure 1 shows the schematic diagram of the
structure of the electrochemical chip and the experimental setup.

3. Results and Discussion
3.1. Electrochemical Chip

The standard electrochemical detection system consists of a working electrode, a
counter electrode, and a reference electrode. The material of the reference electrode has an
impact on the stability of the detection system. In this work, Ag/AgCl was selected as the
reference electrode. Cyclic voltammetry (CV) measurement was performed to compare the
electrochemical reaction of the bare ITO electrode with the Ag/AgCl reference electrode.
As shown in Figure 2, the ratio of the absolute values of the cathodic peak current density
versus the anodic peak current density (|ipc/ipa|) were 0.789 and 1.048, respectively. The
Ag/AgCl reference electrode demonstrated better redox reversibility.
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Moreover, measurements for five cycles were carried out in 5 mM [Fe(CN)6]3−/4−

solution containing 0.1 M KCl to validate the repeatability, three cycles on different elec-
trodes carried out to verify stability, and different scanning rates were applied to verify
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reversibility. The results are shown in Figure 3a–c, respectively, and indicate that the
tri-channel electrodes chip had good performance in stability, repeatability, and reversibil-
ity. A disposable tri-channel electrochemical immunosensor chip was designed with the
ITO-glass electrode as the bottom layer and the Ag/AgCl as the reference electrode.
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Figure 3. Performance characterization of electrochemical detection chip by cyclic voltammetry.
(a) stability with five repeated measurements on the same electrode, (b) reproducibility with three
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with the square root of scan rate: cathodic curve (in blue), anodic curve (in pink).

3.2. Characterization of Immunosensor Fabrication Steps

The immobilization process included several stages: hydroxylation and silanization of
disposable ITO glass electrodes, coupling of antibodies and silanized working electrode
with aldehyde groups at both ends of glutaraldehyde, and blockage of the free amino
terminus via BSA. Accordingly, anti-CEA was immobilized on the working electrode
according to the steps shown in Scheme 1c, and the water contact angles were measured
after each step of the surface modification procedures. It can be seen from Figure 4 that
the surface of the working electrode exhibits a distinct hydrophilicity after hydroxylation
and amination. Due to the effect of glutaraldehyde, the hydrophobicity of the surface is
restored. Due to the hydrophobic effect of the antibody, the water contact angle reaches
87.8 degrees after anti-CEA immobilization. The variation of the contact angle further
indicates successful stepwise modification on the working surface.
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In addition, electrochemical impedance spectroscopy (EIS) was applied to further
indicate the binding of ITO/anti-CEA/BSA/exosome on the working electrode, as shown
in Figure 4g. The semicircle in the Nyquist plot at the high-frequency region is related to
the impedance of charge transfer process in the interface of the electrode and electrolyte.
An increased semicircle diameter implies the growing charge transfer resistance. The result
indicated that the electrode impedance increases due to the hindrance of electron transport
by protein-like insulating substances.

3.3. Experimental Parameters Optimization

The change of response current of DPV is due to the obstruction of electron transfer of
the [Fe(CN)6]3−/4−, which can be used to optimize the number of antibody immobilizations
related to antibody concentration and incubation time, so as to maximize the performance
of the biosensor. The effect of anti-CEA concentration on immunosensor response was first
examined in this study. In Figure 5a, the peak current of DPV drastically decreased with
the increase of antibody concentration from 10 to 40 µg/mL, while the signal plateaued
when antibody concentration continues to increase. Additionally, the effect of the anti-CEA
incubation time was also studied. In Figure 5b, with the increase in incubation time, the
antibody binds more tightly and showed obvious signal enhancement from 30 min to
50 min, but it tended to reach saturation after 50 min. Thus, 40 µg/mL and 50 min were
chosen as the optimal values of antibody concentration and incubation time, respectively,
to be used for the following detection.
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3.4. Analytical Performance of the Designed Biosensor
3.4.1. Sensitivity

A tri-channel electrochemical immunosensor chip was designed to achieve the mul-
tiple detection of the three biomarkers, CEA, NSE, and Cyfra21-1, related to lung cancer.
Under optimal conditions, the immunobiosensor was prepared by immobilizing anti-CEA,
anti-NSE, and anti-Cyfra21-1 on the working electrode of the chip; the detection perfor-
mance of the fabricated immunosensor toward various concentrations of CEA, NSE, and
Cyfra21-1 were investigated by DPV measurements. Briefly, serial gradient concentration
solutions of CEA, NSE, and Cyfra21-1 were prepared with phosphate buffer solution and
injected into the chip fabricated by following the protocol in Section 2.2. Antigens were
detected in the concentration of 0–1 µg/mL, in which the experiment of 0 ng/mL was
carried out with PBS buffer. After incubation for 30 min at 37 ◦C, immune complexes were
formed, and then unbound biomarkers were washed off with phosphate buffer solution.
Finally, DPV was performed in 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]-KCl solution from −0.2 to
0.4 V. The experimental data that we have not shown indicate that the DPV response peak
current was 104.4 nA when the concentration of CEA is 0 ng/mL. At a concentration of
10−4 ng/mL and 102 ng/mL, the peak current changes were very slight, which revealed
that the detection limits ad been reached. As shown in Figure 6, as the concentration
of immune complexes increased, the peak value of the oxidation current of [Fe(CN)6]3−

gradually decreased, and it exhibited a logarithmic linear correlation with the concentra-
tions. This was attributed to the immune complexes on the electrode surface as the electron
communication and mass transfer barrier layer would obstruct electron transfer between
[Fe(CN)6]3− and [Fe(CN)6]4−. The standard curves of the relationship between the CEA,
NSE, and Cyfra21-1 concentrations and the output current of the biosensor were obtained
after linear regression. The linear detection ranges were 10−3 to 10 ng/mL for CEA, 10−4 to
102 ng/mL for NSE, and 10−3 to 102 ng/mL for Cyfra21-1, and indicated promising linear
correlations, which were 0.99744, 0.98792, and 0.98213, respectively. It can be seen that
the immunosensor has a wide linear range and low detection limit. Thus, high sensitivity
is readily achievable within a short timescale. The excellent sensing performance of the
ITO/antibody electrode suggests the suitability for exosome detection in real samples for
future practical applications.
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3.4.2. Selectivity

Normal samples often contain a high abundance of non-target proteins that can
potentially interfere with exosome detection and lead to inaccurate results. In order to
evaluate the anti-interference ability of the electrochemical immunosensor, anti-CEA was
modified on the working electrode, and equal concentrations of interfering substances with
NSE, NSE, and Cyfra21-1, respectively, were added to the CEA solution (1 ng/mL). The
DPV response peak current was 67.35, 64.93, and 64.02 nA, respectively. As can be seen
from Figure 7, the peak current was decreased due to the addition of interfering substances,
which was due to the obstruction of electron transmission caused by nonspecific binding.
In general, the differences of the peak values of the response current are less than 5%, which
is within the allowable error range [33].
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3.4.3. Storage Stability

The storage stability of the detection method is very important in practical appli-
cation. In order to evaluate the storage stability of the electrochemical sensor chip, the
pre-constructed anti-CEA immunosensor was stored at 4 ◦C in 10 mM PBS (pH = 7.4) for
1, 2, and 3 weeks, and the electrochemical response signal value was recorded. As shown
in Figure 8, an approximately 19% reduction in current change was obtained, which was
due to the slight degradation of the protein after long-term storage at 4 ◦C, which was
still within the acceptable range. The prepared immunosensor should be used as soon as
possible to avoid interference.
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As noted above, the present sensor has excellent performance in sensitivity, anti-
interference ability, and storage stability.

3.5. Characterization of Exosome

We extracted exosomes from lung cancer cells according to the protocol in Section 2.4.2.
Morphological characterization of exosomes fixed on the copper grid by TEM are demon-
strated in Figure 9a. It can be seen that the exosomes showed a saucer-like morphology
with clear outline. The mean particle size distribution and concentration of exosomes
was further characterized by NTA. Figure 9b revealed that the mean size of exosomes
was 120 ± 80 nm within expectation, and the concentration was 1.5 × 107 particles/mL.
Moreover, to visualize the immobilization of antibody on the surface of ITO and the im-
mune binding of exosomes and cy3-anti-NSE, exosomes was pre-labeled with a fluorescent
lipid probe (Dio) that will specifically stain the cell membrane only. The Cy3 dye is a red
fluorophore upon excitation and can be captured by fluorescent camera, while the labeled
exosomes showed green fluorescence dots under blue light excitation. As can be seen from
Figure 9c,d the antibody is modified to the surface of the working electrode and can be
used to capture exosomes. The result of the combination is shown in Figure 9e, which
presents an excellent bonding effect.
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exosomes, (e) Merged picture of (c,d).

3.6. Multiplexed Detection of Exosome Biomarkers of Lung Cancer

Pathologically, lung cancer is classified into small-cell lung carcinoma (SCLC) and
non-small-cell lung carcinoma, which comprise around 85% and 15% of all cases, respec-
tively. The latter can be further divided into lung adenocarcinoma, lung squamous cell
carcinoma, and others [40]. Exosome tumor markers hold promise for the early detection
and diagnosis of lung cancer in the current applications [41]. However, the detection of a
single tumor marker is limited to sensitivity and accuracy, and the classical protein markers
of exosomes are limited to specificity. Accordingly, we analyzed the role of three exosome
biomarkers, CEA, NSE, and Cyfra21-1, in lung cancer diagnosis. Briefly, a tri-channel
electrochemical detection chip was prepared by immobilizing anti-CEA, anti-NSE, and
anti-Cyfra21-1 successively on the working electrodes. Exosome samples extracted from
H1395 (lung adenocarcinoma), H226 (lung squamous cell carcinoma), and H466 (small-cell
lung carcinoma) lung cancer cell lines were diluted (1000-fold) with PBS and then injected
into the tri-channel electrochemical chip. After incubation at 37 ◦C for 30 min, the chip was
washed with buffer and subsequently detected by DPV in 5 mM [Fe(CN)6]3−/4− solution
containing 0.1 M KCl. As the protein concentration of exosomes was increased, peak
current gradually decreased. The peak value of the sample was converted to analyze the
concentration using the standard curve mentioned above. The expression of CEA, NSE,
and CYFRA21-1 in three kinds of lung cancer cells is shown in Figure 10. In H1395, H226,
and H446 lung cancer cells, the contents of exo-CEA were 14.7 ng/mL, 8.9 ng/mL, and
1.35 ng/mL; the contents of exo-NSE were 5.58 ng/mL, 10.19 ng/mL, and 28.51 ng/mL;
the contents of exo-Cyfra21-1 were 1.32 ng/mL, 14.5 ng/mL, and 2.16 ng/mL, respectively.
Different lung cancer cells showed significantly different expression levels of exosome
biomarkers. For example, exo-CEA was abundant in lung adenocarcinoma and exo-NSE
was significantly increased in small cell lung cancer, while exo-Cyfra21-1 was prominent
in lung squamous cell carcinoma, which may provide the possibility for further tumor
classification.
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4. Conclusions

In summary, a tri-channel electrochemical immune detection system was developed
for enzyme-free and label-free detection of multiple exosome biomarkers (CEA, NSE, and
Cyfra21-1) for early diagnosis of lung cancer. The fabricated biosensor performed a linear
response with a wide range and a good selectivity and stability. Highlights summarized
from this work are as follows:

1. The utilization of ITO glass instead of precious metals such as gold offers an inex-
pensive, simple, and sensitive system, which makes it easy to realize small sample
amounts and integrated detection when combined with microchannels.

2. The proposed immunosensor with optimized parameters can detect exosome markers
in a range from 10−3 to 10 ng/mL for CEA, 10−4 to 102 ng/mL for NSE, and 10−3 to
102 ng/mL for Cyfra21-1, with a detection limit below 10−4 ng/mL, which was lower
than the conventional ELISA method. The immunosensor is suitable for exosome
detection in real samples for practical applications.

3. The combined detection of multiple exosome markers has a higher efficiency than a
single biomarker of ELISA. The difference in expression level may guide the typing of
lung cancer; nevertheless, clinical trials with adequate sample volume are still needed
for further validation.
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