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Abstract: The measurement of small changes in the refractive index (RI) leads to a comprehensive
analysis of different biochemical substances, paving the way to non-invasive and cost-effective
medical diagnosis. In recent times, the liquid biopsy for cancer detection via extracellular vesicles
(EV) in the bodily fluid is becoming very popular thanks to less invasiveness and stability. In this
context, here we propose a highly sensitive RI sensor based on a compact high-index-coated polymer
waveguide Bragg grating with a metal under cladding. Owing to the combined effect of a metal
under cladding and a high-index coating, a significant enhancement in the RI sensitivity as well as
the dynamic range has been observed. The proposed sensor has been analyzed by combining finite
element method (FEM) and coupled-mode theory (CMT) approaches, demonstrating a sensitivity of
408–861 nm/RIU over a broad dynamic range of 1.32–1.44, and a strong evanescent field within a
150 nm proximity to the waveguide surface compliant with EV size. The aforementioned performance
makes the proposed device suitable for performing real-time and on-chip diagnoses of cancer in the
early stage.

Keywords: photonic-crystals-based optical sensing; refractive index sensing; optical biosensing;
waveguide-based sensing

1. Introduction

Refractive index sensors based on lab-on-chip photonic structures have gained a
lot of attention in recent times and are becoming a paramount tool as they are compact,
immune to electromagnetic interference, and amenable to integration with other photonic
components in a single chip as well as with microfluidic channels [1–3]. Therefore, highly
sensitive RI sensors based on photonic structures lead us to the cost effective, rapid, and
precise detection of substances, making them suitable for environmental monitoring, food
quality control, and especially medical diagnosis such as detecting bacterial infections,
cancer, disorders, various physical and biological parameters to examine and treat health
conditions, etc. [4–7]. In recent times liquid biopsies are becoming a popular medical
diagnosis technique to detect and monitor cancerous tumors through the detection of
different biomarkers such as circulating tumor cells (CTCs), circulating tumor nucleic
acids ctNAs (ctDNA, microRNAs), as well as extracellular vesicles (EVs) [8]. Considering
that these biomarkers are present in bodily fluids such as blood, saliva, and urine, a
liquid biopsy is a less invasive process than a tissue biopsy, making it less painful and
also reducing the chances of infections [9,10]. Among the aforementioned biomarkers,
EVs are stable membrane particles secreted by cells, containing the molecular imprint of
proteins, lipids, and nucleic acids [11]. In recent times they have been drawing particular
attention due to their stability and their presence in bodily fluids in the early stages of
cancer. In addition, the expressions of EVs in bodily fluids are also found to be promising
for monitoring different diseases including neurodegenerative [8], cardiovascular [12],
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and various infectious ones [13]. In view of this, recently few techniques have been
reported in the literature based on electrochemical and photonic structures, which shows
the potential of EVs in detecting and monitoring cancer in the early stage [14–16]. The
proposed structures also show that the detection of EVs depends on the suitable bio-
recognition elements as well as RI sensitivity as the presence of EVs cause a considerable
change in sample RI. Therefore, it is imperative to design a photonic sensor structure, which
shows a high RI sensitivity with a compact footprint and a low loss for real-time, label free,
and efficient detection of cancer through EV biomarkers.

The RI sensitivity of photonic structures depends on the interacting evanescent field
of the guided modes with the sensing medium covering the waveguide surfaces. The high
interacting field leads to a high sensitivity. Over the years, various photonic structures
have been proposed such as surface Plasmon polaritons (SPPs) [17,18], 2D materials [19,20],
long period gratings (LPGs) [21,22], multimode interferences [23], ring resonators [24,25],
Bragg gratings [26–31], etc. The performance of the structures based on LPGs, SPPs,
multimode interferometers, and ring resonators is often limited by broad bandwidth, a
bulky setup, or a free spectral range. On the other hand, a Bragg grating is free from
the above-mentioned issues and has a simple straightforward robust structure with a
narrow band response. In Bragg gratings, the forward propagating fundamental mode
couples to the counter-propagating fundamental mode that is well confined within the
waveguide core. As a result, the sensitivity associated with the Bragg gratings is usually
inferior to the reported sensitivity of the structures based on the other architectures. Thus,
the enhancement of the interacting field with the sensing medium in Bragg gratings can
lead to very efficient on-chip photonic sensors. In order to address this issue, a few
techniques have been reported in last two decades by different research groups. For
example, Dai etal. [26] have reported an open top ridge to expose the fundamental mode
directly into the ambient medium to enhance the sensitivity. The RI sensitivity is found
to be between 25–33 nm/RIU with an aqueous medium (RI = 1.33) as surroundings. A
further enhancement in sensitivity has been achieved by Tripathi et al. [27], utilizing the
discontinuity of a modal field at the surface of a high-index-contrast silicon waveguide
that yields a sensitivity of 239 nm/RIU. However, an extra photosensitive cladding layer
has been considered on top of the silicon waveguide to form the grating that hinders the
participating mode from directly interacting with the ambient medium. In order to further
expose the core mode to the sensing medium, Sub Wavelength Grating (SWG) geometry
has been utilized with laterally loaded blocks as the Bragg grating [28,29]. In SWGs, in
addition to the evanescent field, a part of the guiding power in the core also interacts with
the sensing medium. Following this structure, a high sensitivity of 507 nm/RIU has been
reported recently [29]; however, the requirement of a double periodicity (SWG and Bragg
grating) and the periodical loading of blocks to form the gratings also brings complexity in
device geometry. Earlier we have reported a Bragg grating-based sensor with metal under
cladding in simple ridge waveguide geometry [30]. It has been observed that the metal
under cladding can significantly enhance the evanescent field in the sensing medium for
the non-plasmonic mode and yields a sensitivity of 237–578 nm/RIU for an RI range of
1.3–1.4, suitable for bio-sensing. In addition, unlike the previous structures the proposed
sensor does not require any waveguide birefringence control or any analyzer/polarizer
due to the large differential modal losses of the TE and TM modes. However, the sensor
structure suffers from few issues such as the device cost due to the gold metallic layer and
the poor adhesion between the germanosilicate core and the metal layer. In one recent
study, authors have reported that a high-index coating on a polymer waveguide can also
significantly improve the RI sensitivity [31]. The reported sensitivity is found to be higher
(169–527 nm/RIU) in an RI range of 1.4 to 1.59, slightly away from the typical biosensing
RI range. In this paper, a combined phenomenon of metal under cladding and a high-index
coating has been reported in polymer ridge waveguide geometry with the aim of the further
advancement of RI sensitivity in the biosensing range. The sensitivity is found to be quite
high, varying between 408 to 861 nm/RIU in a broad RI range of 1.32 to 1.44. The proposed
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sensor is also found to be cost effective and easy to realize practically. Further, it has been
noticed that due to the high-index coating, the enhancement in the evanescent field is quite
high within 150 nm of waveguide surface, making it an excellent choice for EV detection as
the typical size of EVs fall within this.

2. Sensor Configuration and Modeling

The schematic of the proposed sensor is shown in Figure 1 in which (a) represents the
3D view whereas (b) illustrates the cross-sectional view. It consists of a polymer core made
of Polymethyl methacrylate (PMMA) with a thin metallic layer of silver (Ag) underneath
the core having a thickness tm. It is worth noting that, unlike the germanosilicate core
in Ref. [30], here we have considered PMMA as the waveguide core since it shows a
good adhesion with the metal layer. Further, PMMA can directly act as the resist as well
as waveguide core, which makes it easy to form the ridge waveguide using deep UV
lithography or e-beam lithography, which has been reported with well-known dielectric-
loaded surface Plasmon polariton (DLSPP) waveguide geometry [32]. The entire structure
is considered to be coated with a nano-layer of titanium dioxide (TiO2) having a thickness
tH, which can be deposited following the sputtering technique [29,33]. Since the entire
structure is coated with the high-index layer, the metal layer is not exposed to the ambient
medium. As a result, silver has been considered as the metal layer instead of gold, which
can significantly reduce the device cost, making it suitable for mass production.
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Figure 1. (a) 3D schematic and (b) cross sectional view of the proposed sensor.

The Bragg grating is considered to be written in the PMMA core as a periodic mod-
ulation of the refractive index having periodicity Λ and length L. Taking advantage of
PMMA’s photosensitivity to UV radiation, the Bragg grating can be formed using periodic
exposure to a UV laser [34,35]. It is worth noting that the reflection by the Ag layer at two
sides of the waveguide core can be a source of concern while writing the grating. Therefore,
a properly designed mask can be used on top of the waveguide core to expose only the
PMMA core of the waveguide to the UV laser [34]. The analyte itself acts as upper cladding
of the sensor geometry.

The modal field distribution of the major field component Ex (Ey) of the TE00 (TM00)
mode is shown in Figure 2, the modal effective index of which is 1.3833 + 8.13339 × 10−5i
(1.4712 + 6.8074 × 10−4i). The waveguide parameters are considered to be w = 1.2 µm,
h = 1.2 µm, tm = 200 nm, tH = 30 nm, a detailed discussion about selecting such parameters
is given in the next section. The mode analysis of the proposed sensor has been carried
out using the fully vectorial finite element method (FEM) using COMSOL multiphysics.
Figure 2 shows that the evanescent field associated with the TE00 mode is quite high in
the ambient medium whereas the TM00 mode is mostly confined in the core adjacent to
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the metal layer. The fractional modal power (FMP) in the ambient medium is found to be
37.6% for the TE00 mode whereas it is 21.8% for the TM00 mode.
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Figure 2. Major field component (a) Ex of TE00 mode and (b) Ey of TM00 mode. The waveguide
parameters are w = 1.2 µm, h = 1.2 µm, tm = 200 nm, and tH = 30 nm.

Further, the imaginary part of the TE00 mode effective index is one order lower than
that of the TM00 mode. As a result, the propagation length Lp (distance at which power
becomes 1/e to that of the input) of the TE00 mode (1.51 mm) is much higher as compared
to the TM mode (0.18 mm). In view of these two factors, the analysis has been carried out
considering the TE00 mode, which is the non-plasmonic mode of the structure.

The forward propagating TE00 mode couples to the backward propagating TE00 mode
via the grating and gives rise to the resonance peak in the reflected spectrum at the phase
matching condition λR= 2n0,0Λ, where λR and n0,0 is the resonance wavelength and modal
effective index of the TE00 mode, respectively. The coupled mode theory (CMT) yields the
reflected spectrum governed by the equation [29,30].

R =

∣∣∣∣ κ tan h(γL)
γ + (α + iδ) tan h(γL)

∣∣∣∣2 (1)

where δ =π
λ

(
2n0,0 − λ

Λ

)
is the phase mismatch factor, α is the loss coefficient, and

γ =
√
(α + iδ)2+κ2 in which κ is the coupling coefficient given by [30],

κ =
ncoωεo

2

x
∆nE.EdA (2)

In the above equation, nco represents the RI of the waveguide core, ∆n is the grating
strength, i.e., the amplitude of RI modulation and E is the power normalized electric field.
At the phase matching wavelength, the reflectivity reaches its peak value, which can be
obtained from Equation (1) by putting the condition δ = 0 which comes out to be,

Rmax =

∣∣∣∣ κ tan h(σL)
σ + α tan h(σL)

∣∣∣∣2 (3)

where, σ =
√
α2+κ2. The sensitivity of the proposed structure (S) has been calculated

following the shift of resonance wavelength with respect to the change in the ambient
medium’s RI that can be expressed as [29],

S =
dλR
dna

=
λR
ng

(
∂n0,0

∂na

)
(4)

where, na represents the ambient RI and ng= n0,0 − λ
∂n0,0
∂λ denotes the group index of the

fundamental mode. In order to account for the wavelength dependency on the RIs of the
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waveguide materials, the corresponding Sellmeier relations has been used for the silica
substrate [30], the PMMA core [36], and the TiO2 coating [37], whereas for the silver layer
Johnson and Christy’s data has been considered with a cubic and linear fit for real and
imaginary part of refractive index, respectively, as reported in [38,39].

3. Results and Discussions
3.1. Design and Performance Estimation

In order to understand the effect of the high-index coating on sensitivity, the proposed
high index coated metal clad ridge waveguide (HI-MCRW) structure has been compared
with the metal clad ridge waveguide (MCRW) without the high-index coating. In both of
the cases, a square cross-section (w = h) has been considered with PMMA being the core
material. Since for the Bragg grating-based structure the single mode (SM) operation is
preferred, first, the SM region for both the geometries has been identified for the TE mode.
In Figure 3a,b the real part of the modal effective index of the TE00 mode and the first
higher order mode TE10 has been plotted as a function of square cross section’s width w
for HI-MCRW and MCRW respectively.
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TE10 as a function of square waveguide’s width (w) for (a) HI-MCRW and (b) MCRW. The red dots
represent the middle point of the single mode region.

The figure shows that the SM region is 0.76 µm to 1.6 µm for the HI-MCRW structure
whereas it is 1 µm to 1.86 µm for the MCRW. The thickness of the metal layer is taken to be
200 nm to reduce the power leakage in the substrate [21]. It is worth noting that with the
increase in the high-index layer thickness, although the power in the ambient will increase,
the power in the core will also decrease, leading to the reduction in coupling strength
and thus a longer grating length. Therefore, the thickness of the high-index TiO2layer is
considered to be 30 nm. The grating length is taken to be 0.8 mm such that it is lower
(higher) than the propagation length 1.51 mm (0.18 mm) of the TE(TM) mode. This ensures
that the power associated with the TM mode is negligible at the output, which dismisses
the requirement of a polarizer to separate the TE and TM modes.

In order to compare the device performance with and without the high-index layer, the
waveguide’s core dimension for HI-MCRW and MCRW are considered to be 1.2 × 1.2 µm
and 1.5 × 1.5 µm such that both of them are at the middle of their respective SM regions as
marked with red dots in Figure 3. It is worth noting that the discontinuity present in each
graph in Figure 3 can be attributed to the mode hybridization (MH) phenomenon that has
been widely studied in silicon and lithium niobate waveguide geometries [40,41]. In the
proposed sensor it plays an important role in peak reflectivity, thus a careful device design
has been performed following the below discussion. In MH, the Ex and Ey field component
of the quasi-TE and TM mode becomes comparable and therefore the mode polarization
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cannot be distinguished. Here the MH takes place between the TE00 and TM10 modes, the
strength of which can be measured in terms of the hybridization factor defined as [40],

η =

s
E2

xdA
s

E2
xdA+

s
E2

ydA
(5)

In Figure 4 the hybridization factor (η) has been plotted as a function of the waveg-
uide’s width for the HI-MCRW structure. In the figure, the blue and red curve, respectively,
represents the TE00 and TM10 modes. At w = 0.89 µm, hybridization factor becomes 0.5,
highlighting that the contribution coming from the Ex and Ey component for both the modes
are equal. Since Figure 3 is plotted for the TE mode of the structure and at w = 0.89 µm the
polarization of the mode cannot be distinguished, a discontinuity in the graph originated.
The range of the discontinuity has been decided by the behavior of the propagation length
Lp with respect to the grating length as discussed below.
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It has been noticed that around the hybridized point, the modal loss associated with
the TE00 mode is quite high, which affects the peak reflectivity of the proposed sensor. In
order to show this, in Figure 5a we have plotted the propagation length Lp as a function of
the HI-MCRW’s width (w) for both the modes and in Figure 5b–d, respectively, the reflected
spectrum for three different widths corresponding to points A, B, and C as highlighted in
Figure 5a. The dotted horizontal line in Figure 5a represents the grating length 0.8 mm.

At point B (hybridized point), since the propagation length of the mode is much
lower than the grating length, the peak reflectivity is extremely small (< 0.05), making it
difficult to detect. At points A and C, the peak reflectivity is significantly higher as the
propagation length of the mode equal to the grating length. A similar kind of behavior also
observed with the ambient RIs. In view of the above, from a practical point of view, in our
analysis we have neglected the region around the hybridized point where the propagation
length is lower than the grating length. Therefore, the range of discontinuity in Figure 3
represents the region in which the propagation length of the TE00 mode is lower than the
grating length.
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(c) w = 0.89 µm, (d) w = 0.94 µm as represented by three different points A, B, and C in (a).

Considering the aforementioned features, in Figure 6 the variation of FMP in the
ambient medium as a function of ambient RI (na) has been presented for both the structures
at wavelength 1.55 µm. The FMP in the ambient medium is defined as,

FMPamb =

s
Ar E×HdA∫ ∞

−∞

∫ ∞
−∞ E×HdA

(6)

where, Ar represents the area covering the ambient medium whereas E and H are the
electric and magnetic field components of the TE00 mode. In both cases, the graph has been
plotted up to the cut-off point of the TE00 mode with respect to the ambient (cover) RI that
is found to be 1.45 and 1.416 for HI-MCRW and MCRW, respectively. The discontinuity in
the graphs occurred due to the MH as mentioned earlier and the range of discontinuity
is highlighting the range of ambient RI for which the propagation length is lower than
the grating length around the MH. The FMP is found to be mostly in the higher side for
the HI-MCRW structure as the high-index coating pulls the guided mode towards the
ambient medium. Near the mode’s cut-off, the FMP is found to be 79.4% for the HI-MCRW
whereas it is 66.5% for the MCRW. The FMP at the ambient RI = 1.32 is 37.7% and 20.7% for
HI-MCRW and MCRW, respectively, showing a better enhancement at a lower RI as well.

The reflected spectrum of the proposed HI-MCRW has been shown in Figure 7 for
three different ambient RIs. The grating period is considered to be 560 nm, such that
the resonance wavelength is around 1.55 µm, whereas the grating strength is taken to be
8 × 10−4. The spectrum shows a red shift in the resonance wavelength with the increase in
ambient RI.
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Figure 7. Reflected spectrum of the proposed HI-MCRW structure for three different ambient RIs.

The corresponding resonance wavelength and the sensitivity have been shown in
Figure 8a,b, respectively, as a function of ambient RI (na) up to the cut-off point for both
structures. Again, it is worth noting that the discontinuity in the graphs is due to the MH
phenomenon. The overall shift in the resonance wavelength is found to be 67.6 nm for
the proposed HI-MCRW structure, which is nearly twice that of 34.2 nm corresponding to
the MCRW.
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for the TE00 mode.

In view of the fact that the shift in the resonance wavelength is non-linear, the sensitiv-
ity has been calculated at each ambient RI following Equation (4), which is presented in
Figure 8b. The sensitivity is found to vary between 407.7 to 860.6 nm/RIU for an RI range of
1.32 to 1.44 for the proposed HI-MCRW structure, whereas it varies from 230.7 nm/RIU to
694.8 nm/RIU for the RI range of 1.32 to 1.41 in the absence of the high-index coating. It is
important to note that the high-index coating also increases the dynamic range in addition
to the enhancement in sensitivity. The increment in the dynamic range can be attributed to
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the increase in the modal effective index owing to the presence of the high-index coating,
allowing the proposed structure to reach its cut off at a higher ambient RI. Apart from the
sensitivity and dynamic range, another important parameter to characterize the device
performance is the figure of merit (FOM), defined as [30],

FOM =
Sensitivity (nm/RIU)

FWHM (nm)
(7)

where, FWHM represents the full width at half maxima of the reflection peak. The FOM
is found to be 308.2 RIU−1 and 143.6 RIU−1 for the HI-MCRW and MCRW, respectively,
showing a more than two times enhancement due to the high-index coating. Considering
the spectrometer resolution to be 20 pm, the detection limit is found to be 4.8 × 10−5 RIU
and 8×10−5 RIU for the HI-MCRW and MCRW, respectively, around the ambient RI = 1.33.

In the following table (Table 1), we have compared the sensitivity and dynamic range
along with the corresponding operating principles of different reported structures with
Bragg grating geometry, highlighting the good performance of the proposed grating geom-
etry. In addition, the highly lossy nature of the TM modes ensures a polarizer/analyzer
and birefringence control-free operation of the proposed structure, which gives it an edge
over the other structures as well.

Table 1. Comparison of the proposed sensor with previously reported Bragg grating-based sensors.

Ref. S
(nm/RIU)

Dynamic Range
(RIU) Operating Principle

[26] 7–25 1.3–1.402 Open top ridge waveguide
[27] 200–740 1.33–1.63 SOI with photosensitive upper cladding
[29] 507 1.3–1.34 Sub-wavelength gratings
[30] 237–578 1.3–1.4 Metal clad ridge waveguide
[31] 169–523 1.4–1.59 High-index coated ridge waveguide

Proposed
structure 408–861 1.32–1.44 High-index coated polymer waveguide

with metal under cladding

3.2. EV Detection: A Case of Study

As mentioned earlier, owing to their stability and presence in bodily fluids, the EVs
are a promising biomarker for the detection of cancer [42] in their early stages as well
as various infectious diseases, cardiovascular diseases, etc. Despite these beneficial fea-
tures, the detection of EVs with a high sensitivity and a high accuracy is still a challenge.
In order to enhance the sensitivity, different techniques based on electrochemical [14],
plasmonics [15,43], and photonics [16,44] have been proposed in recent times. Although
electrochemical sensors show a good sensitivity and accuracy, their applications are often
limited as it is difficult to realize sensor multiplexing [16]. The plasmonic-based sensors
can overcome this, and it also shows a high sensitivity owing to the presence of a large
evanescent field at the metal-sensing medium interface, but the intrinsic loss due to the
metal layer often leads to a high signal to noise ratio and thus less accuracy. In this context,
the proposed sensor can be a suitable one since the high RI sensitivity has been achieved
with a non-plasmonic mode of the structure that shows a one order less propagation loss as
compared to the plasmonic mode. Further, it has been observed that due to the high-index
coating, the FMP within the 150 nm vicinity of the waveguide surface is found to be around
13% for the HI-MCRW, whereas it is 6.7% for the MCRW in the middle of their respec-
tive single mode regions. This enhancement in FMP due to the high-index nano-layer is
particularly promising for the EV detection as the typical size of EVs is 100±20 nm [16].

In view of this, in this section, the proposed sensor has been modeled to investigate its
potential for the EV detection following the recently reported technique in Ref. [16]. The
surface geometry of the proposed structure functionalized for EV detection is shown in
Figure 9. First, the waveguide surface has been functionalized with a biotinylated layer
consisting of bovine serum albumin (BSA) and biotin followed by another layer of avidin.
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The EVs are also considered to be biotinylated such that the strong affinity between the
biotin and avidin can be utilized to detect EVs with a good selectivity as reported in [16].
In the numerical simulation, the thickness and the RI of the BSA layer has been considered
to be 5 nm and 1.57, respectively [45–47]. Next, a single layer of biotin–avidin–biotin is
considered to have a thickness of 10 nm and RI = 1.45 [48,49]. Eventually, a layer of EV
having of RI = 1.398 [50] has been considered as the final layer. The entire structure is
considered to be covered with Tris buffer medium, the RI of which has been obtained
using the relevant Sellmeier relation [51]. The shift in the resonance wavelength (λR) has
been plotted in Figure 10 for both structures as a function of the bio-layers thickness (tB),
considering the aforementioned waveguide parameters. The initial shift in λR is due to
the BSA layer and biotin–avidin–biotin layer that are found to be 3.25 nm and 2.1 nm
for the HI-MCRW and MCRW, respectively. Next, the shift in λR occurs due to the EVs
that show a linearly increasing characteristic. The total shift in resonance wavelength
for the HI-MCRW is found to be 13.6 nm, whereas it is 8.7 nm for the MCRW structure,
highlighting an approximate5 nm higher shift due to the high-index coating. Considering
that the enhancement in wavelength shift can be helpful in detecting EVs with lower
concentrations, the proposed sensor holds a great promise for early-stage cancer detection.
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3.3. Fabrication Tolerances and Readout Concept

For the practical realization of a device, it is important to know the fabrication toler-
ances of different structural parameters. Therefore, following the well-established fabrica-
tion techniques, the effect of any inaccuracy in waveguide’s parameters on two important
quantities: the sensitivity and peak reflectivity have been investigated around an ambient
RI of 1.33. The inaccuracy in a waveguide’s width is considered to be ±10 nm, which is
usually ensured by the standard e-beam lithographic technique [52,53]. The corresponding
variation in sensitivity and peak reflectivity is found to be within 5 nm/RIU and 0.016
from the respective value of 412 nm/RIU and 0.6 at the nominal width of 1.2 µm, reflecting
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a good tolerance with respect to the width. The sensitivity shows a stable performance
for the same order of variation in the waveguide’s height whereas the variation in peak
reflectivity is found to be well within 0.014. It is worth noting that, for the considered metal
layer thickness of tm = 200 nm, the modal power in the core as well as in ambient is well
saturated [21,30]. As a result, the same order (±10 nm) of variation in tm results in an ignor-
able deviation in sensitivity and peak reflectivity. However, the proposed structure shows a
less forbearing performance with respect to any deviation from the nominal value of 30 nm
of the high-index layer thickness tH. For example, a ±5% and a ±10% inaccuracy in tH
(results in an error of ±1.5 nm and ±3 nm) causes a 12 nm/RIU and 30 nm/RIU deviation
in sensitivity, respectively, whereas a 0.7 and 0.15 deviation in peak reflectivity, respectively.
Although popular deposition techniques such as sputtering can provide an approximate
±1.5 nm accuracy [54,55], proper care should be taken while depositing the high-index
TiO2 layer. For the readout, single mode optical fiber pigtails can be butt-coupled with the
proposed structure [31] in order to integrate it with a broadband source (ASE) [56] and an
optical spectral analyzer to detect and monitor the reflected spectrum [56]. As mentioned
earlier, due to the highly differential propagation losses of the TE and TM mode, in the
readout, the polarization control is not necessary for the proposed structure.

4. Conclusions

A cost-effective, compact, and highly sensitive RI sensor is proposed with a high-index
coated Bragg grating-inscribed polymer ridge waveguide with a metal layer underneath
the core. The combination of a high-index coating and a metal under cladding yields a
significant amount of evanescent field to interact with the sensing medium associated with
the non-plasmonic mode, resulting in a high RI sensitivity of 408–861 nm/RIU in an RI
range of 1.32–1.44. In addition, the high-index coating is also found to be beneficial in
enhancing the dynamic range of the sensing medium. The proposed structure is found to be
an excellent match for EV detection thanks to the enhanced evanescent field in the 150 nm
vicinity of the waveguide surface due to the high-index coating, which matches well with
the typical size of EVs. Owing to this enhancement and provided that the non-plasmonic
mode is involved in accomplishing a high sensitivity, the proposed structure should be
able to detect a low concentration of EVs with a good accuracy, leading to a promising
development towards early-stage cancer detection.
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