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Abstract: The detection of hypertension (HT) is of great importance for the early diagnosis of
cardiovascular diseases (CVDs), as subjects with high blood pressure (BP) are asymptomatic until
advanced stages of the disease. The present study proposes a classification model to discriminate
between normotensive (NTS) and hypertensive (HTS) subjects employing electrocardiographic
(ECG) and photoplethysmographic (PPG) recordings as an alternative to traditional cuff-based
methods. A total of 913 ECG, PPG and BP recordings from 69 subjects were analyzed. Then,
signal preprocessing, fiducial points extraction and feature selection were performed, providing
17 discriminatory features, such as pulse arrival and transit times, that fed machine-learning-based
classifiers. The main innovation proposed in this research uncovers the relevance of previous
calibration to obtain accurate HT risk assessment. This aspect has been assessed using both close
and distant time test measurements with respect to calibration. The k-nearest neighbors-classifier
provided the best outcomes with an accuracy for new subjects before calibration of 51.48%. The
inclusion of just one calibration measurement into the model improved classification accuracy by
30%, reaching gradually more than 96% with more than six calibration measurements. Accuracy
decreased with distance to calibration, but remained outstanding even days after calibration. Thus,
the use of PPG and ECG recordings combined with previous subject calibration can significantly
improve discrimination between NTS and HTS individuals. This strategy could be implemented in
wearable devices for HT risk assessment as well as to prevent CVDs.

Keywords: high blood pressure; hypertension; photoplethysmography; electrocardiography; calibra-
tion; classification models; machine learning

1. Introduction

High blood pressure or hypertension (HT) is the most significant risk factor for many
cardiovascular diseases (CVDs) including cardiac arrhythmias, coronary disease, renal
failure and stroke [1]. To this, it must be added that most patients with HT are undiagnosed,
as in the early stages and even in the elevated blood pressure stage, HT rarely causes
symptoms. For these reasons, regular blood pressure monitoring and the assessment of
blood pressure levels is crucial for the prevention and early diagnosis of asymptomatic HT
and the study of its evolution over time for diagnosed subjects [2].
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Arterial blood pressure (BP) values have two components: systolic blood pressure
(SBP), determined by the impulse generated by the contractions of the left ventricle, which
indicates how much pressure the blood is exerting against the arterial walls when the
heart contracts, and the diastolic blood pressure (DBP), which depends on the resistance
of the arteries to the passage of blood and indicates the pressure exerted against the walls
when the heart relaxes [3]. BP depends mainly on two variables: the volume propelled
by the heart in a unit of time and the resistances offered by the arteries to the passage of
blood [4]. In turn, these variables depend on the activity of the autonomic nervous system
(ANS), which governs heart rate and the resistance of the arterioles, and, on the other hand,
the balance of water and salt filtered through the kidneys, which modulates blood volume.

Traditionally, BP has been measured through invasive as well as non-invasive strate-
gies. Invasive BP measurement has been usually reserved for patient hospitalization, espe-
cially in Intensive Care Units (ICUs), where the availability of precise and time-continuous
BP measurements is relevant [5]. For non-invasive BP estimation, conventional cuff-based
measurement devices, which use oscillometric and auscultation methods, are known to be
able to offer adequate accuracy. However, they are not designed to be wearable and only
offer a one-off measure. Therefore, they are not compatible with continuous measurement
throughout the day due to mobility limitations caused by the device, they are uncomfort-
able, and their measurement procedure, with the repeated inflation and deflation of the
cuff, is somewhat tedious, cumbersome and requires patient attention [6].

Machine Learning classifiers provide many advantages to clinical medicine in general
and to biosignal-based HT risk assessment in particular over non-invasive traditional
measures, as they can be embedded in wearable devices such as smartwatches, facilitating
uninterrupted monitoring throughout the day. This allows both the detection of asymp-
tomatic hypertensive patients and the monitoring of diagnosed patients in their daily lives
outside the clinical setting by screening changes in blood pressure.

As a consequence of the above factors, work in this field is focused on the development
of cuff-less systems that can provide the user with information about the BP condition in
near real time [7]. New wearable devices, such as wristbands or smartwatches capable of
monitoring physiological signals that change according to BP level, as the electrocardio-
gram (ECG) and photoplethysmogram (PPG) do, may facilitate the development of these
BP measurement systems [8,9]. The most promising signal is the PPG, an optical measure-
ment technique that can be used to detect changes in blood volume in the micro vascular
bed of tissues as a result of cardiac pumping. This technique is based on illumination of the
skin measuring changes in light absorption [10]. It is typically implemented with a light-
emitting diode (LED) to illuminate the skin and a photodetector to measure the amount
of light transmitted or reflected through the skin. The change in tissue light absorption is
governed by the amount of protein and hemoglobin in blood and the hemodynamic and
physiological condition caused by the change in the properties of the artery [11].

In recent years, many studies have investigated methods to estimate BP using PPG
signals. The first work that studied the correlation between the PPG and BP was conducted
by Teng and Zhang [12], where a linear regression model was used to evaluate the relation-
ship between four PPG features an BP. Once this relationship was known and established,
later studies focused on the use of propagation theory, which extracted key features from
ECG and PPG signals, simultaneously collected, for BP estimation.

Propagation features, as pulse transit time (PTT) and pulse arrival time (PAT), have
been extensively used in previous works [13,14]. PTT was defined as the time taken for the
pressure wave to travel between two arterial sites. Thus, it could be estimated as the time
delay between a PPG wavefront measured by two separate sensors located in two distal
sites of the body. For its part, PAT was defined as the delay between the electrical activation
of the heart (R peak of ECG) and the PPG wavefront at the foot, maximum slope point
and peak of the PPG signal, which represents the arrival of the pulse at the measurement
location. Cavalcante et al. [15] applied this methodology for the first time using the start
and end pulse points of these signals as well as PTT, PAT and pulse wave velocity (PWV)
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to determine the cardiovascular condition. Furthermore, Chen et al. [16] used ear and toe
sensors to determinate PTT and its strong relationship with BP.

Other methodologies used the changes in PPG morphology to estimate BP. In this
way, Kurylyak et al. [17] extracted 21 features from the PPG waveform, and demonstrated
that PPG features could significantly decrease BP estimation error. Li et al. [18] and
Kachuee et al. [19] also combined PAT and morphological parameters of the PPG, improving
the accuracy of estimation of BP in comparison to only PAT-based features. After analyzing
the different proposed methods to estimate BP, this work introduces a combination of both
approaches, propagation theory features and morphological PPG features for enhanced HT
risk assessment.

In the studies providing a BP value from PPG recordings, this value was just an
estimation, so these methods need medical supervision. Thus, the present work introduces
an alternative way to solve the problem of BP classification models with reliability, so
that they can automatically provide in a continuous and non-invasive way the subject’s
blood pressure condition and can trigger alarms in case of an asymptomatic hypertensive
condition. In this same way, Visvanathan et al. [20] used a support vector machine (SVM) to
classify BP and Liang et al. [21] used PAT and PPG features and four distinctive classifiers,
these being logistic regression, AdaBoost tree, Bagged tree and K-nearest neighbors, for the
classification of subjects as a function of BP estimated values.

However, it has been demonstrated that the relationship between the aforementioned
PPG-based propagation parameters and BP depends on many physiological factors, such
as arterial walls’ thickness and elasticity, age and gender, posture and risk factors of CVDs.
Thus, calibration is needed when BP levels from a new subject are going to be evaluated
by an automated classification method [22]. Moreover, calibration before measurement is
essential to adapt the algorithms to the variations on PPG waveforms, as they are easily
corrupted by fluctuations in blood circulation state, affecting the connection between BP
and peripheral pulses [23].

The aim of the present study is to develop a classification system for discriminating
between normotensive (NTS) and hypertensive (HTS) subjects and to evaluate the need
and relevance of per-subject calibration. For this purpose, PPG and ECG simultaneous
recordings have been analyzed and processed and propagation features, such as PTT and
PAT, combined with other PPG morphological features have been extracted and used to
train advanced classification models. The manuscript is organized as follows. Section 2
presents the database, the Machine Learning (ML) method procedure and preprocessing,
the analysis techniques and the methods to evaluate the need for calibration. Section 3
presents the results, which will be analyzed in Section 4. Finally, in Section 5, the main
scientific contributions of this study are remarked upon.

2. Materials And Methods
2.1. Materials

In this study, the recordings used were obtained from the MIMIC database, which
contains information from ICU patients admitted to Beth Israel Deaconess Medical Center
in Boston, USA [24]. This database was chosen as it contains ECG, PPG and invasive BP
signals recorded simultaneously in ICU. BP signals in which the systolic or diastolic waves
were indistinguishable, ECG signals where QRS morphology was distorted or PPG signals
in which the systolic and diastolic waves were indistinguishable and the morphology was
distorted were dismissed due to the presence of artifacts.

The BP values were labelled according to the report of the Joint National Committee
on the prevention, detection, evaluation and treatment of high blood pressure [25]: as
normotensive (NTS) for SBP lower than 120 mmHg, prehypertensive (PHT) for SBP between
120 and 140 mmHg and hypertensive (HTS) for SBP higher than 140 mmHg.

After labelling MIMIC recordings according to SBP values, it was observed that
several subjects had stable stretches with different labels. One reason that explained these
alterations in SBP values was that all patients were in an ICU, so they may have received
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treatment or medication that significantly altered SBP levels. Moreover, there were subjects
with distant stretches, at different time points, whose SBP values were on the borderline
between two labels, so that they had a different label across time even though the changes
in SBP were only a few mmHg.

Because of the aforementioned reasons, those subjects with huge alterations of their
SBP values (labels including NTS and HTS across time) were dismissed, as they were
not suitable to train a classification model aimed at assessing the risk of HT. As a result,
subjects maintaining the same label across the recording time were selected. A total of
913 recordings from 69 subjects, 45 being NTS and 24 being HTS, with acceptable signal
quality conditions were selected from the MIMIC database. The signals were all recorded
simultaneously with a duration of 120 s, a common sampling frequency of 125 Hz and a
resolution of 8–10 bits [26].

2.2. Signal Preprocessing

The PPG signals were processed by a fourth-order Chebyshev II bandpass filter with
cutoff frequencies between 0.5 and 10 Hz [27] to remove minor noises and artifacts caused
by sensors’ bad contacts, patient movements or any other interfering physiological activity,
such as the respiratory activity, that did not provoke signal dismissing in the previous
selection stage of minimum signal quality. Furthermore, the mean value of the filtered PPG
was removed to prevent drifts and to allow a better comparison between different signals.

Since the waveform of the PPG signal itself is rather simple and not very informative,
the derivatives of the signal were also used to better assess the changes in the signals
caused by BP. They represent the velocity plethysmogram (VPG) and the acceleration
plethysmogram (APG) and were obtained by applying the first and the second order
derivatives, respectively, to the processed PPG signal [28].

The ABP signals which reflected the change in BP over the cardiac cycle were clear
and did not require any processing to be applied. For its part, standard preprocessing
was applied to each ECG [29]. Thus, they were high-pass filtered with cutoff frequency of
0.5 Hz to remove the baseline, and then low-pass filtered with a cutoff frequency of 50 Hz
to reduce high-frequency muscle noise and power line interference, in this case, 60 Hz [29].

2.3. Fiducial Points Identification

After signal preprocessing, fiducial points from PPG, VPG and APG were extracted as
illustrated in Figure 1. The systolic peaks of the three signals (S, W, a), the onset point of
the PPG signal (O), and two local maxima and minimum of the APG signal (b, c, d, e) were
extracted [28,30]. Fiducial points in the precessed signals were obtained based on searching
local minima and maxima, calculated by establishing threshold and slope criteria in each of
the pulses composing every signal.

S: PPG systolik peak
O: PPG onset 

W: VPG maximum slope point 

O

W

S

PPG

VPG

a

b

c

d

e
APG

a: APG a wave
b: APG b wave 
c: APG c wave
d: APG d wave 
e: APG e wave

Figure 1. Graphical definition of fiducial points detected from photoplethysmogram (PPG), velocity
plethysmogram (VPG) and acceleration plethysmogram (APG) signals.

The maximum systolic blood pressure (SBP) was extracted as the maximum point
of each ABP pulse. SBP was used to label every subject as NTS or HTS. Subjects whose
selected segments had SBP < 130 mmHg were labeled as NTS, and subjects whose selected
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segments had SBP > 130 mmHg as HTS. Finally, for each ECG recording, an R-peak
detector based on the phasor transform was applied to the processed ECG signal to obtain
the position of each beat [30].

2.4. Definition of Discriminatory Features

After the detection of R-peaks in ECG recordings and the fiducial points for each
PPG, VPG and APG signals, discriminatory features were defined based on the pulse wave
propagation models, such as pulse arrival times (PAT) or pulse transit time (PTT), and other
morphological features from the signals that are listed below [28,31,32]. Figure 2 illustrates
the definition of the features.

• PAT: time interval between R peak and: the O-notch (PATf oot), the maximum slope of
PPG signal or W peak of VPG signal (PATderivate) and S-peak (PATpeak).

• PTT: time interval between SBP peak in BP signal to S-peak.
• Sistolic peak amplitude in PPG: amplitude from the baseline to S-peaks.
• Sistolic peak amplitude in VPG: amplitude from the baseline to W-peaks.
• TPP: time interval between two consecutive S-peaks.
• Time pulse interval (TPI): time interval between two consecutive O-notches.
• Rising time: time interval between O-notch and systolic peak in PPG signal.
• Width: pulse width at half the height of systolic peak height.
• Pulse area: integral of the signal between two consecutive O-notches.
• Area 1: trapezoidal integration of PPG signal from O-notch to S-peak.
• Area 2: trapezoidal integration of PPG signal from S-peak to O-notch.
• Inflection Point Area (IPA): ratio of both areas (A2/A1)
• a-a: time interval between two consecutive a-peaks in APG signal.
• Ratios between APG waves with the a-wave: b/a, c/a, d/a, e/a.
• Complex APG ratios: (b − c − d − e)/a, (b − e)/a, (b − c − d)/a, (c + d − b)/a.

PATfoot

PATpeak
PATderiv

S peak amplitude

Rise Time

Width

TPI

TPP

A2A1

ECG

PPG

Figure 2. Representation of PATf oot, PATderivate and PATpeak features obtained by the time interval
between ECG R-peak and fiducial points of PPG signals as well as PPG morphological parameters:
Systolic peak amplitude, TPP, rise time, areas under the pulse, width and TPI.

2.5. Feature Selection

The aim of the feature-selection stage was to select only those features, from the
original 23 discriminating parameters, that presented relevant information for solving the
classification problem optimally.

Firstly, since all the features were continuous quantitative variables, it was necessary
to carry out a normalization, since each one could take on a different range of values and
more weight would be given to the variables with higher values, not necessarily being more
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important. The normalization was carried out using “zscore” centering the variables so that
they had zero mean and scaling so that they had unit standard deviation, as represented in
the following equation

z =
x − X

S
, (1)

where x is a concrete value of a given feature, X is the mean of all values of that feature
and S the standard deviation.

Once the variables were normalized, ReliefF algorithm was applied to rank predictors
by importance, determining which ones had the best discriminatory power. The key idea of
this method is to estimate the quality of predictors according to how well instances near to
each other are distinguished, rewarding predictors that give different values to neighbors
of a different class [33]. Furthermore, by means of positive and negative correlation,
the independence between pairs of variables was analyzed in order to discard those that
did not provide new information for the classification task. Figure 3 illustrates the matrix
whose entries are the correlation coefficients obtained by matching pairs of variables, so
that highly correlated features can be discarded.

b/
a

c/
a
d/a

e/
a

(b-
c-d

-e)
/a

(b-
c-d

)/a

(b-
e)/

a

(c+
d-b)

/a
a-awidth

valSvalWTPP TPI

PATpeak

PATfoot

PATder
PTT

Risi
ng t

im
e
Area A1 A2

IP
A

b/a
c/a
d/a
e/a

(b-c-d-e)/a
(b-c-d)/a

(b-e)/a
(c+d-b)/a

a-a
width
valS

valW
TPP
TPI

PATpeak
PATfoot
PATder

PTT
Rising time

Area
A1
A2

IPA −1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. Correlation matrix of the 23 initial discriminatory features used in the study. Dark red values
represent higher correlation coefficients and dark blue values represent lower correlation coefficients.

After analyzing the correlation matrix and ReliefF results, it was decided to remove
three complex APG ratios (b − c − d − e)/a, (b − e)/a and (c + d − b)/a as they had
high correlation coefficients with other features, as well as the last three ReliefF ranked
features (TPP, TPI and pulse area), as the deletion of more features worsened classification
performance. Finally, after the feature selection, a matrix of 17 normalized features was
obtained, which will be used as inputs to train the classification models with ML techniques.

2.6. Implementation Details

The experiment was executed under MATLAB (MathWorks, Natick, MA, USA), a sci-
entific and engineering computing software, running on a computer equipped with an Intel
i7-8700 CPU @ 3.2 GHz, 16 GB of memory. The implementation for HT risk assessment
combining PPG and ECG signals has been based on testing ML classification strategies such
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as logistic regression, Naive Bayes, discriminant analysis, support vector machines (SVM),
k-nearest neighbors (KNN), ensemble classifiers and various types of decision trees [34].
Finally, SVM, Bagging Ensemble classifier and KNN were selected as they provided the
highest percentages of classificatory accuracy.

SVM aims at finding the optimal separating hyper-plane between classes by focusing
on the training cases that lie at the edge of the class distributions, the support vectors,
so only training samples that lie on class boundaries are needed for discrimination [35].
The Bagging technique builds multiple classifiers based on a number of bootstrap samples.
The outputs are decided by majority voting [36]. Finally, the KNN classifier obtains the
k-nearest neighbors of the data to be classified and, as the Bagging technique, majority
voting among the neighborhood is used to decide the output classification [37].

As stated before, the main objective of this study was testing whether HT risk assess-
ment of new subjects could be improved with previous calibration. However, before ad-
dressing this goal, the classification of subjects as NTS or HTS, based on discriminant
features extracted from PPG and ECG signals, was tested. In so doing, comparison with
previous studies without subject-based calibration could be made. The experiment em-
ployed a leave-one-out cross-validation strategy. The classification algorithm was applied
as many times as segments in the database, using each segment of 2 min in length as a
single validation set and all other segments from the same subject, together with the other
subjects, as a training set.

Classification performance was assessed with statistical tests for accuracy (Acc), sensi-
tivity (Se), specificity (Sp) and F1-Score. Acc represented the percentage of correctly assessed
PPG segments. Se was defined as the ability to detect as positive HTS subjects, whereas Sp
was defined as the ability to detect as NTS healthy subjects. Finally, F1-Score was consid-
ered to be the harmonic mean of Se and Acc. These statistical tests were mathematically
computed as

Acc =
TP + TN

TP + TN + FP + FN
(2)

Se =
TP

TP + FN
(3)

Sp =
TN

TN + FP
(4)

F1-Score =
2 · Se · Acc
Se + Acc

=
2 · TP

2 · TP + FP + FN
(5)

where TN was the number of correctly classified NTS segments, TP the number of correctly
classified HTS segments, FN the number of segments that the model predicted as NTS and
were actually HTS and FP the number of patients that the model predicted as HTS and
were actually NTS.

2.7. Need for Calibration of New Subjects

Calibration was defined here as the inclusion of at least one previous measurement of
the subject under study in the training set. Aimed at studying the importance of calibration
in the classification of new subjects as NTS or HTS, three approaches were taken:

1. Classification performance of new subjects without prior subject-based calibration
was studied employing those models providing the best classification results with
leave-one-out cross-validation strategy. For this purpose, the analyzed segments
of the new subject were only used for validation and the remaining segments from
subjects other than the one under study were used to train the model.

2. As a second approach, the effectiveness of calibration to improve classification of
new measurements performed later and close in time was studied following the
sequel procedure:

a. Signal segments with a duration of 2 min were divided into 12 sub-segments of
10 s in length.
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b. The sub-segments of all subjects except the one to be analyzed and the first
sub-segment of the analyzed subject, acting as the calibration measurement,
were used as training dataset and the next sub-segment of the same subject was
used for validation.

c. After its classification, this second sub-segment was introduced in the training
dataset, using the next sub-segment for validation. This step was repeated until
the 12 consecutive sub-segments of the subject were processed.

d. This procedure was repeated for all 2 min segments of all subjects in the database.

This way, a sequential calibration and validation was performed with the idea being
to analyze the improvement in classification as the model was gradually calibrated by
introducing previous measurements of the same subject very close in time.

3. Finally, the effectiveness of calibration for the classification of distant measurements
was studied. To control the distance between measurements, groups of segments
of the same patient that were less than 1 h, between 1 h and 6 h, between 6 h and
24 h and more than one day apart were selected. A sequential validation similar to
the described for consecutive sub-segments was also followed in this approach in
order to study whether classification results improved as the model was calibrated by
introducing previous measurements of the same patient far away in time.

The aforesaid three approaches were developed employing the ML classification model
that provided the best classification result in a leave-one-out cross-validation strategy.

3. Results

Statistical results of classification from the cross-validation strategy to discriminate
between NTS and HTS segments are shown in Table 1. As can be seen, all three models
provided outstanding classification results, with KNN being the model that obtained
the best classification performance with a total accuracy of 93.54%, sensitivity of 92.31%,
specificity of 94.35% and F1 score of 91.93%.

Table 1. Classification performance to distinguish between NTS and HTS individuals for the best
models analyzed with the selected features.

Model Accuracy Sensitivity Specificity F1-Score

KNN 93.54% 92.31% 94.35% 91.93%

SVM 91.35% 90.93% 91.62% 89.34%

Ensemble 90.69% 82.97% 95.81% 87.66%

Regarding results about the need to calibrate each model to provide the best clas-
sification outcome with new subjects, the KNN model was chosen as provided the best
classification results with leave-one-out cross-validation. First of all, following the first
approach detailed back in Section 2.7, the segments were classified without any previous
calibration, in other words, with the training dataset only consisting of segments from other
subjects, with each analyzed segment from the subject under study being tested for vali-
dation. In this case, classification accuracy with no previous calibration was 51.48%. This
proved that hypertension risk assessment of subjects without a prior calibration provided
low accuracy results, as has been also reported by previous studies [22,23].

Next, applying the second approach of Section 2.7, aimed at demonstrating whether
poor classification results could be improved with calibration, Figure 4 shows the clas-
sification accuracy between NTS and HTS individuals, in the form of box-and-whisker
plots, employing sequential validation of consecutive sub-segments. Moreover, the Figure
indicates in each square the mean accuracy for all selected subjects according to the number
of consecutive sub-segments in the training dataset acting as subject calibration. It can be
seen that, with the sole incorporation of one prior close in time sub-segment in the training
dataset for calibration, the classification performance increased by 30% with respect to
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the case without calibration. Furthermore, accuracy improved progressively until it was
stabilized above 96%, when more than six prior and close in time sub-segments from the
same subject were present in the training dataset.

1 2 3 4 5 6 7 8 9 10 11
Number of sub-segments in training datased used for calibration
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94.7
92.291.4

89.9

84.9

96.2
97.397.9

Figure 4. Classification performance provided by the KNN classifier in the discrimination between
NTS and HTS individuals. Results obtained for sequential validation of consecutive sub-segments
for each of the selected subject segments. In each box, the red line indicates the median, and the
bottom and top edges indicate the 15th and 85th percentiles, respectively. The whiskers cover the
most extreme data points not considered outliers, and the red symbol (+) stands for outliers. Black
squares inside each box indicate mean accuracies.

Finally, for the third option defined in Section 2.7, performing calibration distant
from measurements, Figure 5 shows classification outcomes of sequential validation with
different distances between segments. It was demonstrated that calibration improved the
classification task discriminating between NTS and HTS subjects because, as the number of
measurements of the same subject in the model increased, so did the accuracy rate. Figure 5
also shows that with calibration and measurement separated by less than 1 h, the model
was able to classify with an accuracy beyond 94% from the sixth calibration measurement
onwards. As expected, these outcomes decreased as the distance between calibrations
and test measurement increased, thus requiring up to five calibration measurements with
distances between 6 h and 24 h to obtain classification accuracies above 75%. In any case,
the need to perform several calibration measurements to achieve very good classification
accuracy with test measurements, which could be many hours or even days away from
calibration, does not seem to be a serious limitation. On the other hand, it is worth
mentioning that only five subjects had recording lengths longer than five days, so that
less stable results in Figure 5d can be considered as normal, because any misclassification
would significantly affect the final accuracy. Although the number of subjects was not quite
elevated in this last case, the obtained results demonstrate that classification performance
was very good even with distances between calibration and test measurement of several
days, which is very promising for real-world applications based on embedding these
methodologies into wearable devices.
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Figure 5. Classification accuracy to distinguish between NTS and HTS individuals using KNN
sequential validation of segments with calibration distant from test measurements. (a) Distance below
1 h. (b) Distance between 1 and 6 h. (c) Distance between 6 and 24 h. (d) Distance above 24 h. In each
box, the red line indicates the median, and the bottom and top edges indicate the 15th and 85th
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers,
and the red symbol (+) stands for outliers. Black squares inside each box indicate mean accuracies.

4. Discussion

The continuous measurement of BP is of great importance as it facilitates the early
detection and prevention of hypertension, being the main risk factor for many CVDs. With
the eruption in recent years of the Internet of Things [38] and cuff-less devices that are able
to continuously measure and process physiological signals applying artificial intelligence
techniques, such as ML and Deep Learning (DL), alternatives to traditional cuff-based
single-time BP measurement methods have been proposed. The main signal used in related
studies has been the PPG, as its morphological variations are related to the heart’s activity
and vascular walls condition, being similar to BP morphology both in frequency and time
domains [39]. Furthermore, PPG signal can be acquired by non-invasive low-cost devices
as smart watches, obtaining a continuous and real time measurement.

The monitoring of BP through PPG has mainly been studied by two different ap-
proaches: (i) addressing the problem of monitoring BP as a regression task estimating
systolic and diastolic values; and (ii) addressing the problem of detecting hypertensive
subjects as a classification task. In this study, the second approach has been developed, as
estimations from the first approach still have serious limitations, so that it is more clinically
beneficial to alert hypertensive subjects, acting as a support for clinical decision making.

Tjahjadi et al. [23] proposed the use of KNN technique and PPG signal without ECG,
requiring the extraction of 2100 PPG feature points from 2.1 s of data. Their classification
results achieved an F1-score of 100% for NTS and PHT patients and 90.80% for HTS
patients. Although the authors affirm that this method achieved higher classification
performance than other ML and DL methods, obtaining 2100 PPG feature points in such a
short period of time required a sampling frequency of 1 kHz, which is a serious drawback
for embedding this method in wearable devices, as it significantly increases the amount of
data sampled, saved and transmitted which, unavoidably, will involve a considerably high
power consumption.

Most studies for HT risk classification use both PPG and ECG signals, as PAT value
is directly related to BP value. Although previous works have studied the efficiency of
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employing PAT as the only parameter to estimate BP [14,40], Liang et al. [21] reported a
higher correlation with BP levels by combining PAT with additional PPG features. Dividing
the dataset into 70% for training and 30% for validation, the KNN classification model
obtained the best performance compared to bagged tree, logistic regression and AdaBoost
tree. The F1 scores comparing NTS vs. PHT, NTS vs. HTS and NTS + PHT vs. HTS were
84.34%, 94.84% and 88.49%, respectively. As a consequence, the HT risk-discrimination
performance between NTS and HTS was similar to the one achieved in the present study,
where F1 score with the KNN classification model was 91.93%, employing leave-one-out
cross-validation strategy. Therefore, both in previous studies and in the present work,
the KNN classifier has been the best model to assess HT risk, combining PPG recordings
and Machine Learning techniques. However, until now, there is no agreement about the
discriminant features to be used, since it depends considerably on patient selection and
database, mode of acquisition and signal quality.

In recent years, DL approaches have obtained outstanding performance extracting
information from images [41,42]. Liang et al. [43] used the continuous wavelet transform of
PPG signals and convolutional neural networks to classify BP. The dataset was divided in
80% for training and 20% for testing. The F1 scores for the binary classification comparing
NTS vs. PHT were 80.52%, NTS vs. HTS were 92.55% and (NT + PHT) vs. HT trials
were 82.95%. The main disadvantages of DL approaches are the requirement of a high
computational cost, the extra duration of the training stage and the need for a large number
of recordings.

One important consideration introduced by this work, that was not specified in related
studies, has been the study of subjects with stable labels of BP. Usually, BP levels vary
slightly throughout the day depending on the activities carried out by each person and
many other factors, however, each subject would have to be labelled with a single and
stable label. For example, any subject cannot be diagnosed as HTS at certain moments
of the day, PHT at others and NTS at others. This is a problem when using databases
such as the MIMIC, as it consists of recordings from ICU patients that, as a consequence
of their unstable condition or the administration of drugs, may have altered and variable
SBP levels.

Furthermore, any previous study about hypertension risk assessment has taken into
account the relevance of calibration as a factor improving significantly classification re-
sults. In this respect, calibration has been only considered in other studies addressing
BP estimation in combination with other patient data such as age [44], distance and area
of arteries between measure sites or other factors that increase BP as exercise or postural
changes [40]. Recently, Schlesinger et al. [45] used convolutional neural networks and PPG
signals for BP estimation, achieving a reduction in mean absolute difference of 2.54 mmHg
after calibration, using a single 30 s window of PPG signal and the associated BP reading.

The present study has proposed two calibration approaches, trying to improve the
poor initial classification accuracy of 51.48% when a new subject entered the method
without any previous calibration. The first approach investigated if the method improved
classification accuracy when consecutive sub-segments of each subject were used both for
calibration and classification, employing sequential validation. The assumption here was
the supposed high similarity between calibration measurements and test measurement.
Figure 4 showed that the presence of just one calibration sample was enough to increase
classification performance more than 30%, which was enhanced even more as the number
of calibration measurements raised.

The second approach studied the benefit of calibration for distances between calibra-
tion time and measurement time varying from less than 1 h to more than 24 h. This way,
it was considered if PPG signal properties from the same patient were kept across time
or changed along the day or week. For distances to calibration below 1 h, classification
accuracy improved by 30% with just one calibration, keeping these results until more
than 6 segments from the same patient were in the training dataset. The improvement of
hypertension risk classification decreased slightly as the distance between calibration and
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measurement increased, although the use of calibration always improved classification
results compared to classifying a new uncalibrated subject. Thus, after the fifth calibration,
all the experiments provided high accuracy.

These approaches have demonstrated that the properties of each patient’s PPG features
were variable over time, as worse results were obtained with measurements distant from
calibration than with those very close in time to calibration. Therefore, in order to ensure
high classification accuracy, several recalibrations performed at distant recording times and,
if possible, in different situations are recommended to accurately asses the risk of HT with
PPG and ECG recordings, which can be obtained in a simple way through wearable devices.

Finally, this study has certain limitations that are worth considering. Even though
more than 900 recordings were analyzed, the total number of patients was not too large
and there was no information available on factors that may imply a higher risk of HT
such as age, sex or physical condition. In this respect, Mukkamala et al. [46] studied the
age factor in calibration predicting a maximum calibration interval of 1 year for subjects
of 30 years of age, that declined linearly to 6 months for subjects at the age of 70, using
the PTT as discriminatory feature. In addition, this study has only applied the artificial
intelligence technique of ML. Future works will address the application of DL classifiers in
order to discern whether they are able to improve hypertension risk assessment of current
ML classifiers employing calibrated PPG recordings.

5. Conclusions

The combined extraction of discriminant features from PPG and ECG recordings,
together with the use of machine learning classification models such as KNN, has been
able to perform outstanding hypertension risk assessment in the discrimination between
NTS or HTS subjects. The application of per-subject calibration, both in close and distant
measurements, has proved its relevance for accurate classification. The implementation
of these artificial intelligence techniques in wearable devices would improve the early
diagnosis and prevention of cardiovascular diseases associated to hypertension.
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