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Abstract: In this study, a biochip was fabricated using a light-absorbing layer of a silicon solar element
combined with serrated, interdigitated electrodes and used to identify four different types of cancer
cells: CE81T esophageal cancer, OE21 esophageal cancer, A549 lung adenocarcinoma, and TSGH-8301
bladder cancer cells. A string of pearls was formed from dielectrophoretic aggregated cancer cells
because of the serrated interdigitated electrodes. Thus, cancer cells were identified in different
parts, and electron–hole pairs were separated by photo-excited carriers through the light-absorbing
layer of the solar element. The concentration catalysis mechanism of GSH and GSSG was used to
conduct photocurrent response and identification, which provides the fast, label-free measurement of
cancer cells. The total time taken for this analysis was 13 min. Changes in the impedance value and
photocurrent response of each cancer cell were linearly related to the number of cells, and the slope
of the admittance value was used to distinguish the location of the cancerous lesion, the slope of the
photocurrent response, and the severity of the cancerous lesion. The results show that the number
of cancerous cells was directly proportional to the admittance value and the photocurrent response
for all four different types of cancer cells. Additionally, different types of cancer cells could easily be
differentiated using the slope value of the photocurrent response and the admittance value.

Keywords: lab-on-chip; linear interdigitated sawtooth electrode; dielectrophoretic impedance; pho-
tocurrent response measurement; electron beam evaporation; electrode lithography process

1. Introduction

Cancer is one of the most prominent fatal diseases, with more than 200 types [1–6].
In 2020, approximately 19.3 million new cancer cases and 10 million cancer deaths were
reported [7]. Cancer is a disease in which tissue cells proliferate abnormally to form tumors.
The cells transfer to other parts of the body through the circulatory system and become
circulating tumor cells. At the onset of the disease, these cells are extremely difficult to
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detect from blood or biopsy samples, and metastatic tumor cells show a unique pattern
of activity [8].

Clinical studies show that the early detection of cancer can significantly increase the
five-year survival rates of patients [9,10]. With the increase in air pollution rates, the cancer
rate has been steadily increasing, and traditional techniques, such as magnetic resonance
imaging, ultrasounds, and biopsies, are insufficient for early-stage cancer diagnosis [11], are
expensive and time consuming, and sometimes generate false negatives [12–14]. Therefore,
artificial intelligence (AI) cancer diagnosis methods have been built, which have been
successful [6,15–18]. Despite modern scientific developments, the survival rates of the
cancer patients remain low because of the failure of early-stage detection [10,19–21].

One way to detect cancer during its early stages is by using a cancer biosensor [22–28]. The
specificity, quickness, compactness, and price of a biosensor present prospects for regionalized
medical diagnoses [29]. Advances in the second generation of biosensors can be characterized
by the application of antibodies or receptor proteins as molecular recognition elements, and
signal converters are diverse, including field effect semiconductor devices, field effect semicon-
ductors (FETs), optical fibers, piezoelectric crystal transistors, and surface acoustic wave devices
(SAWs). The third generation of biosensors can be characterized by compactness, autonomy,
and an instantaneous observation capability [30,31]. Microelectromechanical systems (MEMS)
are used to fabricate array biosensors, but most of them are immunosensors. Enzyme array
biosensors are unsuitable for covalent bonding or cross-linking technologies fixed on substrates
because of the variability of enzymes.

Extensive research has been conducted on various biosensors used to diagnose cancer
lesions [27,32–38]. A typical biosensor comprises a target cancer marker and a corresponding
biotransducer, which is essential to the identification of the technical specifications of a device
and a bioreceptor [39]. Biomarkers imply variations in the appearances or representations of
proteins, and these features are associated with the evolution of a particular disease and its
reaction to medication [40]. Hence, a biomarker can be a specific cell, molecule, gene, gene
product, enzyme, or hormone [41,42]. To date, more than one hundred and sixty biomarkers
have been introduced for cancer diagnosis. A lab-on-chip is a biosensor that facilitates the con-
current measurement of numerous biomarkers [43–47]. Advanced microfabrication techniques
facilitate the integration of microfluidics with biosensing functionalities on a single sensor chip,
allowing system automation.

Reduced glutathione (GSH) plays a crucial role in life forms, as it comprises a substan-
tial amount of biological knowledge. A tiny divergence or an anomaly in the concentration
of GSH is commonly correlated with numerous diseases, for example, an abnormality
in GSH concentration in biological fluids or tissues is often directly associated with sev-
eral medical diseases, including diabetes, cardiovascular diseases, and cancers [48–59].
The relative amount GSH and glutathione disulfide (GSSG) will differ between cancer
lines [60]. However, many approaches such as resonance spectrometry, spectrofluorimetry,
and colorimetry have low sensitivity, are time consuming, and involve long detection
times [61–65].

In the last few years, numerous approaches have been studied to detect, identify, and
characterize cancer cells. Of all the studied methods, electrical-impedance-measurement-
based approaches provide numerous advantages such as high sensitivity, rapid detection,
low cost, and suitability for integrated microsystems [66,67]. Differentiating cancerous cells
on the basis of impedance measurements provides accessible knowledge on the charac-
teristics of cancerous cells as a function of frequency [68]. Additionally, dilectrophoresis
(DEP) is one of the most proficient methods which can be applied in the swift manipulation
of bioparticles [69]. Recently, microfabrication technology has been chosen to produce
microelectrode patterns that permit adequately substantial DEP forces to be produced
onto cells with low applied voltages. In previous research, numerous infrequent cancer
cells were efficiently exploited by DEP [70–72]. The impedance measurement with DEP
in biosensors can be amalgamated to increase and magnify the sensitivity and lessen the
time taken to detect cancerous cells [73]. This method is known as the dielectrophoretic
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impedance measurement method (DEPIM) [74]. Electrical impedance spectroscopy (EIS)
is a label-free and non-invasive electrokinetic technique which, in recent years, has been
used to detect and differentiate different types of cancer cells based on the cell polarization
generated by an electric field and the interaction of ions along the cell surface [75–77].

Many recent articles have been conducted to differentiate and characterize the phases
of cancerous cells. Many of these studies require complex surface marker labeling and
have high levels of uncertainty, poor efficiencies, high costs, and long durations. Therefore,
in this study, a biochip was fabricated using the light-absorbing layer of a silicon solar
element combined with serrated interdigitated electrodes for the identification of CE81T
esophageal cancer, OE21 esophageal cancer, A549 lung adenocarcinoma, and TSGH-8301
bladder cancer cells.

2. Materials and Methods
2.1. Design of Microelectrodes

The purpose of this experiment was to measure the impedance value of cells that accu-
mulate between electrodes. Therefore, a linear interdigitated sawtooth electrode with an
electrode gap was used to control and measure cells. The gap was circular and had a radius
of 50 µm. The electrode was designed to measure the number of accumulated cells between
electrodes and ensure that a sufficient number of cells can be generated when a high fre-
quency voltage is applied. Moreover, it can ensure that a sufficiently large dielectrophoretic
force can be generated on cells and is more sensitive than general microelectrodes.

2.2. Chip Fabrication

Monocrystalline silicon (mono c-Si) was used as the substrate for the manufacturing
process. The mono c-Si substrate has a high photoelectric conversion efficiency. The
standard yellow light lithography process was used for chip fabrication [78,79]. The
process used the pattern defined by the photomask for substrate fabrication. The required
electrode pattern was obtained, and the wafer-manufacturing process was divided into
two steps: (A) Au/Cr electron beam evaporation and (B) the electrode lithography process.

2.2.1. Electron Beam Evaporation of Au/Cr

Electron beam evaporation involves the bombardment of a target material in a vacuum
environment for physical vapor deposition [80,81]. This method is used to convert the
kinetic energy of a high-energy electron beam into heat energy to melt a target material.
Coating is performed by using the saturated vapor pressure of a target material when it is
close to its melting point.

2.2.2. Electrode Lithography Process

S1813, a positive photoresist, was used in spin-coating. The silicon substrate was first
cut to an appropriate size and treated with acetone, methanol, and DI water. The glass
wafer was placed in a photoresist coater, and an appropriate amount of S1813 positive
photoresist was added for coating. It could be uniformly spin-coated on the substrate at
a height of approximately 3 µm through high-speed rotation. After the spin-coating of
the photoresist, it was placed in a 90 ◦C hot plate for four minutes for soft baking. The
purpose of this was to volatilize the organic solution in the photoresist through heating and
prevent the sticking of the photoresist and photomask during exposure. The photoresist
was flattened, and the adhesion between the photoresist and substrate was enhanced.
Lithography can be divided into three types according to the light source: UV lithography,
electron beam lithography, and X-ray lithography. This experiment used a general yellow
light lithography process. High-pressure mercury and mercury–xenon arc lamps were
in the UV wavelength range and had two high-intensity emission spectral lines in the
UV wavelength range of 350–450 nm; that is, two high-intensity emission spectral lines
were present, namely g-line (436 nm) and i-line (365 nm). The main purpose of their use
was to make the photoresist bond or break in order for the components exposed to light
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to show considerable differences in the solubility of the developer and to accelerate the
pattern transfer. Part of the light that was not absorbed by the photoresist during exposure
reached the surface of the substrate through reflection. Incident light waves produced
constructive and destructive interference, forming a standing wave effect, which subjected
the photoresist to uneven light intensity and resulted in corrugation on the side of the
photoresist and a change in the line width of the photoresist.

Post-exposure baking caused the rearrangement of the exposed photoresist and re-
duced the abnormality caused by the standing wave effect. In this experimental process,
we baked the wafer at 90 ◦C for four minutes after exposure. The glass wafer was placed in
a mixed MP351 developer and shaken for approximately 10–15 s. The special developer,
MP351, of S1813 was used for development. After the photoresist layer detached, develop-
ment was completed. Figure 1 shows the actual finished product of the biosensor chip.
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Figure 1. (a) Actual finished product of the biosensor chip. (b) Close view along with the dimensions
of the electrodes.

2.3. Sample Preparation

Four types of cancer cells (CE81T, OE21, A549, and TSGH-8301) were used to pre-
pare a culture medium according to the needs of the cells. The medium required for
TSGH8301 cells was Roswell Park Memorial Institute–160 (RPMI-160), whereas the medium
required for the CE81T, CE81T-4, and A549 cells was Dulbecco’s Modified Eagle Medium
(DMEM) [82,83]. During preparation, 2.0 g of sodium bicarbonate (NaHCO3) was added
to 1 L of RPMI-160. Hydrochloric Acid (HCl) or sodium hydroxide (NaOH) was added
to balance the pH value between 7.1 and 7.3. Then, 1% (v/v) antibiotic–antimycotic and
10% (v/v) heat-inactivated fetal bovine serum (FBS) were added to inhibit the growth of
bacteria or for cell growth. NaHCO3 (3.7 g/L) was added to DMEM. After sterilization, the
glass jars were sealed and refrigerated. Finally, 1% (v/v) non-essential amino acids and 1%
(v/v) antibiotic–antimycotic solution were added to the culture medium before use.

3. Results
3.1. DEP-Based Cell Concentration

Figure 2 shows the differences before and after the application of 10Vp-p AC voltage
to the biosensor chip. In this experiment, 6000 CE81T and 30,000 CE81T cells were used
as examples. A 1 MHz 10Vp-p sine wave was applied to the electrode for 10 min for DEP
aggregation in a range of 3000–30,000. The cells exhibited positive dielectrophoretic forces.
Figure 2a,c present the OM images of 6000 and 30,000 esophageal cancer cells before DEP
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was applied, respectively, and Figure 2b,d display the OM images of 6000 and 30,000 cells
after DEP application, respectively. The cells aggregated in a bead shape near the tip of the
microelectrode after DEP was administered.
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3.2. Dielectrophoresis Impedance Spectroscopy Measurement

During the initial wafer measurement, no cells were injected above the wafer micro-
electrode. Only the impedance value of the sucrose solution was measured, and sucrose
admittance was calculated. A different number of cells was used in each test to obtain the
admittance values of the reference samples (see Supplementary Section S6 for counting
of the cells). Figure 3 shows the relationships among changes in the admittance values
of the four different cancer cells in each test using a different number of cells. A linear
relationship was found between the change in admittance value and the number of cells
(see Supplementary Section S5 for the calculation formula for cell admittance measurement).
Changes in the relationships between the admittance value and the number of cells showed
different slopes in cancer cells in different parts. The differences between the slopes can
be used to identify cancer cells. As a non-invasive, label-free electrochemical method,
impedance measurements can provide sensitive and quantitative measurements. These
advantages mean impedance measurement methods are widely used in cell research and
analysis, especially in live-cell analysis and long-term live-cell monitoring.
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Figure 4 shows the photocurrent response measurement results for four cancer cells
in tests using a varying number of cells. CE81T-1 and CE81T-4 were first- and fourth-
stage lesions of esophageal cancer cells obtained from an East Asian population, whereas
OE21-1 was the first-stage lesion of esophageal cancer cells obtained from a Caucasian
population (see Supplement Material, Figure S7 for a schematic diagram of the reparation
of the different cells). The photocurrent response curves of the cancer cells at different
locations and degrees of cancerous lesions were measured with a microcurrent meter in
each test using a different number of cancer cells. As shown in Figure 5, the relationship
between the number of cells and the photocurrent response was linear, and the slopes of
the photocurrent responses in cancer cells with different cancer lesions and the number of
cells were quite different. Compared with the general optical measurement method, the
cost was lower, and the detection process was relatively convenient and fast.

In a circumstantial view, our PEC sensor is indeed sensitive to GSSG. The ratio of
GSH/GSSG, which affects the photocurrent response in the electron transport process, is a
significant indicator for cancer detection. We can observe changes in photocurrent responses
to measure different numbers of cancer cells, and our data, as shown in Figures 3 and 4, could
support this circumstantial view (see Supplement Material Figure S8 for the photocurrent
analysis of CE81T-1 and CE81T-4 cells). On the contrary, one of the limitations of this study
could be the number of cancerous cells that the biosensor can detect. So far, we showed that
the study could identify cancerous cells in numbers from 2500 cells to 30,000 cells. Even
though the presence of 2500 cancerous cells is still considered to be early-stage cancer, a
further study has to be conducted to detect cancerous cells from an earlier stage and improve
the maximum limit of the detection. Limit of detection (LOD) analysis is one of the methods
used to assess the quality of any biosensors [79]. The LOD analysis in this study showed that
the mean LOD value was 3.095 cells. These values are considerably lower values, because
less than 5000 cancerous cells indicate an early stage. However, an LOD of 3 is very low,
which shows that this biosensor can detect extremely low numbers of cells (see Supplement
Material Section S7). The lower limit of quantification (LOQ) of the proposed biosensor
was 9.378, which outstrips other detecting methods. Additionally, the average sensitivity
of the biosensor was found to be 2.79 S/#m−2. The extremely good sensitivity, ease of
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manufacturing, and low cost of the proposed sensor suggests that this study can be analyzed
for further to produce much more efficient biosensors in the future.
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In Figures 3 and 4, the slopes of photocurrent responses and admittance values of
different cells stack up on each other. However, by combining both the measurements, as
shown in Figure 5, the slopes of different cells are distinct. Therefore, it can be inferred that
the sensitivity of the biosensor developed in this study can be increased by combining both
the photocurrent response and admittance measurements. The manufacturing process of
solar cells follows three steps, as shown in Figure 6. The first two steps in the process are
similar to the manufacturing process of current mass-produced silicon solar cells. The first
step is to use optical inspection methods to find any defects. The second step is cleaning
and etching. The third step is phosphorus diffusion, which involves the use of a micro-
galvanometer, which biases the wafer through a probe and uses a light source to excite
the carriers to separate the sample. A bias voltage of 1v is given through a microcurrent
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meter, and an indoor light source is used to excite the sample. The light introduced will
be absorbed by the material, thereby increasing the number of holes and electrons. As
a result of this, the electric current will increase [84]. This phenomenon is known as
photoconductivity, in which the electric current flowing is a result of the excitation caused
by light striking a material [85]. Additionally, under light, photo-excited electrons and
holes will be compelled to realign amid the two semiconductors due to the built-in electric
field [86–88]. An indoor light source is easy to obtain, which meets the chip development
expectations, and the distance between the light source and the chip can be fixed. By exiting
the sample and creating a difference in potential across the junction of the two regions, a
loss of electrons in the n-region and a subsequent gain in the p-region can be achieved.
At this time, when cells are dropped on the N-type surface, the electrons will participate
in a reduction reaction in GSSG, which will increase in conductance, because the total
number of electrons concentrated on the N side is fixed, so the current will increase, thereby
producing a photocurrent response.
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4. Conclusions

Four different types of cancer cells, namely CE81T esophageal cancer, OE21 esophageal
cancer, A549 lung adenocarcinoma, and TSGH-8301 bladder cancer cells were detected
using a biochip manufactured by using a light-absorbing layer of a silicon solar element
combined with serrated interdigitated electrodes. Dielectrophoretic impedance measure-
ment with an interdigitated sawtooth microelectrode was used to generate a positive
dielectrophoretic force on the electrode and generate a high electric field area to aggregate
four cancer cells on the tip of the microelectrode. Then, a sine function was used for the
measurement. The cells were aggregated using a dielectrophoretic force, the interdigital
electrode gap had a large surface area that accommodated the cells, and the admittance
value was obtained after calculation and then analyzed. To measure the photoelectric flow,
a microcurrent meter was used to bias the wafer through the probe, and the photo-excited
carriers were generated by the absorption of light through the element. The concentra-
tions of GSH and GSSG were used to catalyze the separation of electrons and holes. The
relationship between the degree of cancerous lesions and the photocurrent response was
determined and used to detect different degrees of cancerous lesions in the same area. The
relationship between the number of cells and the admittance value and the relationship
between the number of cells and the photocurrent value were roughly linear. Cancer cells
can be distinguished according to a difference in the slope, and thus, we can conclude that
the dielectrophoretic impedance and photocurrent response measurement methods can be
applied in clinical diagnoses.
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Supplementary Materials: The following supporting data can be downloaded from https://www.
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tem. Figure S2: Schematic of impedance measurement system. Figure S3: Schematic diagram of
biosensor chip architecture. Figure S4: Schematic diagram of microelectrodes under OM. Figure S5:
Flow chart of biosensor chip fabrication. Figure S6: Actual finished product of the biosensor chip.
Figure S7: Schematic diagram of reparation of the different cells. Figure S8: The photoelectric flow
measurement result of CE81T esophageal cancer cells under different cell numbers, among which,
CE81T-1 is the first-stage cancer lesion and CE81T-4 is the fourth-stage cancer lesion. Figure S9: Under
the microscope, live cells appear white, and dead cells appear blue. Table S1: Regression analysis of
A549. Table S2: Regression analysis of TSGH-8301. Table S3: Regression analysis of CE81T-1/VGH.
Table S4: Regression analysis of OE21-1/VGH.
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