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Abstract: Polymerase chain reaction (PCR) is the standard tool in genetic information analysis, and
the desirable detection merits of PCR have been extended to disease-related protein analysis. Recently,
the combination of PCR and gold nanoparticles (AuNPs) to construct colorimetric sensing platforms
has received considerable attention due to its high sensitivity, visual detection, capability for on-site
detection, and low cost. However, it lacks a related review to summarize and discuss the advances in
this area. This perspective gives an overview of established methods based on the combination of
PCR and AuNPs for the visual detection of health-related DNA and proteins. Moreover, this work
also addresses the future trends and perspectives for PCR–AuNP hybrid biosensors.

Keywords: PCR; AuNPs; colorimetric detection; DNA; proteins

1. Introduction

Polymerase chain reaction (PCR) is a powerful nucleic acid amplification tool with
exponential amplification efficiency, which can amplify a single piece of DNA into thou-
sands of pieces within a short period [1]. Since its invention by Mullis in 1984, PCR has
radically transformed biological science and has now become one of the most popular
tools in molecular diagnosis [2,3]. Traditionally, PCR products are identified by the la-
borious and time-consuming method of gel electrophoresis, which involves a tedious
procedure with the need for skilled personnel [4]. Moreover, conventional PCR is limited
to qualitative analysis.

The development of fluorescence PCR technology, including real-time PCR, has signifi-
cantly expanded the scope of PCR techniques in different disciplines, offering the possibility
to quantify the analytes [5,6]. This type of PCR technology is also advantageous in its
sensitivity, repeatability and ease of operation [7]. However, it involves expensive reagents
and instrumental readout, and its background significantly grows with a cycle number of
over 35, which might give false-positive results and affect its applications [8]. Moreover,
fluorescent dyes used are usually impaired by their photostability, and are also affected by
the autofluorescence of biological samples [9,10]. This fuels the need for the development
of new PCR product analysis methods, so many methods have been established for the
quantitative detection of PCR products, including electrochemistry [11], radioactivity [12],
circular dichroism (CD) spectroscopy [13], surface-enhanced resonance Raman scattering
(SERRS) [14], and colorimetry [15,16]. Among these methods, colorimetric PCR attracts a
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huge amount of attention due to its low cost, visual detection, and capability for on-site
detection [17]. In the sensing fields, the application of colorimetric PCR mainly focuses on
measuring the variation in nucleic acids related to diseases. Since the analysis of nucleic
acids is not sufficient for molecular diagnostics, immuno-PCR based on the antibody was
developed for the sensitive detection of proteins, which shows a 100–10,000-fold increase
in sensitivity compared to conventional immunoassays [18]. But this is compensated with
the cost and operation protocol.

Gold nanoparticles (AuNPs) are the most well-studied nanoparticles, and their intrigu-
ing chemical and photophysical properties render them an integral part of nanoscience [19]’
this is due to their high photostability, ease of synthesis and functionalization [20], and
strong light absorption and scattering properties [21]. AuNPs have been extensively inves-
tigated as a kind of signal transducer in biosensors [22]. Mounting AuNP-based assays
have been reported for a range of analytes, such as metal ions, small molecules, and
biomolecules [23–25]. In particular, in 1996, Mirkin developed oligonucleotide-modified
AuNPs, also known as spherical nucleic acids (SNAs), enabling controllable self-assembly
of AuNPs along with optical, electronic and structural property changes [26,27]. This
significantly expands the scope of AuNP applications; they are widely used for biosensing,
intracellular imaging, drug delivery, etc. [28–30]. However, SNA-involved colorimet-
ric biosensors generally show low sensitivity, failing to fulfill the requirement of detec-
tion [31,32].

By virtue of PCR and AuNPs, PCR–AuNP hybrid colorimetric biosensors are a good
solution to retain high sensitivity without compensating visual detection, on-site detection,
and low cost. Although some important advances have been achieved in this area in recent
years, there lacks a specific review for this topic. In this current review, we divide the
combination of PCR and AuNPs into two parts based on their manner of interaction: the
non-specific combination of AuNPs with a conventional PCR product, and the specific
combination of AuNPs with conventional PCR. We will discuss the advances in the combi-
nation of PCR and AuNPs to fabricate colorimetric sensing platforms for the detection of
health-related DNA and proteins. The advantages and drawbacks of these sensing methods
will be described. Finally, the perspectives and challenges of this strategy to develop ideal
analytical methods will be discussed. We envisage this review being helpful to researchers
in the area of developing methods based on AuNPs to PCR.

2. Non-Specific Combination of AuNPs with Conventional PCR Product

Initially, AuNPs were integrated into PCR in a non-specific manner. This integration
is mainly divided into two kinds: AuNPs interacting with reagents in a PCR solution to
improve PCR performance, and AuNPs interacting with PCR products with a color change.
For the first situation, Li et al. first found that AuNPs enhanced PCR amplification with
respect to both yield and specificity in 2005 [33]. AuNPs were then intensively investigated
to improve the performance of PCR, and other nanomaterials were also found to amplify the
performance [34]. In this field, AuNPs mainly work as catalysts instead of signal indicators;
now, this field has evolved to become nanoPCR [35–38]. However, the mechanism remains
elusive, which is mainly explained by: AuNPs absorbing polymerase to modulate the
amount of active polymerase; AuNPs absorbing primer to decrease the Tm of primers; and
AuNPs absorbing the PCR product to speed up product association [37,39–42]. There are
a few reviews on nanoPCR available in Current Organic Chemistry [43] and the Journal of
Nanoscience and Nanotechnology [34] for an interested audience. Here, we are interested in
the second situation in which AuNPs serve as a colorimetric probe.

AuNPs have strong electrostatic interactions with single-stranded DNA (ssDNA),
while showing weak affinity against double-stranded DNA (dsDNA) [44], wherein the
difference depends on their different electrostatic properties. In solution, ssDNA displays
sufficient flexibility and uncoils, and its exposed bases form a favorable Van der Waals
interaction with AuNPs. In contrast, dsDNA is more stable and rigid, its bases tend to be
hidden, and its negatively charged phosphate backbone shows repulsion to the negative
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ions of the AuNPs’ surfaces. Thus, the favorable interactions of ssDNA with AuNPs
stabilize naked AuNPs, thus prohibiting the aggregation of AuNPs in a salt solution.
The rate of adsorption onto the AuNPs’ surface is also related to ssDNA length and
reaction temperature, in which shorter sequences are easier to bind to AuNPs, while a
higher temperature promotes this process. The aggregation of AuNPs with appropriate
sizes (d > 3.5 nm) leads to interparticle surface-plasmon coupling, causing a visible color
change from red to blue at nanomolar concentrations [45]. This provides a basis for the
development of AuNP-based colorimetric biosensors.

In 2004, Rothberg and coworkers first combined PCR with AuNPs, serving as a
signal reporter to detect partial genomic DNA based on the selective affinity of AuNPs
to ssDNA [46]. The authors designed ssDNA probes that were complementary to the
desired PCR product, and had melting temperatures lower than the primers. The PCR
product dsDNA was dehybridized into ssDNA at 95 ◦C, then the mixture was annealed
below the melting temperatures of the probes, causing the hybridization between dsDNA
and ssDNA. When AuNPs were added to this solution, there was immediate salt-induced
AuNP aggregation, along with a color change in the solution from pink to purple (Figure 1).
In contrast, when the dsDNA was not complementary to the ssDNA probes, the probes
were absorbed on the AuNPs surface to prevent aggregation (Figure 1Bb). The method
could be applied to detect single nucleotide polymorphisms (SNPs) in a long-QT-syndrome
clinical sample. However, to reduce the potential interference, it needs to add AuNP probes
into the PCR products after PCR amplification.
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Figure 1. (A) Schematic diagram of detection of PCR product with AuNPs; (B) color images of
the solutions with complementary ssDNA probes (a) and noncomplementary ssDNA probes (b).
Adapted with permission from ref [46]. Copyright 2004 American Chemical Society.

As conventional PCR only produces product dsDNA, the coupling of AuNPs to PCR
necessitates additional ssDNA probes and additional steps. An asymmetric polymerase
chain reaction (As-PCR) is capable of generating ssDNA product, offering the possibility of
directly combining AuNPs and PCR [47,48]. Deng et al. reported that As-PCR was used to
amplify the targeted sequence into a large amount of amplified ssDNA, which bound to
naked AuNPs, enabling colorimetric detection (Figure 2) [49]. The presence of the target
enabled As-PCR to produce large ssDNA amplicons, which wrapped around AuNPs to
stabilize nanoparticles against salt-induced aggregation, and the red color of the AuNPs
remained unchanged (Figure 2). In contrast, the absence of the target did not produce
ssDNA amplicons, inducing the aggregation of AuNPs with a red-to-blue color change
in the solution. This method was applied to detect Bacillus anthracis in clinical samples.
This work demonstrated that long genomic ssDNA (508 nt/bp) also effectively stabilized
AuNPs, largely expanding its application in an ssDNA-producing sensing system. Recently,
Chen et al. expanded this strategy for the colorimetric detection of Salmonella-spiked lettuce
samples by using the long ssDNA of As-PCR to stabilize bare AuNPs [50]. In addition,
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this strategy was also applicable in the detection of a small molecule, in which As-PCR
produced a paraquat aptamer, and the presence of paraquat consumed the aptamer, causing
the aggregation of bare AuNPs [51].
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Traditionally, discrimination of live and dead bacteria relies on culture-based methods,
whereas these methods are time-consuming, labor intensive and have low sensitivity [52–54].
Although fluorescent probes have been widely explored for selectively staining live bacteria,
these probes suffer from low sensitivity [54–57]. Meanwhile, DNA-based PCR also cannot
distinguish between live and dead bacteria, as DNA remains detectable after bacteria
death [58,59]. Xu and coworkers expanded the AuNP-involved As-PCR biosensor for the
selective detection of live emetic Bacillus cereus [60]. As propidium monoazide (PMA)
selectively intercalates DNA in dead cells with compromised membranes, it can covalently
cross-link with DNA under UV irradiation, preventing DNA amplification [61]. After
PMA treatment, the target DNA was amplified using As-PCR; then, the resultant ssDNA
stabilized AuNPs against salt-induced aggregation, so the color of the solution remained
red (Figure 3). This method shows good sensitivity against live emetic Bacillus cereus in
milk with a detection limit of 3.4 × 102 CFU/mL. This method was proven to be effective
in discriminating emetic Bacillus cereus from the other eight strains in milk; moreover, it
provides a solution for the detection of live pathogenic bacteria, overcoming the drawbacks
of PCR-based assays in the discrimination between live and dead bacteria. However, the
efficiency of As-PCR amplification is much lower than that of conventional PCR, and the
sensitivity of these methods is limited.
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Beyond health-related DNA and proteins, AuNPs and PCR were also combined for
the detection of prostate cancer urinary biomarker PCA3, a non-coding RNA [62]. The thiol
forward primer was used and the presence of PCA3 generated the thiolated PCA3 PCR
products, which were further modified on AuNPs and stabilized AuNPs in the salt solution.
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These methods (Table 1) rely on non-specific interactions between AuNPs and con-
ventional PCR products through electrostatic and Van der Waals interactions. These
interactions are easily affected by interferents that are present in the sample. Therefore,
the application of these methods to complicated samples such as whole-blood samples
and bacteria samples remains problematic due to the biofouling and non-specific binding
caused [63,64]. This has prompted the development of the specific combination of AuNPs
with PCR-based biosensors for genes and proteins.

Table 1. Comparison of non-specific combinations of AuNPs with conventional PCR product.

Detection Method Strategy Target Detection Limit Aggregation Time Ref.

Colorimetric ssDNA adsorbs on AuNPs
without amplification. Genomic DNA — Less than 1 min [46]

Colorimetric As-PCR ssDNA product bound to
naked AuNPs.

Long genomic
ssDNA

Picogram detection
level 10 min [49]

Colorimetric PMA selectively intercalates DNA
in dead cells.

Live emetic
Bacillus cereus

DNA
3.4 × 102 CFU/mL — [60]

Colorimetric Non-specific interactions between
AuNPs and PCR products

Prostate cancer
urinary biomarker

PCA3
31.25 ng/reaction — [62]

3. Specific Combination of SNAs with PCR

The discovery of SNAs by Mirkin in 1996 enables the tailoring properties of AuNPs based
on the practical requirements, largely extending the scope of AuNP applications [26,65,66].
In particular, SNAs enable DNA-meditated AuNP assembly with optical signal change,
providing the basis of DNA-mediated AuNP aggregation for the colorimetric detection of
DNA [67,68]. In theory, if the sequence of PCR products or nucleic acid reagents during
the PCR process is complementary to the ssDNA on AuNPs, the analyte-initiated PCR
process may change the status of SNA aggregation. This offers the possibility of developing
biosensors based on PCR-coupled AuNP assembly/disassembly, while DNA-meditated
AuNP assembly/disassembly is more stable and controllable than ssDNA-stabilized AuNP
dispersion [69].

3.1. SNAs in Post-Processing of PCR Product

Initial efforts in the specific combination of SNAs with PCR were mainly performed
for specific interactions between SNAs probes and PCR products (Table 2), in which the
products were added into an SNA solution after PCR amplification. In 2012, Liang and
coworkers combined As-PCR and SNAs to develop a colorimetric assay for a specific DNA
sequence [70]. The authors designed two kinds of SNA, which bound to ssDNA products
generated from As-PCR to form dsDNA, inducing the assembly of AuNPs along with
a color change from red to pink (Figure 4). This method can detect as little as 10 pg of
template DNA, and was also applied to detect clinical Bacillus anthracis samples. In this
work, the ssDNA product provided a template for hybridizing two SNA probes, and the
resulting AuNP assembly was loose; thus, their sensitivity and specificity are limited.

To further improve its sensing performance, Wang et al. utilized the As-PCR prod-
uct as a G-quadruplex DNAzyme, which oxidized cysteine into cystine, leaving silver
ions free and causing SNAs to self-assemble into triplex DNA-mediated AuNP networks
(Figure 5) [71]. This method detected Staphylococcus aureus with a detection limit of 0.28 Pg.
Although this method achieves precise control assembly of AuNPs based on As-PCR, it is
relatively complicated, and probably susceptible to real samples.
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Typically, with SNAs, it is difficult to recognize the dsDNA from routine PCR products,
so the combination of SNAs and PCR generally relies on As-PCR [72,73]. To solve this
problem, triplex DNA was used for the direct combination of SNAs and conventional
PCR, in which the dsDNA product from PCR formed triplex DNA with ssDNA on AuNPs’
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surfaces, thus inducing the self-assembly of AuNPs (Figure 6) [74]. The strategy was
capable of detecting short dsDNA (49 bp) and long dsDNA (321 bp). The applicability of
this method was further demonstrated to detect Escherichia coli with a detection limit of
1.0 Pg/L. This method is universal and simple. However, triplex DNA is less stable than
dsDNA, [75,76] and its application in real samples remains unexplored.

Biosensors 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 
Figure 6. Schematic diagram of PCR product-mediated assembly of SNAs through triplex DNA 
formation for colorimetric detection of Escherichia coli. Adapted with permission from ref [74]. Cop-
yright 2019 Elsevier. 

The low cost and rapid identification of suspected infectious people is crucial for 
dealing with the recent pandemic of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [77–79]. The strategy above may provide a good solution for SARS-CoV-2 
screening. Recently, Somoza’s group employed T7 exonuclease to treat RT-PCR products 
of the SARS-CoV-2 genome for the generation of ssDNA, which further opened choles-
terol-modified hairpin AuNPs, changing the hydrophilic nanostructures of AuNPs into 
hydrophobic nanostructures along with the aggregation [80]. Recently, Ezati et al. also 
implemented two hairpin-SNAs to the conventional PCR assay for the colorimetric detec-
tion of SARS-CoV-2 RNA [81]. The sequence of an ssDNA was designed to be identical to 
the TaqMan probe in a real-time reverse-transcription PCR (RT-PCR) assay, and the pres-
ence of the target degraded the ssDNA during the amplification process [81]. Post-treat-
ment of the PCR products by the hairpin-modified AuNP solution kept AuNPs dispersed. 
In contrast, the absence of the target caused the assembly of SNAs. Later on, the authors 
also applied a similar strategy for the visual detection of SARS-CoV-2 RNA, in which hair-
pin-modified AuNPs were replaced by ssDNA-modified AuNPs, which were assumed to 
be more stable in the salt solution [82]. 

  

Figure 6. Schematic diagram of PCR product-mediated assembly of SNAs through triplex DNA
formation for colorimetric detection of Escherichia coli. Adapted with permission from ref [74].
Copyright 2019 Elsevier.

The low cost and rapid identification of suspected infectious people is crucial for
dealing with the recent pandemic of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [77–79]. The strategy above may provide a good solution for SARS-CoV-2
screening. Recently, Somoza’s group employed T7 exonuclease to treat RT-PCR prod-
ucts of the SARS-CoV-2 genome for the generation of ssDNA, which further opened
cholesterol-modified hairpin AuNPs, changing the hydrophilic nanostructures of AuNPs
into hydrophobic nanostructures along with the aggregation [80]. Recently, Ezati et al.
also implemented two hairpin-SNAs to the conventional PCR assay for the colorimet-
ric detection of SARS-CoV-2 RNA [81]. The sequence of an ssDNA was designed to be
identical to the TaqMan probe in a real-time reverse-transcription PCR (RT-PCR) assay,
and the presence of the target degraded the ssDNA during the amplification process [81].
Post-treatment of the PCR products by the hairpin-modified AuNP solution kept AuNPs
dispersed. In contrast, the absence of the target caused the assembly of SNAs. Later on,
the authors also applied a similar strategy for the visual detection of SARS-CoV-2 RNA, in
which hairpin-modified AuNPs were replaced by ssDNA-modified AuNPs, which were
assumed to be more stable in the salt solution [82].
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Table 2. Comparison of specific combinations of SNAs in post-processing of PCR product.

Detection Method Strategy Target Detection Limit Aggregation Time Ref.

Colorimetric As-PCR ssDNA product binds
to SNAs. Template DNA 10 Pg Several mins [70]

Colorimetric As-PCR product as a
G-quadruplex DNAzyme. Genomic DNA 5.6 fg/µL 10 min [71]

Colorimetric PCR product and SNAs form
triplex DNA.

Short DNA and
long DNA

0.5 pM for short DNA
1.0 Pg/L for long DNA — [74]

Colorimetric T7 exonuclease to treat
RT-PCR products. RNA 1 nM 15 min [80]

Colorimetric 5′-exonuclease treat
RT-PCR products. RNA 6 copies — [81]

3.2. SNAs in PCR Amplification Process

The integration of SNAs into the PCR amplification process may obviate the post-
treatment of the PCR product, enabling the rapid and real-time detection of DNA sequences
(Table 3). To achieve this goal, Wang and coworkers reported a colorimetric PCR method
for the detection of a specific DNA by using two kinds of primer-functionalized AuNPs
(Figure 7) [83]. The forward primer was designed to be the same as partial target DNA,
while the reverse primer was complementary to partial target DNA. The presence of
target DNA initiated the extension of the reverse primer on AuNPs as a template that was
complementary to the forward primer on AuNPs. Thus, the PCR amplification process
led to DNA-mediated AuNP assembly. The assembly of AuNPs induced a redshift of the
absorbance peak at 519 nm with a corresponding color change from red to pink/purple.
The detection can be achieved after five cycles of PCR (about 15 min) in one pot. However,
it is worth noting that the length of the target DNA should be over 20 nt (~6.8 nm) to
overcome the steric hindrance caused by Taq polymerase. In addition, the applicability of
this method in real samples is unclear.
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The combination of AuNPs and PCR in one pot may suffer from the problem of
the thermal desorption of ssDNA from the AuNPs’ surfaces, affecting the stability and
colorimetric properties of SNAs [84,85]. To improve the thermal stability of SNAs, a simple
silica coating method was used to synthesize silica-coated SNAs, which preserves the DNA-
mediated color-change property (Figure 8) [86]. The presence of the template extended
the two primers to produce dsDNA amplicons. The resultant dsDNA had no influence
on silica-coated SNAs, in which the solution remained red. In contrast, the absence of the
target left the primers intact after PCR, in which one of the primers formed dsDNA with
ssDNA on the silica-coated SNAs surface. As the transformation of ssDNA into dsDNA on
AuNPs’ surfaces induces the aggregation of SNAs in a high-salt solution [87], the formation
of dsDNA induced AuNP aggregation in the salt solution, along with a redshift from
around 520 to 530 nm (Figure 8). This method achieved closed-tube colorimetric PCR,
avoiding potential contamination; however, one issue is the reliability of this method for a
complicated DNA sample, as an actual sample generally contains unreacted primers and
other interferants [88–90].
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As mentioned before, conventional PCR only produces a dsDNA product, hampering
its application in ssDNA-mediated AuNPs aggregation [91–93]. Ling and coworkers uti-
lized the oxyethyleneglycol-bridged primers, which formed a hairpin structure to preserve
ssDNA segments after PCR amplification (Figure 9) [94]. The addition of target DNA
initiated the extension, opening the hairpin structure of the primers after the first cycle,
leaving ssDNA segments. These segments hybridized with ssDNA on AuNPs, and thus,
crosslinked two kinds of SNA probes, causing the aggregation of AuNPs with a color
change from red to blue-purple. This method was also capable of detecting genomic DNA
from mouse blood. This work provides a good strategy for the production of ssDNA
segments by using the conventional PCR technique. Interestingly, Jiang and coworkers
also applied conventional PCR for the colorimetric detection of Salmonella typhimurium
based on dual aptamers [95]. The PCR amplicons in the presence of Salmonella typhimurium
hybridized with ssDNA-modified AuNPs to form a highly stable network structure, which
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protected AuNPs from self-aggregation in a magnesium sulfate solution. Very recently,
Song and coworkers utilized a cascade invader reaction with the assistance of the flap
endonuclease (FEN1) to combine PCR and SNA probes for human papillomavirus (HPV)
typing, achieving closed-tube and multiplexed detection [96]. It should be noted that
one-pot detection using this strategy generally requires additional reagents.
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Recently, Wang et al. used SNAs as a TaqMan-like signal probe to develop a one-pot,
PCR-based biosensor for DNA and proteins (Figure 10) [97]. SNAs first bound to the tem-
plate DNA, which were cleaved by Taq polymerase during the extension process after the
first PCR cycle, producing bare AuNPs that aggregated in a high concentration of Mg2+ so-
lution. This strategy was successfully applied to visually detect Listeria monocytogenes, with
a detection limit of 1.0 Pg µL−1. Generally, PCR-based protein detection mainly depends
on immuno-PCR, which uses an antibody to recognize and transfer protein information
into a DNA signal [18]. However, immuno-PCR is cost-ineffective and complicated. The
authors used proximity ligation to further apply this strategy to the detection of protein,
which employed two aptamers to transfer protein information into the DNA signal through
target-mediated dsDNA formation. This strategy was successfully applied to detect throm-
bin, with a detection limit of 0.57 nM. The authors also utilized a more sensitive dynamic
light-scattering technique to detect bacteria DNA and thrombin, due to the size-dependent
signal change in AuNPs. This method depended on the specific recognition of SNAs to
template dsDNA, obviating the PCR cycle-number-dependent background. Theoretically,
this strategy is universal for other DNA and proteins, but its sensing performance in other
analytes and in clinical samples remains to be explored.
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Figure 10. Schematic diagram of PCR-based sensing platform with SNAs as a TaqMan-like signal
probe for colorimetric detection of Listeria monocytogenes and thrombin. Adapted with permission
from ref [97]. Copyright 2019 American Chemical Society.

Table 3. Comparison of specific combinations of SNAs in PCR amplification process.

Detection Method Strategy Target Detection Limit Detection Range Ref.

Colorimetric
Using two kinds of

primer-functionalized
AuNPs.

DNA over 20 nt 0.1 fM — [83]

Colorimetric Silica coating and
closed-tube method. DNA 105 copies — [86]

Colorimetric

Utilized the
oxyethyleneglycol-

bridged
primers.

Genomic DNA 4.3 fM 16 fM to 1.6 nM [94]

Colorimetric SNAs act as TaqMan-like
signal probe. DNA and protein 0.4 pM for DNA;

0.57 nM for protein

1.0 pM to 100 nM for
DNA; 1.0 nM to 20 µM

for protein
[97]

DLS SNAs act as TaqMan-like
signal probe. DNA and protein 1.1 fM for DNA;

1.0 pM for protein

3.0 fM to 1.0 nM for
DNA; 2.0 pM to

200 nM for protein
[97]

4. Conclusions and Perspectives

The wide use of PCR and AuNPs in the sensing field stimulates the interest in the
combination of PCR and AuNPs to develop colorimetric PCR-based sensors. These hybrid
methods may integrate the intriguing properties of AuNPs into the amplification power of
PCR, achieving high sensitivity without sacrificing the visual detection, on-site detection,
and low cost. The existing methods are mainly divided into two types: the non-specific
combination of AuNPs with a conventional PCR product based on ssDNA-stabilized
AuNPs in high salt solution; and the specific combination of SNAs with PCR based on
DNA-mediated AuNPs, based on the principle of complementary base pairing. Although
the above examples have shown that this strategy is feasible, like other PCR-based methods,
these methods mainly focus on the detection of DNA sequences and bacteria-derived genes,
and only a few are reported to detect disease-related proteins.
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Currently, the combination of PCR and AuNPs for the colorimetric detection of pro-
teins is mainly limited to the step of transforming protein information into DNA informa-
tion. Although AuNPs have also been explored for combination with immuno-PCR, the
use of antibodies complicates the sensing systems and raise the cost of the assays, limiting
their applications [98–100]. The discovery of aptamer renders this transformation easier
and more effective [101]. This has been exemplified by the work of Wang et al., [97] which
uses two aptamers to transfer thrombin information into a DNA signal, obviating the use
of an antibody. However, there is still a long way to go. It needs additional effort to further
demonstrate that the combination of PCR and AuNPs is a viable strategy to detect protein
biomarkers, such as viral proteins and cancer-related proteins.

Most current PCR–AuNP-based colorimetric methods only utilize the size-dependent
color change in AuNPs. AuNPs also display size-dependent scattering properties. More-
over, the light-scattering intensity of AuNPs is positively proportional to their size, making
AuNPs desirable dynamic light-scattering probes; thus, the employment of dynamic light-
scattering allows AuNPs to be detected at levels as low as 10−16 M [102,103]. This also
indicates that the combination of PCR and AuNPs enables multimodal sensing. Wang
et al.’s work has verified the feasibility of the colorimetric and dynamic light-scattering
detection of DNA and protein [97]. However, more efforts are needed, especially in the
clinical applications of PCR–AuNP-based dynamic light-scattering biosensors. Moreover,
the effect of biomolecules in clinical samples on AuNP aggregation should be investigated,
as it may induce negative results.

In addition, it should be noted that some factors (such as ionic strength, pH, protein
conformations, the size of AuNPs, the manner of ssDNA immobilization on AuNPs, and
the immobilization density on AuNPs) may affect the change in AuNP signals, as AuNP
aggregation depends on electrostatic interactions. Therefore, special attention should be
paid to these factors in PCR–AuNP hybrid biosensors, especially in more complicated
protein-sensing systems. Moreover, the state of AuNP aggregation may change and dimin-
ish over time, along with signal change, due to the lack of aggregate stability in solution
which may reduce the surface-repelling force and make them undergo particle-size expan-
sion. Thus, time-dependent measurement should be considered to obtain more accurate
results in these sensing systems. Furthermore, most PCR–AuNP colorimetric methods are
developed and tested in a laboratory setting. Further practical applications need to explore
their feasibility in complicated sensing systems and their adaptability to portable devices.
Although the recent advances in microfluidic chips provide a huge opportunity to apply
this strategy to on-site detection, [104,105], this field remains unexplored. We envision that
the incorporation of this system into a microfluidic chip will largely expand its applications.
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